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Abst rac t  

The main result is undecidability of bisimilarity for labelled (place / tran- 
sition) Petri nets. The same technique applies to the (prefix) language 
equivalence and reachability set equality, which yields stronger versions 
with simpler proofs of already known results. The paper also mentions 
decidability of bisimilarity if one of the nets is deterministic up to bisim- 
ilarity. Another decidability result concerns semilinear bisimulations and 
extends the result of [CHM93] for Basic Parallel Processes (BPP). 

1 I n t r o d u c t i o n  

The relation of bisimulation plays an important role in the theory of paral- 
lelism and concurrency (cf. e.g.[M89]). An interesting question concerns de- 
cidability of bisimilarity for various classes of (models of) processes (see e.g. 
[CHS92],[CHM93] for recent results). In fact, BPP of [CHM93] are a special 
subclass of Petri nets. For the general (place/transition labelled) Petri nets, the 
problem was mentioned as open e.g. in [ABS91]. 

Using the halting problem for Minsky counter machines, this paper shows 
undecidability of the problem even if restricted to labelled Petri nets with a 
fixed static structure and 2 unbounded places. 

The proof also shows undecidability of (prefix) language equivalence for the 
mentioned Petri nets with 2 unbounded places. This problem for (unrestricted) 
Petri nets is known to be undecidable due to Hack ([H75]); Valk and Vidal- 
Naquet ([VV81]) showed that  nets with 4 and 5 unbounded places are sufficient 
for the undecidability. 
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A similar technique applies also to equality of teachability sets, which yields 
undecidability of the problem even if restricted to Petri nets with 5 unbounded 
places. The known proofs in [B73], [H76] (see also [PS1]) use Hilbert's 10th 
problem and Petri nets weakly computing polynomials; they do not put any 
bound on the number of unbounded places. 

In this sense, the technique of the proof for bisimilarity also yields stronger 
versions of some known results. In addition, it shows them in a significantly 
simpler way. 

This paper also contains some decidability results. The decidability of bisimi- 
larity for one-to-one labelled (or "unlabelled") Petri nets is clear due to reducibil- 
ity of (prefix) language equivalence of these nets to the reachability problem (cf. 
[H75], [M84]). 
We mention here another reduction, the details of which are given in [J93], allow- 
ing an easy generalization for the nets which are deterministic up to bisimilarity. 

Another subclass of labelled Petri nets for which the decidability of bisimi- 
larity has been known is the above mentioned BPP of [CHM93] (isomorphic to 
Petri nets where each transition has one input place only). The proof employs a 
technique (suggested by Y.Hirshfeld) which is, in fact, more general - it implies 
decidability for the subclass where the bisimulation equivalence is a congruence 
w.r.t. (nonnegative vector) addition. 
Here the result is further extended: we show that the existence of a semilinear 
bisimulation is sufficient for the decidability. It is completed by the fact, known 
from [ES69], that any congruence is semilinear. 

Section 2 contains basic definitions, Section 3 the undecidability results, Sec- 
tion 4 the decidability results. Section 5 contains additional remarks (e.g. the 
relation to vector addition systems) and some hints for further work. 

The paper is based on the report [J93]. 

2 De f in i t i o ns  

A/" denotes the set of nonnegative integers, A* the set of finite sequences of 
elements of A. 

A (labelled) static net is a tuple (P, T, F),  (P, T, F, L) respectively, where P 
and T are finite disjoint sets of places and transitions respectively, F : (P x T) U 
(T • P)  , A/" is a flow function (for F(x,  y) > 0, there is an arc from x to 
y with multiplicity F(x, y)) and L : T ~ A is a labelling (attaches an action 
name - from a set A - to each transition). By L we also denote the homomorphic 
extension L :T* ~ A*. 

A (labelled) Petri net is a tuple N = (S, M0), where S is a (labelled) static 
net and M0 is an initial marking, a marking M being a function M : P ~ Af. 
(A marking gives the number of tokens for each place). A transition I is enabled 
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at a marking M, M t-L-b if M(p)  > F(p , t )  for every p E P. An enabled 

transition t may fire at a marking M yielding marking M I, M t : Mi ' where 
Mr(p) = M(p)  - F(p, t) + f ( t ,  p) for all p E P. In the natural way, the definitions 
can be extended for sequences of transitions ~r E T*. 

