
ar
X

iv
:2

20
2.

05
71

1v
1

 [
cs

.D
C

]
 1

1
Fe

b
20

22

Global Optimization of Data Pipelines in
Heterogeneous Cloud Environments

Erica Lin*, Luna Xu*, Suraj Bramhavar, Marco Montes de Oca,
Sean Gorsky, Lingyun Yi, Arianna Groetsema, Jeffrey Chou

Sync Computing

info@synccomputing.com

Cambridge, Massachusetts, USA

Abstract

Modern production data processing and machine learning

pipelines on the cloud are critical components formany cloud-

based companies. These pipelines are typically composed of

complex workflows represented by directed acyclic graphs

(DAGs). Cloud environments are attractive to these work-

flows due to the wide range of choice with heterogeneous

instances and prices that can provide the flexibility for dif-

ferent cost-performance needs. However, this flexibility also

leads to the complexity of selecting the right resource con-

figuration (e.g., instance type, resource demands) for each

task in the DAG, while simultaneously scheduling the tasks

with the selected resources to reach the optimal end-to-end

performance and cost. These two decisions are often code-

pendent resulting in an NP-hard scheduling optimization

bottleneck. Existing solutions only focus solely on either

problem and ignore the co-effect on the end-to-end opti-

mum. We propose AGORA, a scheduler that considers both

task-level resource allocation and execution for DAG work-

flows as awhole in heterogeneous cloud environments. AGORA

first (1) studies the characteristics of the tasks from prior

runs and gives predictions on resource configurations, and

(2) automatically finds the best configuration with its cor-

responding schedules for the entire workflow with a cost-

performance objective. We evaluate AGORA in a heteroge-

neousAmazonWeb Services (AWS) cloud environment with

multi-tenant workflows served by Airflow and demonstrate

a performance improvement up to 45% and cost reduction

up to 77% compared to state-of-the-art schedulers. In ad-

dition, we apply AGORA to a real-world production trace

from Alibaba and show cost reduction of 65% and DAG com-

pletion time reduction of 57%.

1 Introduction

DAG-based data pipelines are commonly used in produc-

tion environments and have become one of the dominant

workloads in the cloud. This is due to their ability to eas-

ily describe increasingly complex data analytic workflows

caused by increasing business needs. In a DAG, each vertex

represents a task and edges encode dependencies and data

flow between the tasks. Modern DAGs consist of more than

Contact author at erica.lin@synccomputing.com.

thousands of tasks with complicated dependencies and di-

verse durations [20, 29]. We anticipate both the complexity

and the number of DAG workloads to grow exponentially

with the inevitable growth of data.

The cloud is widely used to run DAG workloads due to

its flexibility, scalability, heterogeneity, and plethora of ser-

vices. However, executing the same DAG can have drasti-

cally different cost and performance characteristics based

on resources provisioned, configurations, and scheduling poli-

cies even within the same cloud provider. With increasingly

complex and large DAGs, this difference can be significant.

As a result, there are a lot of works studying VM selection

(resource provisioning) [6, 45] and job scheduling [18, 20,

24]. However, for a long time this problem has been stud-

ied separately with schedulers usually assuming a fixed re-

source demand from the workloads, in most cases defined

by the user. In reality, it is not easy for the user to decide

resource demands for each task, and ideally it is a burden

that users should not have to carry. Moreover, we found that

combining the best solutions in each field does not yield

the best solution. This is because these two issues are co-

dependent. For example, most VM selection algorithms re-

quire runtime estimations which are also heavily dependent

on how the jobs are scheduled, while most scheduling algo-

rithms require VM selections to bemade prior to scheduling.

Optimizing each problem individually does not guarantee a

globally optimal solution, and can sometimes even lead to

worse results. In this paper, we argue that co-optimization

of resource configurations and scheduling is necessary for

running complex DAG jobs in heterogeneous cloud environ-

ments to achieve the end-to-end optimal goal of cost and

performance.

Co-optimization of resource configurations and job sched-

uling brings several challenges. Deciding the best workload

configuration, VM instances, scale, and schedule is an NP-

hard problem. The large set of potential configurations also

manifest as an incredibly large search space. In addition, the

problem size grows exponentially with the DAG complexity

and task diversity. Traditional optimization methods would

http://arxiv.org/abs/2202.05711v1
info@synccomputing.com

either require a long time to solve (optimization based ap-

proaches) , or can only provide best effort solutions (heuris-

tic based approaches), leaving significant benefit on the ta-

ble. Recent deep-learning based approaches [26] require his-

torical data, training, and model tuning to achieve optimal

results.

In this paper, we propose AGORA, an automated, globally

optimized resource allocator and scheduler for DAG work-

loads in heterogeneous cloud environments. AGORA takes

one ormore DAGs and an optimization goal as input, and co-

optimizes the best resource provisions and workload config-

urations together with task scheduling both within and be-

tween DAGs to achieve the best solution. AGORA supports

different goals such as cost, performance, and a balance of

both. As opposed to heuristic based approaches, AGORA

is designed to reach an optimal solution, and do so within

a reasonable time compared with traditional optimization

based approaches. AGORAfirst analyzes each task in a DAG

and gives a set of runtime predictions associated with differ-

ent task configurations for big data tasks such as Spark [46]

configurations. It then formulates the scheduling problem

as a variation of the resource-constrained project schedul-

ing problem (RCPSP [23]) in which the task demands and

runtimes are also expressed as variables for optimization.

Finally, it solves the optimization problem and outputs an

optimal resource configuration for each task and an optimal

schedule for all the DAGs.

Specifically, the paper makes the following contributions:

1. We present a motivational study to show that exist-

ing separate optimization does not lead to the best

global optimum. We also quantify the challenge of co-

optimization.

2. We formally define the co-optimization problem and

extend existing formulation to include both resource

configuration and job scheduling.

3. Based on the problem formulation we design a solver

that achieves low overheads, and implement AGORA

to demonstrate our algorithm.

4. We evaluate AGORA with micro and macro bench-

marks and show that AGORA is able to both improve

job makespan up to 45% and cost up to 77%.

2 Related Work

Running data pipelines in the cloud currently involves two

steps: resource allocation (selecting the right VM instance

types and deciding the cluster size) and job scheduling. Both

have been long-lasting topics in research [24]. However, the

synergy and codependencybetween these two have not been

studied intensively.

2.1 Resource Allocation

The cloud offers heterogeneous compute resources at vari-

ous prices. It is important to decide the right resource config-

urations for each task to achieve the best cost-performance

for a given goal. Existing methods apply runtime predic-

tion to predict the runtime and calculate the cost with dif-

ferent instances. With the calculated runtime and cost, the

resource allocator is able to pick the right types and num-

ber of instances which come closest to the goal (e.g., lowest

cost, lowest runtime, etc.). Here we provide an overview of

some recent predictors. Ernest [41] is a predictor that can

estimate runtime of the same job executed on a range of dif-

ferent numbers of machines, reporting a low average predic-

tion error of less than 20%. It utilizes a general model and

a nonlinear least squares (NNLS) solver to fit the runtime

data. Cherrypick [6] is an example of a predictor that adopts

a black box approach as opposed to Ernest. Cherrypick re-

quires multiple runs of the same application in order to do

the prediction. Some predictors utilize an analytical model

approach that can make predictions on data from one run of

the application. Wang et al. [42] present an implementation

using a model that predicts a Spark application’s runtime

on a stage by stage basis by taking into account the stage

overheads, task overheads, and task runtimes. While this

approach has fewer data collection requirements, the accu-

racy is lower than that of Ernest or Cherrypick.Ardagna and

Pinto [7] utilize a simulator approach to predict application

runtimes, achieving low prediction error, however it does

not allow for the potential of accounting for parameters in

big data frameworks such as Spark. There are also tools fo-

cused on autotuning Spark parameters, but they do not pre-

dict performance for different hardware [35]. Finally, Sayeh

et al. [5] take a gray-box modeling approach, using both a

white-box model and a black-box model. They achieve im-

pressive results in prediction accuracy, but their model re-

quires running the application many times with many dif-

ferent configurations.

