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Abstract

Given a set of points P and axis-aligned rectangles R in the plane, a point p ∈ P is called
exposed if it lies outside all rectangles in R. In the max-exposure problem, given an integer
parameter k, we want to delete k rectangles from R so as to maximize the number of exposed
points. We show that the problem is NP-hard and assuming plausible complexity conjectures
is also hard to approximate even when rectangles in R are translates of two fixed rectangles.
However, if R only consists of translates of a single rectangle, we present a polynomial-time
approximation scheme. For range space defined by general rectangles, we present a simple O(k)
bicriteria approximation algorithm; that is by deleting O(k2) rectangles, we can expose at least
Ω(1/k) of the optimal number of points.

1 Introduction

Let S = (P,R) be a geometric set system, also called a range space, where P is a set of points
and each R ∈ R is a subset of P , also called a range. We are primarily interested in range spaces
defined by a set of points in two dimensions and ranges defined by axis-aligned rectangles. We say
that a point p ∈ P is exposed if no range in R contains p. The max-exposure problem is defined
as follows: given a range space (P,R) and an integer parameter k ≥ 1, remove k ranges from R
so that a maximum number of points are exposed. That is, we want to find a subfamily R∗ ⊆ R
with |R∗| = k, so that the number of exposed points in the (reduced) range space (P,R \ R∗) is
maximized.

The max-exposure problem arises naturally in many geometric coverage settings. For instance,
if points are the location of clients in the two-dimensional plane, and ranges correspond to coverage
areas of facilities, then exposed points are those not covered by any facility. The max-exposure
problem in this case gives a worst-case bound on the number of clients that can be exposed if an
adversary disables k facilities. Similarly, in distributed sensor networks, ranges correspond to sensing
zones, points correspond to physical assets being monitored by the network, and the max-exposure
problem computes the number of assets exposed when k sensors are compromised.

More broadly, the max-exposure problem is related to the densest k-subgraph problem in
hypergraphs. In the densest k-subhypergraph problem, we are given a hypergraph H = (X,E), and
we want to find a set of k vertices with a maximum number of induced hyperedges. In general
hypergraphs, finding k-densest subgraphs is known to be (conditionally) hard to approximate within
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a factor of n1−ε, where n is the number of vertices. The max-exposure problem is equivalent to
the densest k-subhypergraph problem on a dual hypergraph, whose vertices X corresponds to the
ranges R, and whose hyperedges correspond to the set of points P . Specifically, each point p ∈ P
corresponds to a hyperedge adjacent to the set of ranges containing the point p. In the rest of the
paper, we will use n = |R| for the number of ranges in R and m = |P | for the number of points.
We show that if the range space is defined by convex polygons, then the max-exposure problem is
just as hard as the densest k-subhypergraph problem. However, for ranges defined by axis-aligned
rectangles, one can achieve better approximation. In particular, we obtain the following results.

• We show that the max-exposure problem is NP-hard and assuming the dense vs random
conjecture [1], it is also hard to approximate better than a factor of O(n1/4) even if the range
space is defined by only two types of rectangles in the plane. For range space defined by convex
polygons, we show that max-exposure is equivalent to densest k-subhypergraph problem,
which is hard to approximate within a factor of O(n1−ε).

• When ranges are defined by translates of a single rectangle, we give a polynomial-time
approximation scheme (PTAS) for max-exposure. The PTAS stands in sharp contrast to
the inapproximability of ranges defined by two types of rectangles. Moreover, as an easy
consequence of this result, we obtain a constant approximation when the ratio of longest
and smallest side of rectangles in R is bounded by a constant. However, we do not know
if max-exposure with translates of a single rectangle can be solved in polynomial time or is
NP-hard.

• For ranges defined by arbitrary rectangles, we present a simple greedy algorithm that achieves
a bicriteria O(k)-approximation. That is, if the optimal number of points exposed is m∗, the
algorithm picks a subset of k2 rectangles such that the number of points exposed is at least
m∗/ck, for some constant c. No such approximation is possible for general hypergraphs. If
rectangles in R have a bounded aspect ratio, the approximation improves to O(

√
k). For

pseudodisks with bounded-ply (no point in the plane is contained in more than a constant
number of ranges), this algorithm achieves a constant approximation.