The teachability set of a Petri net N is defined as 
T i ( N ) =  { M I M o  a M fo r  s o m e c r E T * } .  
A place p E P is unbounded if for any k EAf there is M E 7~(N) s.t. M(p)  > k. 

The (prefix) language of a labelled Petri net N is defined as 
Z ( N )  = {w E A* [ Mo ~,  f o r  some ~ with L(~) = w}. 

Given two labelled static nets (P1, T1, F1, L~), (P2, T2, F2, L2) ,  a binary re- 
lation R C_ ./V "pl x ./~fP2 is a bisimulation if for all (M1, M2) E R : 

- for each tl E T1, M1 t l  M~, there is t2 E T2 s.t. L l ( t l )  = L2(t2) and 

M2 t2  M~, where (M~, M~) E R 
and conversely 

- for each t2 E T2, M2 ~ M~, there is tl E 711 s.t. Ll ( t l )  = L2(t2) and 

M~ t ,  M~, where (M~,M~) E R. 

Two labelled Petri nets N1, N2 are bisimilar if there is a bisimulation relating 
their initial markings. 

Notice tha t / : (N1)  = / : (N2)  for bisimilar nets N1, N2. 

3 Undecidabil i ty Results 

A counter machine C with nonnegative counters cl, c2, ..., cm is a program 

1 : COMM1;  2 : COMM2;  ...... ; n : C O M M n  

where C O M M n  is a H A L T - c o m m a n d  and C O M M i  (i = 1, 2, . . . , n -  1) are 
commands of the following two types 

1/ cj := cj + 1; goto k 

2/ i f  cj = 0 then goto kl else (c 1 := cj - 1; goto k2) 

assuming 1 _< k, k l ,k2 < n, 1 <_j < m. 

The set BS of branching slates is defined as B S  = {i I C O M M i  is of the 
type 2}. 

It is well-known (cf. [M67]) that  there is a fixed ("universal") counter ma- 
chine C with two counters cl, c2 such that it is undecidable for given input values 
xl,  x2 of cl, c2 whether C halts or not. 
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Figure 1: 

Consider a counter machine C, with input values xl ,  x2, ..., x,~, in the above 
notation. We describe a construction of the basic net Nc  which simulates C 
in a weak sense. By adding (x, y) we mean increasing F(x,  y) by 1 (mostly it 
means from 0 to 1 - adding one arc), unless otherwise stated. If F(x,  y) is not 
mentioned explicitly, it is equal to 0. 

Construction of Nc  

1. Let cl, c~, ..., Cm (the counter part) and sl, s~, ..., sn (the state part) be 
places of Nc  . 

2. For i = 1, 2, ..., n - 1 add new transitions and arcs depending on the type 
of COMMi:  

Case 1: 

Case 2: 

C O M M i  is cj : -  cj + l; goto k : 
Add ti with (si,ti),  (ti ,cj), (ti ,sk) (cf. Fig.l(a)) 

C O M M i  is i f  cj = O then goto kl else (cj := cj - 1 ;  goto k2) : 
add t z (Z for zero) with (si,tzi), ( tZ,sk,) ,  and 
t y z  ( N Z  for non-zero) with (si, t  iuz), ~tc'j,tYZ~i j, (t y z , s k2 )  (cf. 
Fig.l(b)). 

3. The initial marking will consist of the input values Xl, x2, ...,xm in places 
cl,c~,.. . ,cm, 1 token in sl, 0 in the other places, which completes the 
construction. 

Nc can simulate C in a natural way but (only) transitions t z can "cheat", i.e. 
fire although the relevant cj is not 0. 
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Adding a dc-transilion (dc for "definitely cheating") to Nc for some i E B S  
means adding a new transition t with (si, t), (cj, t), (t, cj), (t, ski), j, kl taken 
from C O M M i  (of Fig.l(c)). 
Notice that such t has the same effect as t z but  firing it always means cheating. 

Now we establish the main theorems. 

T h e o r e m  3.1. Bisimilarity as well as language equivalence are undecidable 
for labelled Petri nets, even if restricted to nets with a fixed static structure and 
2 unbounded places. 

P r o o f .  Let C be a (fixed) universal counter machine, with input values 
xl, x2, and Nc the basic net in the notation as above. Let us construct nets 
N1, N2 as follows. 

, 

2. 

3. 

. 