2.2 Job Scheduling

Given resource demands and the runtime of each task, the

scheduler then orders and packs the tasks on the under-

lying cluster for execution. This paper summarizes recent

scheduling algorithms into two categories: heuristic based

approaches and optimization based approaches.

Heuristic based methods (e.g. FIFO, round-robin, shortest

job first, critical path, etc.) have been long adopted in operat-

ing systems for job scheduling, and are also widely applied

in distributed systems. Tetris [18] made an early attempt

to pack multi-resource tasks to a cluster of resources for

maximizing utilization. It adopts a shortest-remaining-job-

time-first heuristic to improve performance. Tetris achieves

both high cluster utilization and performance, but it is not

DAG-aware. Graphene [20] extends Tetris and embeds task

2

Index
Analysis

Sentiment
Analysis

Airline
Delay

Movie
Rec.

Figure 1. Example DAG composed by real-world data ana-

lytic pipeline jobs.

dependency into the scheduling. Graphene schedules long-

running or hard-to-pack tasks first. Although the heuris-

tic seems simple, Graphene requires multi-layer nested it-

erations to optimize for the best schedules which requires

long solving times. Carbyne [19] is another DAG-aware fair

scheduler that utilizes leftover resources to further reduce

resource fragmentation. All these schedulers assume prede-

fined resource usage for each task, and they only work with

homogeneous cloud environments (i.e., they are not aware

of the different instance types, and they do not select the

right VMs for the tasks). Stratus [14] on the other hand

is the closest work to AGORA in the sense that it selects

VMs for each task to minimize cost. In addition, it schedules

workloads with similar runtimes to maximize VM utiliza-

tion. Although Stratus selects and launches VMs for a task

based on the runtime estimation, it still assumes a prede-

fined resource demand (vcpu, memory)whereas AGORA de-

cides the configurations including VM instance types and re-

source demands for each task together with the best sched-

ule. Moreover, Stratus is not DAG-aware and it only opti-

mizes cost while AGORA can optimize for different objec-

tives. Apart from the aforementioned offline schedulers that

useworkload runtime estimation or prior knowledge to achieve

near-optimal results, online schedulers [3, 15, 43, 44] require

no prior task runtime information and adaptively schedule

tasks during runtime. These approaches are orthogonal and

could be applied as complementary to AGORA.

Optimization based methods formulate cluster schedul-

ing into an optimization problem, and strive to solve the

problem to achieve the optimal solution. Thesemethods could

differ in both the problem formulation and the solver. Most

commonly, the optimization problem is formulated as a gen-

eral Linear Programming (LP [9, 12]) problem, Mixed Inte-

ger Linear Programming (MILP [11]) problem, or a flow-

based graph optimization problem such as Min-Cost Max-

Flow (MCMF [4]) problem. For example, TetriSched [40] au-

tomatically translates the workload resource requests as a

MILP problem and solves it to effectively schedule tasks. Fir-

mament [16] and Quincy [27] both formulate the problem as

an MCMF problem and focus on fairness, data locality, and

Table 1. Selected instance types from AWS. The spec and

price information are valid on 01/27/2022.

Instance vCPUs Memory Cost ($ per hour)

m5.4xlarge 16 64 0.768

m5.8xlarge 32 128 1.536

m5.12xlarge 48 192 2.304

m5.16xlarge 64 256 3.072

scheduling latency. Similar to the heuristic based schedulers,

these works are not DAG-aware, and they assume prede-

fined resource demands instead of co-optimizing. There are

also schedulers that consider task dependencies and allow

for resource demands to be malleable [9, 12], but they do not

consider cost in the optimization and are not heterogeneity-

aware. Also, for simplicity they neglect workload charac-

teristics and assume all tasks will run faster with more re-

sources. As a special case of optimization based approaches,

deep learning and machine learning based approaches [26,

31] have been shown to find good solutions if trained with

adequately sized data sets, but even these approaches often

result in solutions which are sub-optimal andmay shift over

time as real workloads deviate from the training data sets.

Similarly, if provisioning and scheduling are performed as

two independent functions, even the perceived "optimal" so-

lution calculated by any advanced scheduling computation

will not, in fact, represent the best possible solution for the

entire system. AGORA aims to overcome this limit by com-

bining both functions into one calculation.

3 Motivation

In this section, we first demonstrate the need for co-optimizing

resource allocation and task scheduling with a simple DAG

example.We also showcase the challenges of co-optimization

with increasing DAG complexity. For the first demonstra-

tion, we select four applications in real-world data produc-

tion pipelines: Index Analysis, Sentiment Analysis, Airline

Delay, andMovie Recommendation. IndexAnalysis is a com-

mon data pre-processing job that reads raw data from stor-

age, extracts features, and writes back to S3 for analytic

jobs further down the pipeline. The other three jobs are

typical ML jobs that analyze data for predicting airline de-

lays, perform text sentiment analysis with NLP, and recom-

mendmovies, respectively. For simplicity, we form aDAG as

shown in Figure 1 as our example. The DAG demonstrates

a typical data analytic pipeline (i.e., three ML jobs after data

pre-processing). We select four instance types from AWS

cloud [2] as shown in Table 1. In reality, DAGs aremore com-

plicated with more variable instances types, which makes

the problemmore difficult and results in worse performance

than our example.

Best of each world does not bring the best outcome:

One intuitive approach to run a DAG in the cloud is to first

decide resource configurations for each task and select the

3

5 10 15
of nodes

500

1000

1500

Pr
ed

ict
ed

 ru
nt
im

e
(s
) Index Analysis

5 10 15
of nodes

400

500

600

700
Sentiment Analysis

5 10 15
of nodes

400

600
Airline Delay

5 10 15
of nodes

150

200

250

Movie Rec.

Instance
m5.4xlarge
m5.8xlarge
m5.12xlarge
m5.16xlarge

Figure 2. Ernest runtime prediction on four example jobs with selected instance types. X-axis shows the number of nodes

used for each instances. Y-axis shows the predicted runtime from Earnest.

Table 2. VM selection configurations for all jobs under

Ernest and BF co-optimize.

Jobs Ernest BF co-optimize

Index Analysis 16 x m5.4xlarge 16 x m5.4xlarge

Sentiment Analysis 10 x m5.4xlarge 9 x m5.4xlarge

Airline Delay 16 x m5.4xlarge 6 x m5.4xlarge

Movie Rec. 16 x m5.4xlarge 1 x m5.4xlarge

best VM instances to run the DAG. To simulate the best ef-

fort in this step, we selected Ernest [41], a performance pre-

dictor for big data jobs, to help us decide the best configu-

rations. Ernest is reported to achieve less than 20% error on

most workloads with less than a 5% overhead for training,

making it a highly efficient and accurate predictor. We run

Ernest with our example DAG and Figure 2 shows the re-

sults. We evaluate with the goal of shortest runtime in this

set of experiments. From Figure 2, we see mostly diminish-

ing returns in runtimes with increasing number of nodes for

every instance type, with Sentiment Analysis even showing

negative scaling on a large number of m5.4xlarge instances.

We reasonably select VM configurations according to our

goal of shortest runtime as shown in Table 2. After select-

ing the VMs, the DAG is usually submitted to a scheduler

for execution. The scheduler typically reads DAG depen-

dencies and resource configurations to decide job packing

and execution order. A good scheduler could further reduce

the overall DAG runtime, which results in lower cost. In

this experiment, we select TetriSched [40] as our scheduler

with modifications to allow for dependency-aware sched-

uling. TetriSched is an optimization-based scheduler, using

a Mixed Integer Linear Programming (MILP) formulation,

that can solve to a proven optimal solution. Combining the

results of Ernest and TetriSched, we simulate a separately

optimized approach (separate) for running a DAG in cloud.