The PTAS is obtained by first optimally solving a restricted max-exposure instance where all
points are contained in a unit square using dynamic programming in polynomial time. Next, we
carefully combine them to obtain an optimal solution in (nm)O(h2) time for the case when input
points lie in a h× h square. Applying well known shifting techniques on this gives us the PTAS.
Both bicriteria algorithms are obtained by carefully assigning the points to ranges and applying
greedy strategies.

Related Work Coverage and exposure problems have been widely studied in geometry and
graphs. In the classical set cover problem, we want to select a subfamily of k sets that cover the
maximum number of items (points) [2, 3]. For the set cover problem, the classical greedy algorithm
achieves a factor log n approximation for the number of sets needed to cover all the items, or
factor (1− 1/e) approximation for the number of items covered by using exactly k sets. Similarly,
in geometry, the art gallery problems explore coverage of polygons using a minimum number of
guards. Unlike coverage problems where greedy algorithms deliver reasonably good approximation,
the exposure problems turn out to be much harder. Specifically, choosing k sets whose union is
of minimum size is much harder to approximate with a conditional inapproximability of O(n1−ε)
where n is the number of elements, or O(m1/4−ε) where m is the number of sets [1]. This so-called
min-union problem is essentially the complement of the densest k-subhypergraph problem on
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hypergraphs [4]. The densest k-subgraph problem for graphs has a long history [5–8]. The paper [4]
also studies the special case of an interval hypergraph H = (V,E), whose vertices V is a finite subset
of N and for each edge e ∈ E there are values ae, be ∈ N such that e = {i ∈ V : ae ≤ i ≤ be}. That is,
vertices are integer points and edges are intervals containing them. They show that this restricted
case can be solved in polynomial time. The corresponding max exposure instance is when ranges
R are intervals Ri = (ai, bi) on the real line. As discussed later, this 1-D case can also be solved
in polynomial time. Moreover, we show that good approximations can also be obtained for some
geometric objects in two dimensions.

The coverage problems have also been studied for geometric set systems where improved
approximation bounds are possible using the V C dimension [9–11]. Multi-cover variants, where each
input point must be covered by more than one set, are studied in [12, 13]. The geometric constraint
removal problem [14,15], where given a set of ranges, the goal is to expose a path between two given
points by deleting at most k ranges (a path is exposed if it lies in the exterior of all ranges), is also
closely related to the max-exposure problem. Even for simple shapes such as unit disks (or unit
squares) [16,17], no PTAS is known for this problem.

The remainder of the paper is organized as follows. In Section 2, we discuss our hardness results
followed by the bicriteria O(k)-approximation in Section 3. In Section 4, we study the case when R
consists of translates of a fixed rectangle and describe a PTAS for it. Finally, in Section 5, we use
these ideas to obtain a bicriteria O(

√
k)-approximation when the aspect ratio of rectangles in R is

bounded by a constant.

2 Hardness of Max-Exposure

We show that the max-exposure problem for geometric ranges is both NP-hard, and inapproximable.
We begin by reducing the densest k-subgraph on bipartite graphs (bipartite-DkS ) to the max-
exposure problem; the known NP-hardness of biparite-DkS then implies the hardness for max-
exposure. Moreover, we show that bipartite-DkS is hard to approximate assuming the dense vs
random conjecture, thereby establishing the inapproximability of max-exposure.

In the bipartite-DkS problem, we are given a bipartite graph G = (A,B,E), an integer k, and
we want to compute a set of k vertices such that the induced subgraph on those k vertices has
the maximum number of edges. Given an instance G = (A,B,E) of bipartite-DkS, we construct a
max-exposure instance as follows.

