Sample Assignment#2 Key

1a. EveryOther(L) = { $a_1 a_3 ... a_{2n-1}$ | $a_1 a_2 a_3 ... a_{2n-1} a_{2n}$ is in L }

- Approach 1: Let L be a Regular language over the finite alphabet Σ . For each $a \in \Sigma$, define $f(a) = \{a,a'\}$, g(a) = a' and h(a) = a, $h(a') = \lambda$, f is a substitution, g and h are homomorphisms. EveryOther(L) = $h(f(L) \cap (\Sigma - g(\Sigma))^*$)
- Why this works:
 - **f(L)** gets us every possible random priming of letters of strings in L. ($\Sigma g(\Sigma)$)* gets every word composed of pairs of unprimed and primed letters from Σ . Intersecting this with **f(L)** gets strings of the form $a_1 a_2' a_3 a_4' ... a_{2n-1} a_{2n}'$ where $a_1 a_2 a_3 a_4 ... a_{2n-1} a_{2n}$ is in L. Applying the homomorphism **h** erases all primed letters resulting in every string $a_1 a_3 ... a_{2n-1}$ where $a_1 a_2 a_3 a_4 ... a_{2n-1} a_{2n}$ is in L, precisely the language **EveryOther(L)** that we sought. This works as Regular Languages are closed under intersection, concatenation, *, substitution and homomorphism.

1a. EveryOther(L) = { $a_1 a_3 ... a_{2n-1}$ | $a_1 a_2 a_3 ... a_{2n-1} a_{2n}$ is in L }

- Approach 2: Let L be a Regular language over the finite alphabet Σ . Assume L is recognized by the DFA $A_1 = (Q, \Sigma, \delta_1, q_1, F)$. Define NFA $A_2 = (Q, \Sigma, \delta_2, q_1, F)$, where $\delta_2(q,a) = \text{union}(b \in \Sigma) \{ \delta_1(\delta_1(q,a),b) \}$
- Why this works: Every transition that A_2 takes is one that A_1 would have taken when reading a pair that starts with the character read by A_1 followed by any arbitrary character.

1b. Half(L) = $\{x \mid \text{there exists a } y, |x| = |y| \text{ and xy is in L} \}$

• Let L be a Regular language over the finite alphabet Σ . Assume L is recognized by the DFA $A_1 = (Q, \Sigma, \delta_1, q_1, F)$. Define the NFA $A_2 = ((Q \times Q \times Q) \cup \{q_0\}, \Sigma, \delta_2, q_0, F')$, where $\delta_2(q_0,\lambda) = \text{union}(q \in Q) \{ < q_1, q, q > \} \text{ and } \delta_2(< q, r, s > ,a) = \text{union}(b \in \Sigma) \{ < \delta_1(q,a), \delta_1(r,b), s > \}, q,r,s \in Q$ $F' = \text{union}(q \in Q) \{ < q, f, q > \}, f \in F$

• Why this works: The first part of a state $< q, r, s > \text{tracks } A_1$. The second part of a state $< q, r, s > \text{tracks } A_1$ for precisely all possible strings that are the same length as what A_1 is reading in parallel. This component starts with a guess as to what state A_1 might end up in. The third part of a state < q, r, s > remembers the initial guess. Thus, $\delta_2*(< q_1, q, q > , x) = {\delta_1*(q_0, x), \delta_1*(q, y), q >}$ for arbitrary y, |x| = |y| We accept if the initial guess was right and the second component is final, meaning xy is in L..

2. Let $L = \{ a^m b^n c^t \mid t = min(m,n) \}$

a.) Use the Myhill-Nerode Theorem to show L <u>is not</u> Regular. Define the equivalence classes $[a^ib^i]$, $i \ge 0$ Clearly $a^ib^ic^i$ is in L, but $a^jb^jc^i$ is not in L when $j \ne i$ Thus, $[a^ib^i] \ne [a^jb^j]$ when $j \ne i$ and so the index of R_L is infinite. By Myhill-Nerode, L is not Regular.

2. Let $L = \{ a^m b^n c^t \mid t = min(m,n) \}$

b.) Use the **Pumping Lemma for Regular Languages** to show **L is not** a CFL

Me: L is a CFL

PL: Provides **N>0**

Me: $\mathbf{w} = \mathbf{a}^{\mathbf{N}} \mathbf{b}^{\mathbf{N}} \mathbf{c}^{\mathbf{N}}$

PL: w = xyz, $|xy| \le N$, |y| > 0, and $\forall i \ge 0$ $xy^iz \in L$

Me: Since $| xy | \le N$, it can consist of a's only.

Let i=0 which decreases the number of a's, but not the b's or c's, and so the result is $a^{N-|y|} b^N c^N$, with |y| > 0. Thus, this contradicts that $\forall i \geq 0$ xyⁱz $\in L$ and so L is not Regular by Pumping Lemma.