The result of this approach is shown in Figure 3a.

Although the separate approach optimizes each step care-

fully, it does not result in the overall best outcome. To demon-

strate this, we perform an exhaustive search on all possible

combinations of VM configurations with DAG scheduling

together for a global minimum runtime (referred to as brute-

force co-optimization BF co-optimize). Table 2 shows the re-

sulting VM configurations from the exhaustive search and

Figure 3b shows the runtime. We can see that BF co-optimize

reaches a 40% improvement in runtime and cost (Figure 3c).

This is because BF co-optimize combines scheduling with

VM selection to reach a global optimal. From Figure 3a and

Figure 3b we see that though individually the three ML jobs

are running longer than separatewith reduced resource con-

figurations, the scheduler is able to overlap them to achieve

a global optimal DAG runtime.

Co-optimization performance bottleneck: Previous

experiments show the necessity of co-optimizing resources

and scheduling when running DAG workflows for best cost

and performance. However, co-optimization is a non-trivial

NP-hard problem.We are not aware of any existing solution

that considers such a co-optimization. Although the brute-

force approach via exhaustive search is commonlyperformed

to find the best solution [20], it suffers from a heavy perfor-

mance bottleneck that can diminish the benefits. In this ex-

periment, we demonstrate the challenge of co-optimization

with exhaustive search when the problem size increases. For

simplicity, we only explore the complexity of a single DAG

with increasing number of jobs. In reality, the relationship

between jobs and number of VM instance types could fur-

ther grow the problem size significantly. The left graph of

Figure 4 shows thatwhen number of jobs in aDAG increases,

the problem size (i.e., search space) grows exponentially. Only

four jobs in a DAG could result in tens of millions of values

to search from, and this is ignoring the factor of VM instance

types. The right graph of Figure 4 shows how long it takes

to solve a problem with existing search methods when prob-

lem size grows. Note that this is only a simple example that

ignores VM instance types.

In conclusion, we use a simple example to show how sep-

arately optimizing resource configurations and job schedul-

ing does not necessarily bring the best outcome. Simulta-

neously, co-optimization complicates the problem and can

lead to a significant overheads which could undermine its

benefit. There is a need for a holistic solution that can yield

a globally optimal cost-performance while maintaining rea-

sonable overhead requirements.

4

0 200 400 600 800 1000 1200
Time (s)

0

50

100

150

200

250

vC
PU

 C
or

e

Index Analysis Sentiment Analysis Airline Delay Movie Rec.

(a) separate optimization approach.

0 200 400 600 800 1000 1200
Time (s)

0

50

100

150

200

250

vC
PU

 C
or
e

(b) Brute-force (BF) co-optimize approach.

Runtime Cost0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
to
 se

pa
ra
te

separate BF co-optimize

(c) Overall normalized DAG runtime and

cost.

Figure 3. Runtime of separate and co-optimize with job scheduling breakdown and the overall DAG runtime and cost.

1 2 3 4
of jobs

0

1

2

3

4

Se
ar
ch

 S
pa

ce

1e7

0 1 2 3 4
Search Space 1e7

0

200

400

600

800

1000

So
lv
e
Ti
m
e
(s
)

Figure 4. Search space and solve time grows exponentially

with the number of jobs grows in a DAG for BF co-optimize.

Here the search space is measured by how many values to

search from.

4 AGORA

AGORA is an automated globally optimized resource allo-

cator and scheduler designed to optimize performance and

cost for DAG workloads in the cloud. AGORA co-optimizes

resource configurations and job scheduling to reach a global

optimum for DAG workloads with configurable objectives

(e.g., lowest cost, shortest runtime, etc.). AGORA is care-

fully designed to address the performance bottleneck of the

brute-force approach and aims to achieve the global opti-

mum within negligible optimization overheads. We design

AGORA and demonstrate the idea of co-optimization with

DAGs composed of Spark [46] jobs due to its popularity and

impact. However, the idea of co-optimization is not limited

to Spark jobs and the algorithms described can be applied

to other DAG-based jobs. In this section, we first describe

the overall architecture of AGORA, followed by detailed de-

scription of the algorithmAGORA adopts to co-optimize the

resource configuration and job scheduling.

4.1 System Architecture

Figure 5 shows an overall system architecture and workflow

of AGORA. AGORA has two key components: Predictor

and Scheduler. Similar to the aforementioned two-step ap-

proach to run DAGs in cloud, the Predictor component is

in charge of job runtime prediction with different resource

configurations, and the Scheduler component decides job

scheduling. However, different from the two-step approach,

AGORA optimization algorithm always involves both com-

ponents instead of optimizing separately.

After users submit DAGs for execution, AGORA reads the

DAGs and identifies the tasks in each DAG. The Predictor

reads a historical event log provided by Spark for each task,

and predicts the runtime of a job under different configura-

tions. Note that different from other runtime predictors de-

scribed in Section 2.1, AGORA requires only one event log

per task (one prior run). This historical event log can be pro-

vided by users or gathered by AGORA with a triggered test

run. AGORA saves the event log into a database for future

reference. With the runtime predictions, AGORA continu-

ally optimizes with the Scheduler to reach a globally opti-

mal resource configuration and job schedule for the entire

DAG(s) execution. Here, the schedule and task configura-

tions are represented as a single problem to be co-optimized.

The solver within the Scheduler component solves the co-

optimization problem. Note that AGORA supports optimiza-

tion for one DAG as well as multiple DAGs, resulting in the

best performance for all DAGs. Users are able to configure

AGORAwith an optimization goal to fit different needs. The

resulting resource configurations and schedules are then passed

down to a workflow manager (e.g., Airflow [1]) for job ex-

ecution. After execution of the DAGs, new event logs are

collected and fed back to the Predictor to improve the accu-

racy of the prediction model. In production pipelines where

the sameDAG is periodically executed (e.g. once a day), AGORA

can continue to improve itself with better runtime predic-

tions and converge to better solutions.

4.2 Problem Formulation

This section formally describes the co-optimization problem

AGORA solves. Table 3 lists the notations used in this sec-

tion. AGORA is designed to address the following problems:

Given a set of DAGs � to be run in a set of heterogeneous

5

Figure 5. System architecture and workflow of AGORA.

Table 3. Glossary of notations.

Notation Description

" original makespan

">?C optimal makespan

"1D364C makespan budget

� original cost

�>?C optimal cost

�1D364C cost budget

F makespan weight

CB8 9 start time of task j in DAG i

C48 9 end time of task j in DAG i

38 92 runtime of task j in DAG i for configuration c

A 9C<2 resource demands of task j at time t for resource m

for configuration c

'< total capacity of resource m

�< cost of resource m

� set of all DAGs

)8 set of all tasks in DAG i

% set of all precedence constraints

set of all resources

� flip probabilities

resources # and an optimization goal, (1) what is the re-

source configuration (VM instance, number of VMs, appli-

cation specific parameters) for each task in the DAG, and

(2) what is the order to launch tasks in the DAGs to achieve

the global end-to-end optimization goal. Other than VM se-

lection, AGORA also considers application specific param-

eters such as Spark configurations because we found that

these configurations can directly decide the resource usage

per task (e.g. executor memory) and have a big impact on

the runtime.