Let R1 = [0, ε]× [0, n] be a thin vertical rectangle and R2 = [0, n]× [0, ε] be a thin horizontal
rectangle. For each vertex vi ∈ A, we create a copy Ri of R1, and place it such that its lower-left
corner is at (i, 0). Similarly, for each vertex vj ∈ B, we create a copy Rj of R2, and place it such
that its lower-left corner is at (0, j). These |A|+ |B| rectangles create a checkerboard arrangement,
with |A| × |B| cells of intersection. For each edge (vi, vj) ∈ E, we place a single point in the cell
corresponding to intersection of Ri and Rj . It is now easy to see that G has a k-subgraph with m∗

edges if and only if we can expose m∗ points in this instance by removing k rectangles: the removed
rectangles are exactly the k vertices chosen in the graph, and each exposed point corresponds to the
edge included in the output subgraph. (See also Figure 1.) We will later make use of this reduction,
and therefore state it as the following lemma.

Lemma 1. The max-exposure problem is at least as hard as bipartite-DkS.

Since bipartite-DkS is known to be NP-hard [18], we have the following.

Theorem 1. Max-exposure problem with axis-aligned rectangles is NP-hard.
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Figure 1: Reducing bipartite-DkS to max-
exposure with axis-aligned rectangles.
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Figure 2: Reducing densest k-subhypergraph problem to max-
exposure. Hypergraph vertices A,B shown as convex ranges.

2.1 Hardness of Approximation

The construction in the preceding proof shows that max-exposure with rectangles is at least as
hard as bipartite-DkS problem. Moreover, the geometric construction uses translates of only two
rectangles R1, R2. In the following, we show that even with such a restricted range space, the problem
is also hard to approximate. To that end we prove that bipartite-DkS cannot be approximated
better than a factor O(n1/4), where n is the number of vertices in this graph. More precisely, if the
densest subgraph over k vertices has m∗ edges, it is hard to find a subgraph over k vertices that
contains Ω(m∗/n

1
4
−ε) edges in polynomial time. This hardness of approximation is conditioned on

the so-called dense vs random conjecture [1] stated as follows.
Given a graph G, constants 0 < α, β < 1, and a parameter k, we want to distinguish between

the following two cases.

1. (Random) G = G(n, p) where p = nα−1, that is, G has average degree approximately nα.

2. (Dense) G is adversarially chosen so that the densest k-subgraph of G has average degree kβ .

The conjecture states that for all 0 < α < 1, sufficiently small ε > 0, and for all k ≤
√
n, one cannot

distinguish between the dense and random cases in polynomial time (w.h.p), when β ≤ α− ε.
In order to obtain hardness guarantees using the above conjecture, one needs to find the

‘distinguishing ratio’ r, that is the least multiplicative gap between the optimum solution for the
problem on the dense and random instances. If there exists an algorithm with an approximation
factor significantly smaller than r, then we would be able to use it to distinguish between the dense
and random instances, thereby refuting the conjecture. We obtain the following result for densest
k-subgraph problem on bipartite graphs.

Lemma 2. Assuming that dense vs random conjecture is true, the densest k-subgraph problem on
bipartite graphs is hard to approximate better than a factor O(n1/4) of optimum.

Proof. Let G′ = (V ′, E′) be a graph sampled either from the dense or from the random instances.
We construct a bipartite graph G = (A,B,E) as follows. For every vertex v ∈ V ′, add a vertex
va to A and vb to B. For every edge e = (u, v) ∈ E′, we add the pair of edges e1 = (ua, vb) and
e2 = (va, ub) to E. That is, every edge e ∈ E′ is mapped to two copies e1, e2 ∈ E and we define e
to be their parent edge as par(e1) = par(e2) = e. Similarly, for a vertex u ∈ V ′ and its two copies
ua, ub ∈ V , we define par(ua) = par(ub) = u. We say that G is dense if the underlying graph G′ was
sampled from the dense case, otherwise we say that G is random.