Construction of N1, N2 

To No,  add new places p, p' and a new transition x with arcs (sn, x), (p, x). 

Take any any one-to-one labelling L of transitions. 

For each i E BS,  add two de-transi t ions t~, t~' (with the relevant arcs) and 
additional arcs (p, t~), (t~, p'), (pt, t~), (t~', p) and put L(t~) = L(t~ ~) = L(tZi) 
(cf Fig.2). 

Now take two copies of the arised net. 
In one copy put 1 token in p and 0 in p' (elsewhere the initial marking 
coincides with that of Nc); the resulting marking will be denoted by M1, 
the whole net by Nx. 
In the other copy put 1 token in pr and 0 in p; the resulting marking will 
be denoted by/142, the whole net by N2. 

Notice that only Cl, c2 are (possibly) unbounded. 

Now we show that the following conditions are equivalent 

a) C does not halt (for the given inputs xl ,  x2) 

b) N1, N2 are bisimilar 

c) / : ( i l )  C_/~(N2) 

d) /~(N1) = 12(N2) 

which proves the theorem. Thus we also directly show the undecidability of the 
language containment problem, although it follows from the undecidability of 
the language equivalence problem. 

I f  C halts (for input x l ,x~):  L(~r) where cr is the correct (non-cheating) 
sequence ended by x belongs to Z:(N1) and not to/ : (5/2) .  (Firing a in N2 we 
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L(t ) = L(tT) -- L(t ) I ] 

Figure 2: 

have no possibility to fire a de-transition; hence we can not move the token 
from p' to p and z will remain disabled.) 
Hence s f~ s which implies that s r s and that N~, N2 are 
not bisimilar. 

If  C does not halt: Consider the set A~ of all couples ( M ' , M ' )  where 
M', M" are reachable without cheating from Ma, Ms respectively and M'(p)  = 
1, M'(p')  = O, M"(p)  = O, M"(p')  = 1. 
7) will denote the diagonal, the set of all couples (M, M). 

We show that the union 7)UM is a bisimulation containing (M~, Ms) (notice 
that (M1, M2) E .hi). 

As the static nets underlying N1 and N2 are the same, the condition from 
the definition of bisimulation is clear for any couple (M, M) C 7). 
As regards a couple (M', M")  E M : 
- for any noncheating firing in M' (M' )  there is the same noneheating firing in 
M" (M') yielding again a couple of markings from A/l, 
- for any cheating firing of t z or t~ in M', firing of t~' or t z respectively is possible 
in M" resulting in a couple (M, M) E 7). Similarly for t. z~ , t i" in M" and ti; ti z 
in M'. 

Hence N1,N2 are bisimilar, which implies s = s and s C 
[ ]  

Remark .  Considering only language equivalence, we could use a simpler, 
"nonsymmetric", construction: Nx without p' and de-transitions, N2 with only 
one set of de-transitions moving the token from p' to p. Recently ttirshfeld 
[Hi93] modified the construction showing undecidability of language equivalence 
even for labelled Petri nets equivalent to BPP (each transition has one input 
place only). 

T h e o r e m  3.2. The containment and the equality problems for reachability 
sets of Pelri nets are undecidable, even if restricted to nets with one of two fixed 
static structures and 5 unbounded places. 
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Figure 3: 

P roo f .  Let C and Nc be as in Proof of Theorem 3.1. Let us perform the 
following construction of a net N. 

Construction of N 

1. Take Nc and add a dc-transi t ion t~ for each i E BS. 

2. Add places COD,HELP,SC (step counter) and rl,ru; put 1 token in r l ,  
0 in the others. 

3. Add arcs (rl, t),(t, r2),(t, SC) for each (so far constructed) transition t and 
(t Ng, COD) for each t Nz. 

4. Add transitions Ul, u2, u3 and arcs (COD, ul), (r~,ul),  (ux,r2), 
(ux ,HELP)  with F(Ul,HELP) = 2, (r~,u2), (us ,n) ,  (HELP, u3), 
(rl, u3), (u3, rl), (u3, COD) (cf. Fig.3). 

5. The arised net is denoted by N. 

Hence each "non-ui" transition in N "moves" the token from rl to r2 and adds 
a token to SC; each transition t Nz, in addition, adds a token to COD. Before 
next firing of a non-ui transition, a sequence from u~u2u~ is performed (possibly) 
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changing COD. Notice that the maximal change of COD (with HELP empty) 
can be COD := 2.COD or COD := 2(COD + 1) (for tgz). 