Formally, the problem can be formulated as a resource-

constrained project scheduling problem (RCPSP [23]). A RCPSP

consists of scheduling tasks with given resource demands,

durations, and precedence constraints on a set of resources

with given capacity limits. The RCPSP formulation accu-

rately captures the flexibility of constraints as well as the

integrated nature of the assignment and scheduling prob-

lem. For example, tasks are allowed to execute on any num-

ber of resources as opposed to a specificmachine in job shop

scheduling [30]. The RCPSP representation also allows us to

not have to decompose the problem into two sub-problems

(e.g. assign, then sequence) as common in other formula-

tions [10]. Therefore, we do not have tomake decisions about

which machine each task has to run on prematurely prior

to optimization, resulting in better solutions. As opposed

to classic formulations of RCPSP where demands and run-

times for each task are given and fixed, AGORA requires

the resource demands and task runtimes to be variables to

allow the solver to optimize the resource configurations and

schedules jointly. To this end, we extend the original RCPSP

problem to suit the need of AGORA. More specifically, we

formulate the RCPSP problem as follows:

minimize
">?C −"

"
∗F +

�>?C −�

�
∗ (1−F) subject to (1)

C48 9 = CB8 9 + 38 92 ,∀9 ∈)8 ,∀8 ∈ � (2)

CB8 9 ≥ C48: ,∀8 ∈ �,∀(9 , 8) ∈ %, (3)

"∑

C=0,∀9 ∈)8

A 9C<2 ≤ '<,∀< ∈ #,∀8 ∈ �, (4)

C48 9 ≤ ">?C ,∀9 ∈)8 ,∀8 ∈ �, (5)

�>?C =

∑

∀9 ∈)8 ,∀8 ∈�,∀<∈#

A 9C<2 ∗ 38 9 ∗�<, (6)

">?C ≤ "1D364C , (7)

6

and�>?C ≤ �1D364C , (8)

Equation 1 defines the optimization objective, where the

improvement in makespan and cost are minimized accord-

ing to a tunable weight parameter F . The weight param-

eter indicates how important the makespan is relative to

cost. For example, the user could set F = 0.5 to achieve

a balanced optimization between runtime and cost; F = 0

to optimize for the lowest cost and F = 1 to achieve the

shortest runtime. Users can configureF between 0 and 1 to

allow for a flexible optimization preference. Equation 2 de-

fines the task start and end times with the predicted runtime

with different configurations. We have relaxed the classic

RCPSP to allow for the runtime to be malleable. This is the

key change of the RCPSP formulation to allow AGORA for

co-optimization of resource configurations and scheduling.

Equation 3 defines the precedence constraints given by the

DAGs where a task can only start when the precedent task

finishes, allowing AGORA to be DAG-aware. Equation 4 de-

fines the resource constraints to ensure that the sum of de-

mands of scheduled tasks do not exceed the capacity of the

cluster. Here, a resource can be any cluster capacity con-

straint, including number of cores, memory, or bandwidth.

The optimal makespan is defined by Equation 5, where the

end time of each task is less than the optimal makespan. Fi-

nally, Equations 7 and 8 ensure that the makespan and/or

cost are within user-defined budgets. The makespan and

cost budget can be optimally set by the user. If either are

not set, they are set with a default value of infinity.

In our problem formulation, we adopt a simplified cost

model where the cost is determined by a product of the re-

sources demanded, runtime, and cost of the instance type.

This assumes that other cloud resources, such as storage,

remain the same for all configurations. In reality, costs in

the cloud are increasingly complex, and the cost equation

can be replaced by more representative cost models depend-

ing on the user. For example, spot instances in AWS have

a dynamic pricing model that fluctuates based on the cur-

rent market’s demands. AGORA can be easily modified to

include these details by defining the�< variable more accu-

rately.

4.3 Optimization Solver

Classic RCPSP problems areNP-hard [8]. To apply theRCPSP

formulation to our problem, we add resource configurations

and job runtimes as additional variables, which makes the

problem harder to solve and can lead to long solve times.

To address this challenge, AGORA utilizes a combination

of a simulated annealing algorithm [28] and a satisfiabil-

ity (SAT [25]) solver to find optimal solutions in a reason-

able amount of time. In this implementation, we use CP-SAT

from Google OR-Tools [34] as the SAT solver component.

The CP-SAT solver combines a finite domain propagation

Algorithm 1 Resource allocation and scheduling co-

optimization algorithm

while not stopping criterion do

2 ← 64C_=4F_2>=5 86DA0C8>=(2)

"=4F,�=4F ← (�)_(>;E4A (2,3, %, ') ⊲ optimal

Δ� ← 20;2D;0C4_34;C0_4=4A6~("=4F,�=4F)

if Δ� < 0 then
� ← 1

else
� ← 4G? (−Δ�/))

end if

if � > 0224?C0=24?A>1018;8C~ then
B0E4_2>=5 86DA0C8>=B ()

">?C = "=4F

�>?C = �=4F

end if

end while

engine typical for constraint programming (CP [37]) solvers

with the advantages of advanced SAT solvers by utilizing

lazy clause generation [39]. Lazy clause generation allows

the solver to lazily create the SAT clausal representation of

the problem as the computation progresses, therefore reduc-

ing the total number of clauses and variables required at any

given time. The CP-SAT solver has been shown to outper-

form other solvers on classic RCPSP benchmarks [38].

Simulated annealing is often used in bound-constrained

optimization problems [36]. The algorithmmimics the phys-

ical process of heating material then slowly lowering the

temperature to decrease defects, resulting in a minimum en-

ergy state. Similar to other greedy algorithms, a new point

is accepted if it results in a lower objective, but it also avoids

getting trapped in local minimum by accepting points that

result in a higher objective at a decreasing probability. In

AGORA, simulated annealing is used to optimize for the re-

source configurations given the results of the schedule opti-

mization, while the SAT solver optimizes the schedule given

specific resource configurations for each application. Algo-

rithm 1 shows the detailed steps of AGORA. In each iter-

ation, a new set of resource configurations 2 is chosen for

a set of tasks. The solver then minimizes the objective for

the current set of resource configurationswith a correspond-

ing new optimal makespan "=4F and cost �=4F . Here, the

optimization problem is solved to the global optimal solu-

tion. The new set of configurations and schedules are ac-

cepted based on acceptance probabilities and flip probabil-

ities (�) dependent on the energy difference (Δ�) between

the current best solution and the new solution. If the en-

ergy difference is negative (e.g. new solution has a better

objective than the current best solution), then the new solu-

tion is accepted. Otherwise, the new solution is accepted if

the probability is greater than a randomly generated accep-

tance probability, allowing the search to escape from local

7

minima. The search continues until a stopping criterion (e.g.

time limit or convergence). This allows us to stop the search

when there are diminishing returns. Each component of the

solver depends on the other to reach an optimal solution,

and together, they jointly optimize for both the schedule

and resource configurations. The time complexity of sim-

ulated annealing algorithms heavily depends on the cool-

ing schedule, which determines the number of iterations re-

quired. Here, because we define the objective as a sum of the

percentage of improvements in cost and runtime, we can

define a constant starting annealing temperature of 1 for

all problem sizes. The cooling rate we define as a function

of =, and we define a fixed convergence criteria, resulting

in a time complexity of the simulated annealing algorithm

of $ (=). Within each iteration of the simulated annealing

iteration, we utilize the SAT solver. While the worst case

time complexity of SAT solvers are exponential, they can

efficiently solve problems with tens of millions of variables

and constraints with techniques like conflict-driven clause

learning (CDCL [32]) . In addition, lazy clause generation

helps keep SAT problem sizes small. By carefully selecting

and designing the solver, AGORA can reach a optimal solu-

tion within negligible overheads. Section 5.4 has a detailed

overhead and scalability analysis of AGORA.

4.4 Predictor

As described before, runtime prediction is a key component

to solving the problem. AGORA does not limit the choice

of runtime predictor. Users can plugin any predictor men-

tioned in Section 2.1. In this paper, we design an in-house

Predictor for Spark jobs that not only selects VMs, but also

decides Spark specific parameters to accurately fine-control

the resource usage for each task. The Predictor takes in

a historical Spark event log from a previous run and pre-

dicts the application’s runtime for a set of infrastructure

hardware (i.e., instance types and number of instances) and

Spark configurations (i.e., number of executors, executors

per core, and memory per core). ThePredictorutilizes both

an analytic model and simulation to forecast the runtime by

predicting changes in task runtime distributions and simu-

lating how the applicationwill run on different sets of infras-

tructure and Spark configurations. Details on the Predictor
is out of the scope for this paper. In general, AGORA is heav-

ily dependent on the accuracy of runtime prediction. To pro-

vide better results, AGORA adopts an adaptive approach by

collecting new event logs and adjust the model to improve

the prediction error.