Consider a set of k∗ = 2k vertices in G. If G came from the dense case, there must be a set of
2k vertices that have 2kβ+1 edges between them. So the number of edges in dense case m∗d ≥ 2kβ+1.
Otherwise, we are in the random case. Consider the optimal set of k∗ = 2k vertices V ∗ that
maximizes the set E∗ of edges in the induced subgraph G[V ∗]. Now consider the corresponding
set of vertices Vp = {par(v) | v ∈ V ∗} of the original graph G′ and the set of edges Ep in the
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induced subgraph G′[Vp]). We have that |Vp| ≤ |V ∗| = 2k and |Ep| ≥ |E∗|/2 because for each edge
e = (u, v) ∈ E∗, we will have the edge par(e) = (par(u), par(v)) ∈ Ep. Since |Vp| ≤ 2k and we
are in the random case, we can upperbound the number of edges in Ep as the number of edges in
the densest subgraph of G(n, nα−1) over 2k vertices. This is Õ(max(2k, 4k2nα−1)) w.h.p. where
Õ ignores logarithmic factors. Therefore the optimum number of edges in the random case is
m∗r = |E∗| ≤ 2|Ep| = Õ(max(k, k2nα−1)) w.h.p.

Choosing k = n1/2, α = 1
2 , β = 1

2 − ε, gives us m∗r = Õ(n1/2) w.h.p. and m∗d = Ω̃(n
3−2ε

4 ). If

we could approximate this problem within a factor O(n1/4−ε), then in the dense case, the number

of edges computed by this approximation algorithm is Ω̃(n
1+ε
2 ) which is strictly more than the

maximum possible edges in the random case. Therefore, we would be able to distinguish between
dense and random cases, and thereby refute the conjecture for these values of α, β and k.

Using the same construction as in Lemma 1, we obtain the following.

Corollary 2. Assuming the dense vs random conjecture, max-exposure with axis-aligned rectangles
is hard to approximate better than factor O(n1/4) of optimum.

2.2 Hardness of Max-exposure with Convex Polygons

We now show that the max-exposure problem is equivalent to the densest k-subhypergraph problem
for general hypergraphs when the range space (P,R) is defined by convex polygons. In one direction,
the max-exposure instance (P,R) naturally corresponds to a hypergraph H = (R, P ) whose vertices
are the ranges and the edges correspond to points and are defined by the containment relationship.
Clearly, the densest k-subhypergraph corresponds to the set of k ranges deleting which exposes
maximum number of points. For the other direction, we have the following lemma. (See also
Figure 2.)

Lemma 3. Given a hypergraph H = (X,E), one can construct a max-exposure instance with convex
ranges R and points P such that the densest k-subhypergraph of H corresponds to a solution of
max-exposure.

Proof. For each edge e ∈ E of the hypergraph, add a point pe ∈ P . We place all the points of P
in convex position. Let v ∈ X be a vertex and Ev be the set of hyperedges adjacent to v. Since
points in P are in convex position, any subset of P forms a convex polygon. Therefore, for every
v ∈ V , we can draw a convex polygon Rv ∈ R whose corners are the point set corresponding to the
hyperedges Ev. The polygons will likely overlap in the convex region but for every point pe ∈ P , the
polygons containing pe are precisely the ones that have pe as its corner. Therefore, pe is exposed if
and only if all vertices of the hyperedge e are selected.

3 A Bicriteria O(k)-approximation Algorithm

In this section, we present a simple approximation algorithm for the max-exposure problem that
achieves bicriteria O(k)-approximation for range spaces defined by arbitrary axis-aligned rectangles.
Specifically, if the optimal number of points exposed is m∗, the algorithm picks a subset of k2

rectangles such that the number of points exposed is at least m∗/ck, for some constant c. In fact,
the results hold for any polygonal range with O(1) complexity.

This bicriteria approximation should be contrasted with the fact that no such approximation
is possible for the densest k-subhypergraph problem: that is, one cannot compute a set of O(kb)
vertices for any constant b such that the number of edges in the induced subhypergraph is at least
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optimal. Thus the geometric properties of the range space have a significant impact on the problem
complexity. In particular, if R consists of rectangle ranges, we show that the following strategy
picks a subset of αk ranges such that the number of points exposed is at least αm∗/(ck2), for a
parameter 1 ≤ α ≤ k and constant c that will be fixed later. Choosing α = k gives us the claimed
bound.

