
Closure of Regular (HALF)



Half(L) = { x | ∃ y, |x| = |y| and xy ∈ L }

• First thought might be that we can so this by Regular Expressions
• A little thought to that makes it clear that there is no way to figure of

the lengths of unbounded parts being split up in a regular expression
• In fact, we cannot even directly use a Regular Expression for Prefix
• Ah, then why not a variant of our technique we applied for Quotient, 

Prefix, Suffix?
• But, once again we have no way to express constrained iunbounded

lengths
• We seem to nees to go back to a function-based approach -- FSAs



Half(L) = { x | ∃ y, |x| = |y| and xy ∈ L }

• Let L be a Regular language over the finite alphabet Σ. L is recognized 
by some DFA 
• Let that DFA be A1 = (Q, Σ, δ1, q1, F). 
• Clearly, when this DFA gets half the way through any string it is in 

some fixed state since the DFA is deterministic.
• Let’s call the state at the halfway point, h.
• Then δ1(q1, x) = h
• Since ∃ y, |x| = |y| where xy ∈ L, then for any such y, δ1(h, y) ∈ F
• We want a parallel approach that looks at x and y simultaneously



Half(L) = { x | ∃ y, |x| = |y| and xy ∈ L }

• Our parallel algorithm will use non-determinism since we have no 
idea what y is, but we know its length is the same as x.
• We will also be non-deterministic as we will guess the value of h.
• The automaton we need to have a three-part state, <q, p, h>. q is the 

state that A1 deterministically computes while reading x. p is an 
educated guess of where A1 would be if it was reading y and had 
traversed as many characters of y as it has of x. h is the guessed state 
we would enter at the halfway point.
• We would like to start at any state <q1, h, h>, where h ∈ Q but we are 

only allowed one start state, so we invent a new one q0 and have it go 
to all these desired start states on λ.



Half(L) = { x | ∃ y, |x| = |y| and xy ∈ L }

• Formally we create the NDA below.

• A2 = ((Q × 2Q × 2Q)∪{q0}, Σ, δ2, q0, F’), where 
δ2(q0,λ) = union(h∈Q) {<q1, h, h>} and 
δ2(< q, r, h > ,a) = union(b∈Σ) { < δ1(q,a), δ1(r,b), h > } ,  q,r,h ∈ Q
F’ = union(q∈Q) {<h, f, h>}, f∈F

• Why this works: 
The first part of a state < q, r, h > tracks A1.
The second part of a state < q, r, h > tracks A1 for precisely all possible strings that are the same length as 
what A1 is reading in parallel. This component starts with a guess as to what state A1 might end up in.
The third part of a state < q, r, h > remembers the initial guess, h.
Thus, δ2*(< q1, h, h > ,x) = {δ1*(q0,x), δ1*(q,y), h >} for arbitrary y, |x|=|y| 

• If our guess h is right, then δ1*(q0,x) = h and so the first and third components are the same.

• We accept if the initial guess was right and the second component is final, meaning xy is in L.