5 Evaluation

In this section, we evaluate AGORA on a heterogeneous

AWS cloud environment (Table 1). We have implemented

DAG1 DAG2

Index Analysis Sentiment Analysis Airline Delay Movie Rec.

Figure 6. Selected DAGs for evaluation.

AGORA in Airflow [1], a widely adopted platform for run-

ning DAG workflows in distributed systems. Airflow inter-

nally calculates job priority weights by how many children

a job has in a DAG and schedules jobs accordingly. FIFO

heuristic is applied when multiple jobs have the same topo-

logical order (i.e., same priorityweights).We embeddedAGORA

intoAirflow (ver. 2.2) by adding a configurableAGORA sched-

uling policy. We also modified the Spark operator in Air-

flow to support AGORASpark configurations.We select two

representative DAGs as shown in Figure 6 to demonstrate

the effect of AGORA on different DAG shapes. DAG1 mim-

ics a common workflow where data is pre-processed, then

utilized by different machine learning workloads that build

on each other. There are several bottlenecks in the DAG

that could occur when a single task depends on multiple

different tasks to combine all the results into something use-

ful to the organization. DAG2 on the other hand, mimics

a workflow where machine learning workloads that build

on each other are performed first and converge in a final

data analysis application. In this case, many tasks can run

in parallel and the only bottleneck is the final task. Both

DAGs are composed with real-world Spark jobs described

in Section 3. We carefully choose the Spark configurations

for each job to achieve best performance with careful ex-

periments and recommendations from Spark experts. Note

that AGORA tunes Spark configurations based on the char-

acteristics from historical log. The experiments are run with

Airflow ver. 2.2.3 and Spark ver. 3.2.0, which are the latest ver-

sions at the time of writing this paper. We evaluate both the

end-to-end runtime and cost of each DAG to demonstrate

the efficacy of AGORA. Finally, we also apply AGORA on

a real-world large-scale trace from Alibaba [29] to evaluate

how AGORAwould perform in a multi-DAG production en-

vironment.

5.1 Overall Performance

In this experiment, we compare the overall performance and

cost gains of AGORA against other state-of-the-art solutions.

Other than Apache Airflow, which has been widely adopted

in industry, we have implemented Ernest [41] for selecting

the best VM configurations, togetherwith Critical Path (CP [17])

as the representative of a heuristic based scheduler andMixed

8

0 5 10
Cost ($)

2000

3000

4000

Ru
nt
im

e
(s
ec

on
ds

)

DAG1

0 5 10
Cost ($)

DAG2

AGORA CP+Ernest MILP+Ernest Airflow

(a) balanced

0 5 10
Cost ($)

2000

3000

4000

Ru
nt
im

e
(s
ec

on
ds

)

DAG1

0 5 10
Cost ($)

DAG2

AGORA CP+Ernest MILP+Ernest Airflow

(b) runtime

0 5 10
Cost ($)

2000

3000

4000

Ru
nt
im

e
(s
ec
on

ds
)

DAG1

0 5 10
Cost ($)

DAG2

AGORA CP+Ernest MILP+Ernest Airflow Stratus

(c) cost

Figure 7. End-to-end runtime and cost of studied DAGs under default Airflow, AGORA, CP+Ernest, MILP+Ernest, and Stratus

under different optimization goals: balanced, runtime, and cost. Y-axix shows the overall DAG runtime in seconds, and x-axis

shows the cost. The lower left dots represent the better cost-performance.

3.5 4.0 4.5 5.0 5.5 6.0 6.5
Cost ($)

2200

2300

2400

2500

Ru
nt
im

e
(s
ec

on
ds

)

AGORA
predictor

scheduler
AGORA-separate

(a) DAG1

3.0 3.5 4.0 4.5 5.0 5.5
Cost ($)

1300

1400

1500

1600

1700

1800

1900

2000
AGORA
predictor

scheduler
AGORA-separate

(b) DAG2

Figure 8. Performance and cost of AGORAwith predictor only, scheduler only, and separately optimized (no co-optimization).

Integer Linear Programming (MILP [11]) as the represen-

tative of an optimization based scheduler. We have imple-

mented AGORA and Ernest to optimize with three goals:

balanced, runtime, and cost. For AGORA, the runtime goal

optimizes towards the lowest end-to-end runtime of theDAG;

the cost goal optimizes for the lowest cost to run the DAG;

and the balanced goal sets the weight (F) to 0.5 to balance

both runtime and cost. Note that AGORA is also able to op-

timize for other goals by tuning the weight to shift between

runtime and cost. On the other hand, Ernest can only opti-

mize each task instead of the whole DAG. With this limita-

tion, we have set Ernest to optimize each task with the three

goals to pick the best runtime, cost, and a balanced runtime

and cost.We also implemented Stratus [14] specially for cost

since Stratus is designed to only optimize for cost. We also

embedded DAG dependencies into Stratus. While Airflow is

not able to perform optimizations, it is widely used in real-

world production environments. We add it here as a base-

line for all goals as an anchor. We use default Airflow con-

figurations which handle DAGs with topological order and

a FIFO scheduler. We adopt the aforementioned Spark con-

figurations (Section 3) for Airflow, Ernest, Stratus, and the

initial input for AGORA.

Figure 7 shows the results. We can see that AGORA per-

forms better than other methods across all three optimiza-

tion goals. For the balanced goal, AGORA achieves both bet-

ter runtime and cost, with a runtime improvement of 15.3%

and 24.3%, and a cost improvement of 49.6% and 35.3% for

DAG1 andDAG2 respectively. For the runtime goal, AGORA

optimizes for runtime only and yields a higher cost than the

default Airflow by 3.5% and 31.4%, but it improves the run-

time by 36.6% and 45.0% for DAG1 and DAG2 respectively.

For the cost goal, AGORA has worse performance in terms

of runtime comparedwith Ernest+CP and Ernest+MILP, but

it results in the lowest cost with comparable runtime against

the default Airflow by an improvement of 77.7% and 71.7%

for DAG1 and DAG2 respectively. Although Stratus is de-

signed to optimize cost, it still shows higher cost compared

with AGORA and Ernest. However, Stratus shows the low-

est runtime in this experiment. This is because Stratus uti-

lizes more resources eventually. Stratus does not attempt

to determine the best tradeoff between cost and runtime,

instead it simply utilizes any resources available and tries

to minimize cost based on that. As a result, it eventually

uses more resources than the other methods. In some cases

(e.g., balanced goal for DAG2), we see that Ernest+CP and

Ernest+MILP is worse than default Airflow which does not

9

optimize. This is because separate optimization can only op-

timize individual tasks and cannot see the whole DAG in-

stead of the global optimization of AGORA, and it some-

times results in worse end-to-end performance than not op-

timizing at all. We see this phenomenon again later in Sec-

tion 5.2. In general, DAG1 takes longer time to run and costs

more as well. We observe that DAG1 has a higher chance for

cost improvement while DAG2 has more room for runtime

improvement. This is becauseDAG1has less parallelism than

DAG2. For example, DAG1 has tasks that are waiting for a

single task to finish before the other tasks begin (the top

and second to last tasks in Figure 6), which is not present in

DAG2. As a result, the single tasks might become a straggler

for the whole DAG, but low parallelism also leads to less VM

resource usage and lower costs.

5.2 Performance Breakdown

In this experiment, we zoom in to examine the impact of

each component in AGORA (i.e., Predictor and Scheduler).