Our algorithm is essentially greedy. We divide the points into maximal equivalence classes,
where each class is the maximal subset of points belonging to the same subset of ranges. We define
R(p) as the set of ranges that contain a point p ∈ P , and remove all points that are contained in
more than k ranges, since they can be never exposed in the optimal solution. Therefore, without
loss of generality, we can assume that |R(p)| ≤ k for all points p ∈ P . The rest of the algorithms is
as follows.

Algorithm 1 Greedy-Bicriteria

1. Partition P into a set G of groups where each group Gi ∈ G is an equivalence class of points
that are contained in the same set of ranges. That is, for any p ∈ Gi, p

′ ∈ Gj , we have
R(p) = R(p′) if i = j and R(p) 6= R(p′), otherwise.

2. Sort the groups in G by decreasing order of their size |Gi| and select the ranges in first α
groups for deletion.

3. Return m′ =
∑

1≤i≤α |Gi| as the number of points exposed.

In Algorithm 1, observe that every point in the ith group Gi is contained in the same set of
ranges, which we denote by R(Gi). Moreover, we have |R(Gi)| ≤ k. Therefore, the total number
of ranges that we delete in Step 2 is at most αk. It remains to show that the number of points
exposed m′ is at least αm∗/ck2.

Lemma 4. Let m′ be the number of points exposed by the algorithm Greedy-Bicriteria, and let m∗

be the optimal number of exposed points, Then, m′ ≥ αm∗/ck2.

Proof. Consider the optimal set R∗ of k ranges that are deleted, and let P ∗ be the set of exposed
points. We partition the set of points P ∗ into groups G∗ as before, such that each group G∗i ∈ G∗
is identified by the range set R(G∗i ) = R(p), for any p ∈ G∗i . Since P ∗ ⊆ P , we must have that
G∗ ⊆ G. This holds because for every group G∗i ∈ G∗ there must be a group Gj ∈ G such that
R(G∗i ) = R(Gj). Moreover since P ∗ is the maximum set of points that can be exposed, we must
have that G∗i = Gj . Finally, we note that the number of groups |G∗| is bounded by the number
of cells in the arrangement of ranges in R∗ which is at most ck2 for some fixed constant c, for all
O(1)-complexity ranges. If the groups in G are arranged by decreasing order of their sizes, we have
that

m∗ =
∑

1≤i≤|G∗|

|G∗i | ≤
∑

1≤i≤|G∗|

|Gi| ≤
∑

1≤i≤ck2
|Gi|

≤ ck2

α

∑
1≤i≤α

|Gi| =
ck2

α
·m′
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The parameter α can be tuned to improve the approximation guarantee with respect to one
criterion (say the number of exposed points) at the cost of other. With α = k, the algorithm exposes
at least Ω(m∗/k) by removing k2 ranges. As for the running time, a simple implementation of the
algorithm can be made to run in O(mn logm) time: we can build the point-range containment
relation in O(mn) time, partitioning the point set into groups takes an additional O(mn logm)
time.

3.1 Constant Approximation for Pseudodisks with Bounded-ply

If the range space R consists of pseudodisks of bounded-ply (no point in the plane is contained
in more than a constant number ρ pseudodisks), then the algorithm Greedy-Bicriteria achieves a
constant approximation. Due to the bounded-ply restriction, we have that the number of pseudodisks
containing the points of group Gi is |R(Gi)| ≤ ρ, and therefore number of pseudodisks that are
removed in Step 2 of the algorithm is also at most αρ. Moreover, the number of cells in an
arrangement of k pseudodisks with depth at most ρ is O(ρk) [19]. Therefore, we can bound the
number of groups of the optimal solution |G∗| in the proof for Lemma 4 to be at most cρk. This
gives us that the number of points exposed m′ ≥ αm∗/cρk, where m∗ is the number of points
exposed by the optimal solution.