Using N, let us construct N1,N2 as follows. 

Construction of N1, N~ 

1. Take N and add a place p with 1 token and a place p~ with 0 tokens. 

2. Add a transition x with the arc (sn, x) and the arcs (p, t~), (t~, p') for each 
i E B S .  

3. The arised net will be denoted by N2. N1 arises from N2 by adding a 
transition y and the arcs (sn, y), (p, y), (y,p') (cf. Fig.4). 

Trivially T~(N2) C_ 7~(N1). Also notice that only places Cl,c2,COD,HELP,SC 
are (possibly) unbounded. 

Now we show that the following conditions are equivalent 

a) C does not halt (for the given inputs zl ,  x2) 

b)  (N1) c n(N2) 

c) n(N1) = n(N2) 

which proves the theorem. 

If C halts (for input xl ,x2) :  N1 can perform the correct (non-cheating) 
sequence finished by y with the maximal intermediate changes of COD. If N2 
"wants" to reach the same marking, it must fire the same number of transitions 
counted in SC; but, not having y, it must digress from the path of N1 (N2 cheats, 
i.e. uses some ti z or t~ instead of t gz)  and can not reach at the same time the 
same value of COD (it is clear from the idea of COD as a binary number). 
Hence T~(N1) ~ T~(N~) implying 7~(N1) r 7~(N2). 
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I f  C does not halt : N1 and N~ only differ in the transition y. If N1 uses 
it in some firing sequence (it can be only once - at the end of the sequence) it 
means that  no t~ has been fired and a token has been put in the H A L T  place sn ; 
hence at least one firing of t/z was cheating. After performing the same sequence 
with one t~ instead of t/z, N2 reaches the same marking by firing x (instead of 
y). 
Hence "R(N1) C_ 7~(N2) and TO(N1) = TO(N2). Q 

R e m a r k .  The construction can be slightly modified so that  also the reach- 
ability sets restricted to unbounded places have the same properties. 

4 D e c i d a b i l i t y  R e s u l t s  

4 . 1  D e t e r m i n i s t i c  N e t s  

First we consider one-to-one labelled (or "unlabelled") Petri nets. It is clear that  
the bisimilarity problem is the same as the language equivalence problem in that  
case; the latter is known to be recursively equivalent to the teachability problem 
(cf. [H75]) which is known to be decidable from [M84]. (The teachability problem 
is to decide for a given Petri net N and a marking M whether M E TO(N).) 

We do not give details here but [J93] shows another reduction of the language 
equivalence to the reachability problem. The reduction is simpler than that  in 
[H75] and allows a straightforward generalization. 

This generalization shows decidability of bisimilarity for deterministic nets, 
which are nets where no reachable marking enables two different transitions 
with the same labels. We can even allow the nets to be deterministic up to 
bisimilarity - in such a net, different transitions with the same labels can be 
enabled simultaneously but their firings have to lead to bisimilar results. It even 
suffices when one of the nets is deterministic up to bisimilarity. 

Hence we have the following theorem (the proof is shown in [J93]). 

T h e o r e m  4.1. Bisimilarity is decidable for two labelled Petri nets, sup- 
posing one of them is deterministic up to bisimilarity (hence if one of them is 
deterministic, hence if one of them is one-to-one labelled). 

[J93] also contains the following technical complexity results. 

Lemxna .  
1. The bisimilarity problem for one-to-one labelled Petri nets is at least as hard 
as the teachability problem (and can be reduced to it). 
2. The problem, whether a given net is deterministic, can be reduced to the 
coverability problem and is at least as hard. 
3. The problem, whether a given net is deterministic up to bisimilarity, can be 
reduced to the reachability problem and is at least as hard. 
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The coverability problem is to decide for a given Petri net N and a marking 
M whether there is M' E T~(N) such that M ~ > M (_> taken componentwise). 

4 . 2  S e m i l i n e a r  B i s i m u l a t i o n s  

For our aims, we can suppose nets where each transition t has at least one input 
place p (F(p, t) > 1); if not, we can always add such p with 1 token and arcs 
(p, t), (t,p). Also notice the obvious fact that if we add to a net N another net 
N ~ with the zero initial marking (we simply put N and N I beside each other) 
then the resulting net is bisimilar to N (N ~ has no effect). 