For simplicity, we configure AGORA to optimize for the bal-

anced goal. We configure AGORA to enable Predictor only
without the Scheduler and vice-versa.We also changeAGORA

to perform with both Predictor and Scheduler optimized

separately (without co-optimization) similar to solutions us-

ing Ernest in previous experiments (referred to as AGORA-

separate). Results are shown in Figure 8. We see that for

DAG1, the Predictor contributes more than the Scheduler,

but the opposite for DAG2. This is same as our observation

in the first experiment (Section 5.1) that DAG2 has a more

complicated DAG structure and higher parallelism for the

scheduler to yield a bigger contribution. Meanwhile DAG1

has tasks dependent on single task which will benefit more

from appropriate resource allocation performed by the Pre-

dictor.However, naively enabling bothwithout co-optimization

(AGORA-separate in the figure) does not result in the best

performance. For example, AGORA-separate is worse than

Predictor only for DAG1, and it shows the worst perfor-

mance for DAG2. This is again consistent with our observa-

tion in Section 5.1 that in some cases, it is worse to optimize

separately. We can see from the figure that compared to the

casewithout co-optimization, AGORA (with co-optimization)

is 4.0% faster and 44.4% cheaper for DAG1, and 33.8% faster

and 49.8% cheaper for DAG2. This underscores our idea of

co-optimization in this paper.

5.3 Optimization Goals

In our next experiment, we further dig into the capability

of AGORA to optimize towards different goals. Note that

AGORA is able to fine-tune the optimization focus with a

sliding weightF described in Section 4.2. For simplicity, we

only select three common goals: balanced (F = 0.5), cost

(F = 0) and runtime (F = 1).We see in Figure 9 that for both

DAG1 and DAG2, cost goal points reside in top left corner

which is cheapest but has the highest runtime. In contrast,

1 2 3 4 5 6 7
Cost ($)

1200

1400

1600

1800

2000

2200

2400

2600

Ru
nt
im
e
(s
ec
on
ds
)

balanced-DAG1
cost-DAG1
runtime-DAG1

balanced-DAG2
cost-DAG2
runtime-DAG2

Figure 9. Cost and performance of AGORA under different

optimization goals. Circle dots represent DAG1, and triangle

dots represent DAG2.

the runtime goal points in the lower right corner demon-

strate the highest cost with lowest runtime. Finally, the bal-

anced goal looks for a middle point in the figure with a bal-

anced tradeoff between the two. From this figure we can also

see that different DAGs show a different optimization trend.

Here we see that DAG2 demonstrates a stiffer curve than

DAG1, confirming our observation that DAG2 has more op-

portunity for runtime optimization. In reality, many DAG

workflows are even more complex and have highly variable

characteristics. These results underscore the ability of AGORA

to fine-tune optimization preferences.

5.4 Optimization Overhead

With optimization of any NP-hard problem, one key con-

cern is always the overhead associated with the optimiza-

tion. Often, the cost of performing the calculation outweighs

any potential benefits. In this experiment, we evaluate the

optimization overhead of AGORA with a large-scale simu-

lation. We simulate with randomly generated DAGs with a

width of 4 and a depth of 3-5 consisting of 10 tasks each. We

increase the number of DAGs from 1 to 20 to result in 10

to 200 total tasks. Figure 10 shows the trade-off between op-

timization overhead and predicted runtime improvements.

We can see from the figure that the overhead associated with

increasing problem sizes increases from tens of seconds to

over a thousand seconds, but the runtime benefit also in-

creases dramatically as well from hundreds of seconds to

over 15, 000 seconds, showing that for all problem sizes the

optimization benefits are worth the overhead time. For small

problems (≤ 50 tasks), the solution converges quickly. For

larger problems, the optimization can be stopped earlier to

get most of the runtime benefits with less overhead. The

shaded area in the figure indicates the region when the over-

head is greater than or equal to runtime benefits. Clearly,

none of the problem sizes is in that region.

10

0 250 500 750 1000 1250 1500
Overhead (s)

0

5000

10000

15000

20000

Si
m
ul
at
ed

 ru
nt
im

e
be

ne
fit
 (s

)

10 50 100 200

Figure 10. Trade-off between overhead and runtime ben-

efits for different number of tasks and DAGs. Shaded area

indicates when overhead ≥ runtime benefits.

In all of our previous experiments, we observe optimiza-

tion overheads of around 35 seconds for DAG1 and 45 sec-

onds for DAG2, which only counts for less than 2% of to-

tal runtime of the DAG. In addition, AGORA is designed to

allow for offline optimization which can eliminate the opti-

mization overhead during runtime.

Althoughoptimization overhead is negligible, there is still

opportunity for AGORA to speed up the solver. While in

this paper, the solver has a serial implementation on a sin-

gle core, the algorithm is friendly to parallel computing. In

our futurework, we plan to explore the parallelization of our

solver, and possibly adopt emerging hardware accelerators

to further speed up the algorithm. The SAT formulation of

the scheduling problem allows emerging specialized hard-

ware systems to be designed and implemented that could

dramatically reduce the solve time [13, 33].With the increas-

ing complexity of data pipelines, we see the inevitable need

to speed up AGORA and a broad range of emerging tech-

nologies capable of doing so.

5.5 Macro-Benchmark

Wehave been experimentingwithAGORAusingmicro-benchmarks

and demonstrating promising results. However, we are also

interested in howAGORA scales and performs in real-world

production environments. To this end, we use a real-world

large-scale production trace from Alibaba [29] and apply

AGORA with simulation.

5.5.1 Methodology. Alibaba’s cluster handles two types

of jobs: online services and batch workloads. Since AGORA

is designed to improve scheduling of DAGworkloads, we fo-

cus on the batch DAG workloads in the trace. More specif-

ically, the 2018 Alibaba cluster trace is used in this simu-

lation. The 2018 Alibaba cluster trace includes jobs run on

4034 machines over a period of 8 days. There are over 4 mil-

lion jobs (represented as DAGs) and over 14 million tasks.

Each machine has 96 cores and an undisclosed amount of

memory. Memory requests for each task are given in per-

centages of a machine’s memory. A previous analysis of the

cluster trace showed that 95% of the online services utilize

less than 20% of the CPU cores, and less than 40% of mem-

ory of cluster [22]. In our simulation, we reasonably reduce

the cluster size by 20% for CPU and 40% for memory as the

usage for the DAG jobs.

For each task, the trace provides the required cores, re-

quired memory, and task runtimes. Using this data, we gen-

erate a random scaling curve for each task using the univer-

sal scalability law (USL [21]). The universal scalability law

is a model that accounts for the concurrency, contention,

and coherency of the system, extending Amdahl’s law with

the coherency parameter which accounts for delays from

crosstalk. We chose USL because it is general and accounts

for negative scaling behavior that can occur in some dis-

tributed compute jobs. We use the generalized form of the

USL with three parameters, randomly choosing U and V for

each task, and calculatingW to fit the demands requested and

runtime data provided by the trace:

- (#) =
W#

1 + U (# − 1) + V# (# − 1)
, (9)

where - is the throughput, # is the number of cores, W is

the concurrency parameter, U is the contention parameter,

and V is the coherency parameter. Each parameter is bound

between 0 and 1.

The cluster trace also provides submission times of each

job. In this simulation, AGORA is triggered to schedule jobs

that have been submitted every fifteen minutes or when the

demands in the queue are greater than three times the avail-

able cores in the cluster. Therefore, AGORA can respond to

ad-hoc DAG submissions by users and does not require the

same set of DAGs to always be submitted together. This also

demonstrates the capability of AGORA to support multi-

DAG optimization.

The total runtime to finish all DAGworkloads in the trace

and the total cost associated are the two metrics in this sim-

ulation.

5.5.2 Result. Figure 11 shows the results. AGORA reduces

the total cost of the workload by 65% and the total comple-

tion time by 57%. Looking at the completion time of each

DAG separately, 87% of the DAGs have runtime improve-

ments, with 45% of the DAGs having nearly 100% improve-

ment. Therefore, the users who submitted the DAGs mostly

see a benefit in their DAG completion time, and the organi-

zation (if running these workloads in a public cloud environ-

ment) also sees an overall benefit in cost of the workloads.

