Closure of Regular (HALF)

$\operatorname{Half}(L)=\{x|\exists y,|x|=|y|$ and $x y \in L\}$

- First thought might be that we can so this by Regular Expressions
- A little thought to that makes it clear that there is no way to figure of the lengths of unbounded parts being split up in a regular expression
- In fact, we cannot even directly use a Regular Expression for Prefix
- Ah, then why not a variant of our technique we applied for Quotient, Prefix, Suffix?
- But, once again we have no way to express constrained iunbounded lengths
- We seem to nees to go back to a function-based approach -- FSAs

$\operatorname{Half}(L)=\{x|\exists y,|x|=|y|$ and $x y \in L\}$

- Let \mathbf{L} be a Regular language over the finite alphabet $\boldsymbol{\Sigma}$. \mathbf{L} is recognized by some DFA
- Let that DFA be $\mathbf{A}_{1}=\left(\mathbf{Q}, \boldsymbol{\Sigma}, \boldsymbol{\delta}_{1}, \mathbf{q}_{1}, \mathbf{F}\right)$.
- Clearly, when this DFA gets half the way through any string it is in some fixed state since the DFA is deterministic.
- Let's call the state at the halfway point, \mathbf{h}.
- Then $\delta_{1}\left(\mathbf{q}_{1}, \mathbf{x}\right)=\mathbf{h}$
- Since $\exists \mathbf{y},|\mathbf{x}|=|y|$ where $\mathbf{x y} \in L$, then for any such $\mathbf{y}, \delta_{1}(\mathbf{h}, \mathrm{y}) \in \mathrm{F}$
- We want a parallel approach that looks at \mathbf{x} and \mathbf{y} simultaneously

$\operatorname{Half}(L)=\{x|\exists y,|x|=|y|$ and $x y \in L\}$

- Our parallel algorithm will use non-determinism since we have no idea what \mathbf{y} is, but we know its length is the same as \mathbf{x}.
- We will also be non-deterministic as we will guess the value of \boldsymbol{h}.
- The automaton we need to have a three-part state, <q, p, h>. q is the state that \mathbf{A}_{1} deterministically computes while reading $\mathbf{x} . \mathbf{p}$ is an educated guess of where A_{1} would be if it was reading \boldsymbol{y} and had traversed as many characters of \mathbf{y} as it has of \mathbf{x}. \mathbf{h} is the guessed state we would enter at the halfway point.
- We would like to start at any state $\left\langle\mathbf{q}_{1}, \mathbf{h}, \mathbf{h}>\right.$, where $\mathbf{h} \in \mathbf{Q}$ but we are only allowed one start state, so we invent a new one q_{0} and have it go to all these desired start states on $\boldsymbol{\lambda}$.

$\operatorname{Half}(L)=\{x|\exists y,|x|=|y|$ and $x y \in L\}$

- Formally we create the NDA below.
- $A_{2}=\left(\left(Q \times 2^{Q} \times 2^{Q}\right) \cup\left\{q_{0}\right\}, \Sigma, \delta_{2}, q_{0}, F^{\prime}\right)$, where
$\delta_{2}\left(q_{0}, \lambda\right)=$ union $(h \in Q)\left\{<q_{1}, h, h>\right\}$ and
$\delta_{2}(<q, r, h>, a)=$ union($\left.b \in \Sigma\right)\left\{<\delta_{1}(q, a), \delta_{1}(r, b), h>\right\}, q, r, h \in Q$
$\mathbf{F}^{\prime}=$ union($\left.\mathbf{q} \in \mathrm{Q}\right)\{<h, \mathrm{f}, \mathrm{h}>\}, \mathrm{f} \in \mathrm{F}$
- Why this works:

The first part of a state $<q, r, h>\operatorname{tracks} A_{1}$.
The second part of a state $\left\langle\mathbf{q}, r, h>\right.$ tracks \mathbf{A}_{1} for precisely all possible strings that are the same length as what $\mathbf{A}_{\mathbf{1}}$ is reading in parallel. This component starts with a guess as to what state $\mathbf{A}_{\mathbf{1}}$ might end up in.
The third part of a state < $\mathbf{q}, \mathbf{r}, \mathbf{h}>$ remembers the initial guess, \mathbf{h}.
Thus, $\delta_{2}{ }^{*}\left(\left\langle q_{1}, h, h>, x\right)=\left\{\delta_{1}{ }^{*}\left(q_{0}, x\right), \delta_{1}{ }^{*}(q, y), h>\right\}\right.$ for arbitrary $y,|x|=|y|$

- If our guess \mathbf{h} is right, then $\delta_{1}{ }^{*}\left(\boldsymbol{q}_{0}, \mathbf{x}\right)=\mathbf{h}$ and so the first and third components are the same.
- We accept if the initial guess was right and the second component is final, meaning $\mathbf{x y}$ is in \mathbf{L}.