Hence it is clear that, without loss of generality, we can only consider bisim- 
ilarity for the case of both nets having the same static structure (they differ in 
initial markings only). 

Then a bisimulation is, in fact, a relation on A/n for the relevant n. An 
equivalence relation R on A/"n will be called a congruence if (u, v) E R implies 
(u + w, v + w) E R for any w EAf n (addition taken componentwise). 

As we already mentioned, the recent result of [CHM93] shows, in fact, that  
bisimilarity is decidable for the class of Petri nets where the bisimulation equiv- 
alence (the greatest bisimulation) is a congruence. 

We extend this result using the notion of semilinear sets (cf. e.g. [GS66]). 

Def in i t ion .  A set B C A f  k of k-dimensional nonnegative vectors is linear if 
there are vectors b (basis), Cl, c2, . . . ,  C n (periods) from Afk such that 
B "- {b-I- XlC 1 + x2c2 -}- ...-~- XnCn [ xi  E .~ ,  1 < i < n}. 
B is a semilinear set if it is a finite union of linear sets. 

Labelled Petri nets are a special case of finitely branching transit ion sys- 
tems. Generally, non-bisimilarity is semi-decidable for such systems. (cf. e.g. 
[M89], [CHS92]). Hence semi-decidability of bisimilarity is sufficient to show 
decidability. 

T h e o r e m  4.2. For the class of (couples of) labelled Petri nets where bisimi- 
larity implies the existence of a semilinear bisimulation relating the initial mark- 
ings, bisimilarity is decidable. 

Proof .  Due to decidability of Presburger arithmetic (theory of addition) (see 
e.g. [O78]), it can be verified whether a given semilinear set is a bisimulation 
(w.r.t. two given nets); it is not difficult to verify that the conditions from the 
definition of bisimulation can be then expressed by a Presburger formula. 
Semi-decidability (and hence decidability) of bisimilarity is then clear: generate 
successively all semilinear sets and verify for each of them if it relates the initial 
markings and is a bisimulation (deciding the relevant Presburger formula). [] 

R e m a r k .  The theorem could be generalized in an obvious way: "a  semilinear 
bisimulation" is replaced by "a bisimulation from g" where C is an effectively 
generable class of relations and where it is decidable for a given relation from C 
whether it is a bisimulation relating the initial markings (states). 
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The fact that Theorem 4.2. is really an extension of the mentioned result of 
[CHM93] follows from a theorem proved in [ES69]. 

T h e o r e m . ( T h . I I  in [ES69]) Every congruence in a finitely generated com- 
mutative monoid M is a rational (or semilinear) subset of M x M. 

The monoid in our case is the set A/"n with (vector) addition. 

5 A d d i t i o n a l  remarks  

Recall that  (n-dimensional) vector addition systems ( VASs) are isomorphic to 
(reachability sets of) Petri nets (with n places) without self-loops (without both 
(p,t),(t,p) as arcs). Hopcroft and Pansiot in [HP79] introduce also V A S S s  
(VASs  with an additional finite state control); n -  dim V A S S  are, in fact, Petri 
nets with (at most) n unbounded places. They show that any 2 - dim V A S S  
(unlike 3 - dim) and any 5 - dim V A S  (unlike 6 - dim) is an effectively com- 
putable semilinear set; hence the equality problem is decidable for them. (The 
complexity of the problem for 2 - dim V A S S s  is studied in [HRHY86].) [HP79] 
also show how any n - dim V A S S  can be simulated by an (n + 3) - dim VAS; 
it can be done by a Petri net with n + 2 places (using self-loops). 

The proof of Theorem 3.2. can be easily modified to show undecidability for 
(very restricted subclasses of) 5 - dim V A S S  and 8 - dim V A S  (leaving the 
dimensions 3,4, resp. 6,7, open). 

For bisimilarity and (prefix) language equivalence we have undecidability for 
(a very restricted subclass of) Petri nets with 2 unbounded places. My conjecture 
is that  it is decidable for the case of 1 unbounded place. E.g. I think that in 
that case bisimulation equivalence is semilinear. 

It might be also interesting to find out the relation betweeen the determin- 
istic nets and "semilinear bisimulations" and, in the whole, better explore the 
"decidability border" for bisimilarity. 
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