Sample Assignment#2 Key
1a. EveryOther(L) = \{ a_1 a_3 \ldots a_{2n-1} \mid a_1 a_2 a_3 \ldots a_{2n-1} a_{2n} \text{ is in } L \} \\

• Approach 1: Let L be a Regular language over the finite alphabet \(\Sigma \). For each \(a \in \Sigma \), define \(f(a) = \{a, a'\} \), \(g(a) = a' \) and \(h(a) = a \), \(h(a') = \lambda \), \(f \) is a substitution, \(g \) and \(h \) are homomorphisms.

\[
\text{EveryOther}(L) = h(f(L) \cap (\Sigma \cdot g(\Sigma))^*)
\]

• Why this works:
 \(f(L) \) gets us every possible random priming of letters of strings in L.
 \((\Sigma \cdot g(\Sigma))^* \) gets every word composed of pairs of unprimed and primed letters from \(\Sigma \). Intersecting this with \(f(L) \) gets strings of the form
 \(a_1 a_3 a_4'\ldots a_{2n-1} a_{2n}' \) where \(a_1 a_2 a_3 a_4\ldots a_{2n-1} a_{2n} \) is in L

Applying the homomorphism \(h \) erases all primed letters resulting in every string \(a_1 a_3 \ldots a_{2n-1} \) where \(a_1 a_2 a_3 a_4 \ldots a_{2n-1} a_{2n} \) is in L, precisely the language EveryOther(L) that we sought. This works as Regular Languages are closed under intersection, concatenation, *, substitution and homomorphism.
1a. EveryOther(L) = \{ a_1 a_3 \ldots a_{2n-1} \mid
a_1 a_2 a_3 \ldots a_{2n-1} a_{2n} \text{ is in } L \}

• Approach 2: Let L be a Regular language over the finite alphabet \(\Sigma \). Assume L is recognized by the DFA \(A_1 = (Q, \Sigma, \delta_1, q_1, F) \). Define NFA \(A_2 = (Q, \Sigma, \delta_2, q_1, F) \) where \(\delta_2(q,a) = \text{union}(b \in \Sigma) \{ \delta_1(\delta_1(q,a),b) \} \)

• Why this works:
Every transition that \(A_2 \) takes is one that \(A_1 \) would have taken when reading a pair that starts with the character read by \(A_1 \) followed by any arbitrary character.
1b. \(\text{Half}(L) = \{ x \mid \text{there exists a } y, \ |x| = |y| \) and \(xy \) is in \(L \) \}

- Let \(L \) be a Regular language over the finite alphabet \(\Sigma \). Assume \(L \) is recognized by the DFA \(A_1 = (Q, \Sigma, \delta_1, q_1, F) \). Define the NFA \(A_2 = ((Q \times Q \times Q) \cup \{q_0\}, \Sigma, \delta_2, q_0, F') \), where
 \[
 \delta_2(q_0, \lambda) = \text{union}(q \in Q) \{ <q_1, q, q> \} \text{ and }
 \delta_2(<q, r, s>, a) = \text{union}(b \in \Sigma) \{ <\delta_1(q, a), \delta_1(r, b), s> \}, q, r, s \in Q
 \]
 \[
 F' = \text{union}(q \in Q) \{<q, f, q>\}, f \in F
 \]

- Why this works:
 The first part of a state \(<q, r, s>\) tracks \(A_1 \).
 The second part of a state \(<q, r, s>\) tracks \(A_1 \) for precisely all possible strings that are the same length as what \(A_1 \) is reading in parallel. This component starts with a guess as to what state \(A_1 \) might end up in.
 The third part of a state \(<q, r, s>\) remembers the initial guess.
 Thus, \(\delta_2(<q_1, q, q>, x) = \{ \delta_1(q_0, x), \delta_1(q, y), q >\} \) for arbitrary \(y \), \(|x| = |y| \)
 We accept if the initial guess was right and the second component is final, meaning \(xy \) is in \(L \).
2. Let \(L = \{ a^m b^n c^t \mid t = \min(m,n) \} \)

a.) Use the **Myhill-Nerode Theorem** to show \(L \) is not Regular.

Define the equivalence classes \([a^i b^j]\), \(i \geq 0\)

Clearly \(a^i b^j c^i \) is in \(L \), but \(a^i b^j c^i \) is not in \(L \) when \(j \neq i \)

Thus, \([a^i b^j] \neq [a^j b^i]\) when \(j \neq i \) and so the index of \(R_L \) is infinite.

By Myhill-Nerode, \(L \) is not Regular.
2. Let $L = \{ a^m b^n c^t \mid t = \min(m,n) \}$

b.) Use the **Pumping Lemma for Regular Languages** to show L is **not** a CFL

Me: L is a CFL

PL: Provides $N > 0$

Me: $w = a^N b^N c^N$

PL: $w = xyz$, $|xy| \leq N$, $|y| > 0$, and $\forall i \geq 0 \ xy^i z \in L$

Me: Since $|xy| \leq N$, it can consist of a’s only.

Let $i=0$ which decreases the number of a’s, but not the b’s or c’s, and so the result is $a^{N-|y|} b^N c^N$, with $|y| > 0$. Thus, this contradicts that $\forall i \geq 0 \ xy^i z \in L$ and so L is not Regular by Pumping Lemma.