11

total
cost

total DAG
com letion time

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
m
et
ric

Default
AGORA

−100 −50 0 50 100
Individual DAG Runtime Im rovement (%)

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n
of
 To

ta
l D

AG
S

Figure 11.Normalized Cost and total DAG completion time

(left) and the CDF of runtime improvements for each indi-

vidual DAG (right).

6 Conclusion

This paper introduces the concept of of co-optimizing re-

source configuration and job scheduling for running DAG

workflows in cloud environments. We also design AGORA,

an automated globally optimized resource allocator and sched-

uler to demonstrate significant cost and performance gains

of co-optimization while maintaining negligible overheads.

The unique ability to fine-tune optimization preferences al-

lows AGORA to optimize according to the diverse charac-

teristics of workloads and the particular needs of the users.

AGORA simplifies running data pipelines in the cloud by

relieving users of the burden of choosing resource configu-

rations from a sea of choices, and could eventually create a

seamless and serverless-like experience.

References
[1] 2022. Apache Airflow. h�ps://airflow.apache.org. Accessed: 2022-01-

22.

[2] 2022. Cloud Services – Amazon Web Services (AWS).

h�ps://aws.amazon.com/. Accessed: 2022-01-22.

[3] Kunal Agrawal, Jing Li, Kefu Lu, and Benjamin Moseley. 2016. Sched-

uling parallelizable jobs online to minimize the maximum flow time.

In Proceedings of the 28th ACM Symposium on Parallelism in Algo-

rithms and Architectures. 195–205.

[4] Ravindra K. Ahuja, Thomas L. Magnanti, and James B. Orlin. 1993.

Network flows: Theory, algorithms, and applications. Prentice-Hall.

[5] Hani Al-Sayeh, Stefan Hagedorn, and Kai-Uwe Sattler. 2020. A gray-

box modeling methodology for runtime prediction of Apache Spark

jobs. Distributed and Parallel Databases 38, 4 (2020), 819–839.

[6] Omid Alipourfard, Hongqiang Harry Liu, Jianshu Chen, Shivaram

Venkataraman, Minlan Yu, and Ming Zhang. 2017. CherryPick: Adap-

tively Unearthing the Best Cloud Configurations for Big Data Ana-

lytics. In 14th USENIX Symposium on Networked Systems Design and

Implementation (NSDI 17). USENIX Association, Boston, MA, 469–482.

h�ps://www.usenix.org/conference/nsdi17/technical-sessions/presentation/alipourfard

[7] Danilo Ardagna, Enrico Barbierato, Athanasia Evangelinou, Euge-

nio Gianniti, Marco Gribaudo, Túlio BM Pinto, Anna Guimarães,

Ana Paula Couto da Silva, and Jussara M Almeida. 2018. Performance

prediction of cloud-based big data applications. In Proceedings of the

2018 ACM/SPEC International Conference on Performance Engineering.

192–199.

[8] Jacek Blazewicz, Jan Karel Lenstra, and AHG Rinnooy Kan. 1983.

Scheduling subject to resource constraints: classification and com-

plexity. Discrete applied mathematics 5, 1 (1983), 11–24.

[9] Peter Bodík, Ishai Menache, Joseph Naor, and Jonathan Yaniv. 2014.

Deadline-aware scheduling of big-data processing jobs. In Proceedings

of the 26th ACM symposium on Parallelism in algorithms and architec-

tures. 211–213.

[10] Paolo Brandimarte. 1993. Routing and scheduling in a flexible job

shop by tabu search. Annals of Operations research 41, 3 (1993), 157–

183.

[11] Jaime Cerdá, Gabriela P Henning, and Ignacio E Grossmann. 1997. A

mixed-integer linear programming model for short-term scheduling

of single-stage multiproduct batch plants with parallel lines. Indus-

trial & Engineering Chemistry Research 36, 5 (1997), 1695–1707.

[12] Chen Chen, Xiaodi Ke, Timothy Zeyl, Kaixiang Du, Sam Sanjabi,

Shane Bergsma, Reza Pournaghi, and Chong Chen. 2019. Minimum

makespan workflow scheduling for malleable jobs with precedence

constraints and lifetime resource demands. In 2019 IEEE 39th Inter-

national Conference on Distributed Computing Systems (ICDCS). IEEE,

2068–2078.

[13] Jeffrey Chou, Suraj Bramhavar, Siddhartha Ghosh, and William Her-

zog. 2019. Analog coupled oscillator based weighted Ising machine.

Scientific reports 9, 1 (2019), 1–10.

[14] Andrew Chung, Jun Woo Park, and Gregory R. Ganger. 2018. Stra-

tus: Cost-Aware Container Scheduling in the Public Cloud. In Pro-

ceedings of the ACM Symposium on Cloud Computing (Carlsbad, CA,

USA) (SoCC ’18). Association for Computing Machinery, New York,

NY, USA, 121–134. h�ps://doi.org/10.1145/3267809.3267819

[15] Pamela Delgado, Diego Didona, Florin Dinu, and Willy Zwaenepoel.

2018. Kairos: Preemptive Data Center Scheduling Without

Runtime Estimates. In Proceedings of the ACM Symposium on

Cloud Computing (Carlsbad, CA, USA) (SoCC ’18). Associa-

tion for Computing Machinery, New York, NY, USA, 135–148.

h�ps://doi.org/10.1145/3267809.3267838

[16] Ionel Gog, Malte Schwarzkopf, AdamGleave, Robert NMWatson, and

Steven Hand. 2016. Firmament: Fast, centralized cluster scheduling at

scale. In 12th {USENIX} Symposium on Operating Systems Design and

Implementation ({OSDI} 16). 99–115.

[17] Ronald L. Graham. 1969. Bounds on multiprocessing timing anom-

alies. SIAM journal on Applied Mathematics 17, 2 (1969), 416–429.

[18] Robert Grandl, Ganesh Ananthanarayanan, Srikanth Kandula, Sri-

ram Rao, and Aditya Akella. 2014. Multi-Resource Packing for Clus-

ter Schedulers. SIGCOMM Comput. Commun. Rev. 44, 4 (aug 2014),

455–466. h�ps://doi.org/10.1145/2740070.2626334

[19] Robert Grandl, Mosharaf Chowdhury, Aditya Akella, and Ganesh

Ananthanarayanan. 2016. Altruistic Scheduling in Multi-Resource

Clusters. In Proceedings of the 12th USENIX Conference on Operating

Systems Design and Implementation (Savannah, GA, USA) (OSDI’16).

USENIX Association, USA, 65–80.

[20] Robert Grandl, Srikanth Kandula, Sriram Rao, Aditya Akella, and

Janardhan Kulkarni. 2016. Graphene: Packing and Dependency-

Aware Scheduling for Data-Parallel Clusters. In Proceedings of the 12th

USENIX Conference on Operating Systems Design and Implementation

(Savannah, GA, USA) (OSDI’16). USENIX Association, USA, 81–97.

[21] Neil J Gunther, Paul Puglia, and Kristofer Tomasette. 2015. Hadoop

superlinear scalability. Commun. ACM 58, 4 (2015), 46–55.

[22] Jing Guo, Zihao Chang, Sa Wang, Haiyang Ding, Yihui Feng, Liang

Mao, and Yungang Bao. 2019. Who limits the resource efficiency

of my datacenter: An analysis of alibaba datacenter traces. In

2019 IEEE/ACM 27th International Symposium on Quality of Service

(IWQoS). IEEE, 1–10.

[23] Willy Herroelen. 2005. Project scheduling—Theory and practice. Pro-

duction and operations management 14, 4 (2005), 413–432.

[24] Muhammad H. Hilman, Maria A. Rodriguez, and Rajkumar Buyya.

2020. Multiple Workflows Scheduling in Multi-Tenant Distributed

Systems: A Taxonomy and Future Directions. ACM Comput. Surv. 53,

1, Article 10 (feb 2020), 39 pages. h�ps://doi.org/10.1145/3368036

12

https://airflow.apache.org
https://aws.amazon.com/
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/alipourfard
https://doi.org/10.1145/3267809.3267819
https://doi.org/10.1145/3267809.3267838
https://doi.org/10.1145/2740070.2626334
https://doi.org/10.1145/3368036

[25] Andrei Horbach. 2010. A boolean satisfiability approach to the

resource-constrained project scheduling problem. Annals of Opera-

tions Research 181, 1 (2010), 89–107.

[26] Zhiming Hu, James Tu, and Baochun Li. 2019. Spear: Optimized

dependency-aware task schedulingwith deep reinforcement learning.

In 2019 IEEE 39th International Conference on Distributed Computing

Systems (ICDCS). IEEE, 2037–2046.

[27] Michael Isard, Vijayan Prabhakaran, Jon Currey, Udi Wieder, Kunal

Talwar, and Andrew Goldberg. 2009. Quincy: fair scheduling for dis-

tributed computing clusters. In Proceedings of the ACM SIGOPS 22nd

symposium on Operating systems principles. 261–276.

[28] Scott Kirkpatrick, C Daniel Gelatt, and Mario P Vecchi. 1983. Opti-

mization by simulated annealing. science 220, 4598 (1983), 671–680.

[29] Chengzhi Lu, Wenyan Chen, Kejiang Ye, and Cheng-Zhong Xu. 2020.

Understanding theWorkload Characteristics in Alibaba: A View from

Directed Acyclic Graph Analysis. In 2020 International Conference on

High Performance Big Data and Intelligent Systems (HPBD IS). 1–8.

h�ps://doi.org/10.1109/HPBDIS49115.2020.9130578

[30] Alan S Manne. 1960. On the job-shop scheduling problem. Operations

research 8, 2 (1960), 219–223.

[31] Hongzi Mao, Mohammad Alizadeh, Ishai Menache, and Srikanth Kan-

dula. 2016. Resource management with deep reinforcement learning.

In Proceedings of the 15th ACM workshop on hot topics in networks. 50–

56.

[32] Joao Marques-Silva, Inês Lynce, and Sharad Malik. 2021. Conflict-

driven clause learning SAT solvers. In Handbook of satisfiability. ios

Press, 133–182.

[33] Ferenc Molnár, Shubha R Kharel, Xiaobo Sharon Hu, and Zoltán

Toroczkai. 2020. Accelerating a continuous-time analog sat solver

using gpus. Computer Physics Communications 256 (2020), 107469.

[34] Laurent Perron and Vincent Furnon. 2019. OR-Tools. Google.

h�ps://developers.google.com/optimization/

[35] David Buchaca Prats, Felipe Albuquerque Portella, Carlos HA Costa,

and Josep Lluis Berral. 2020. You Only Run Once: Spark Auto-Tuning

From a Single Run. IEEE Transactions on Network and Service Manage-

ment 17, 4 (2020), 2039–2051.

[36] Luis Miguel Rios and Nikolaos V Sahinidis. 2013. Derivative-free op-

timization: a review of algorithms and comparison of software imple-

mentations. Journal of Global Optimization 56, 3 (2013), 1247–1293.

[37] Francesca Rossi, Peter Van Beek, and Toby Walsh. 2006. Handbook of

constraint programming. Elsevier.

[38] Andreas Schutt, Thibaut Feydy, Peter J Stuckey, and Mark G Wallace.

2011. Explaining the cumulative propagator. Constraints 16, 3 (2011),

250–282.

[39] Peter J Stuckey. 2010. Lazy clause generation: Combining the power

of SAT and CP (and MIP?) solving. In International Conference on Inte-

gration of Artificial Intelligence (AI) and Operations Research (OR) Tech-

niques in Constraint Programming. Springer, 5–9.

[40] Alexey Tumanov, Timothy Zhu, Jun Woo Park, Michael A. Kozuch,

Mor Harchol-Balter, and Gregory R. Ganger. 2016. TetriSched: Global

Rescheduling with Adaptive Plan-Ahead in Dynamic Heterogeneous

Clusters. In Proceedings of the Eleventh European Conference on Com-

puter Systems (London, United Kingdom) (EuroSys ’16). Association

for Computing Machinery, New York, NY, USA, Article 35, 16 pages.

h�ps://doi.org/10.1145/2901318.2901355

[41] Shivaram Venkataraman, Zongheng Yang, Michael Franklin,

Benjamin Recht, and Ion Stoica. 2016. Ernest: Efficient Perfor-

mance Prediction for Large-Scale Advanced Analytics. In 13th

USENIX Symposium on Networked Systems Design and Implemen-

tation (NSDI 16). USENIX Association, Santa Clara, CA, 363–378.

h�ps://www.usenix.org/conference/nsdi16/technical-sessions/presentation/venkataraman

[42] Kewen Wang and Mohammad Maifi Hasan Khan. 2015. Perfor-

mance prediction for apache spark platform. In 2015 IEEE 17th Inter-

national Conference on High Performance Computing and Communi-

cations, 2015 IEEE 7th International Symposium on Cyberspace Safety

and Security, and 2015 IEEE 12th International Conference on Embedded

Software and Systems. IEEE, 166–173.

[43] Luna Xu, Ali R Butt, Seung-Hwan Lim, and Ramakrishnan Kannan.

2018. A heterogeneity-aware task scheduler for spark. In 2018 IEEE

International Conference on Cluster Computing (CLUSTER). IEEE, 245–

256.

[44] Hidehito Yabuuchi and Takahiro Shinagawa. 2020. Multi-resource

Low-latency Cluster Scheduling without Execution Time Estimation.

In 2020 20th IEEE/ACM International Symposium on Cluster, Cloud and

Internet Computing (CCGRID). IEEE, 310–319.

[45] Neeraja J. Yadwadkar, Bharath Hariharan, Joseph E. Gonzalez, Burton

Smith, and RandyH. Katz. 2017. Selecting the Best VMacross Multiple

Public Clouds: A Data-Driven Performance Modeling Approach. In

Proceedings of the 2017 Symposium on Cloud Computing (Santa Clara,

California) (SoCC ’17). Association for Computing Machinery, New

York, NY, USA, 452–465. h�ps://doi.org/10.1145/3127479.3131614

[46] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur

Dave, Justin Ma, Murphy McCauly, Michael J. Franklin, Scott

Shenker, and Ion Stoica. 2012. Resilient Distributed Datasets: A

Fault-Tolerant Abstraction for In-Memory Cluster Computing.

In 9th USENIX Symposium on Networked Systems Design and Im-

plementation (NSDI 12). USENIX Association, San Jose, CA, 15–28.

h�ps://www.usenix.org/conference/nsdi12/technical-sessions/presentation/zaharia

13

https://doi.org/10.1109/HPBDIS49115.2020.9130578
https://developers.google.com/optimization/
https://doi.org/10.1145/2901318.2901355
https://www.usenix.org/conference/nsdi16/technical-sessions/presentation/venkataraman
https://doi.org/10.1145/3127479.3131614
https://www.usenix.org/conference/nsdi12/technical-sessions/presentation/zaharia

	Abstract
	1 Introduction
	2 Related Work
	2.1 Resource Allocation
	2.2 Job Scheduling

	3 Motivation
	4 AGORA
	4.1 System Architecture
	4.2 Problem Formulation
	4.3 Optimization Solver
	4.4 Predictor

	5 Evaluation
	5.1 Overall Performance
	5.2 Performance Breakdown
	5.3 Optimization Goals
	5.4 Optimization Overhead
	5.5 Macro-Benchmark

	6 Conclusion
	References