Lemma 5. If the range space R consists of pseudodisks of bounded-ply ρ, then algorithm Greedy-
Bicriteria exposes at least αm∗/cρk points by deleting at most αρ pseudodisks, where 1 ≤ α ≤ k.

Choosing α = k, the algorithm achieves a bicriteria O(ρ)-approximation. With α = k/ρ, the
algorithm exposes at least 1/cρ2 fraction of the optimal number of points by deleting k ranges.

4 A PTAS for Unit Square Ranges

We have seen that max-exposure is hard to approximate even if the ranges are translates of two
types of rectangles. We now describe an approximation scheme when the ranges are translates of a
single rectangle. In this case, we can scale the axes so that the rectangle becomes a unit square
without changing any point-rectangle containment. Therefore, we can assume that our ranges are
all unit squares. The problem is non-trivial even for unit square ranges, and as a warmup we first
solve the following special case: all the points lie inside a unit square. We develop a dynamic
programming algorithm to solve this case exactly, and then use it to design an approximation for
the general set of points.

4.1 Exact Solution in a Unit Square

We are given a max-exposure instance consisting of unit square ranges R and a set of points P in
a unit square C. Without loss of generality, we can assume that the lower left corner of C lies at
origin (0, 0) and all ranges in R intersect C. We classify the ranges in R to be one of the two types:
(See also Figure 3).

Type-0: Unit square ranges that intersect x = 0.

Type-1: Unit square ranges that intersect x = 1.

(A unit square range coincident with both x = 0 and x = 1 is assumed to be Type-0). We draw
two parallel horizontal lines `0 : y = 0 and `1 : y = 1 coincident with bottom and top horizontal
sides of C respectively. We say that a range R ∈ R is anchored to a line ` if it intersects `. Note
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that every R ∈ R is anchored to exactly one of `0 or `1. (When R is coincident with both `0 and `1,
we say that it is anchored to `0).

Moreover, for the rest of our discussion, let x = xi be a vertical line and define Pi ⊆ P to be the
set of points that have x-coordinate at least xi. In other words, Pi is the set of active points at
x = xi. Similarly, define Ri ⊆ R to be the set of active ranges that have at least one corner to the
right of x = xi. That is, R ∈ Ri either intersects x = xi or lies completely to the right of it.

In order to gain some intuition, we will first consider the following two natural dynamic
programming formulations for the problem.

DP-template-0 Suppose that the points in P are ordered by their increasing x-coordinates
and let xi be the x-coordinate of the ith point pi. We define a subproblem as S(i, k′,Rd) which
represents the maximum number of points in Pi that can be exposed by removing k′ ranges from
the range set Ri \ Rd. If we define x0 = 0, then S(0, k, ∅) gives the optimal number of exposed
points for our problem.

Let ki = |R(pi) \ Rd| be the number of new ranges in Ri that contain pi. Then, we can can
express the subproblems at i in terms of subproblems at i+ 1 as follows.

S(i, k′,Rd) = max

®
S(i+ 1, k′ − ki, Rd ∪R(pi)) + 1 expose pi

S (i+ 1, k′, Rd) pi not exposed

`1

`0

C

Figure 3: Max-exposure in a unit square C. Type 0
ranges are drawn with solid lines, Type 1 ranges are
dash-dotted.

p

`0

`1

p′

R
R′

d(R′, `0)

Figure 4: An example of closer relationship.
Point p is closer to `1 than p′. R is closer to
`0 than R′.

Roughly speaking, at x = xi which is the event corresponding to a point pi ∈ P , we have two
choices : expose pi or do not expose pi. If we expose pi, we pay for deleting the ranges in Ri \ Rd
that contain pi and mark them as deleted by adding to the deleted range set Rd. It is easy to
see that this correctly computes the optimal number of exposed points since we charge for every
deletion exactly once. However, there is one complication: a priori it is not clear how to bound the
number of range subset Rd used by this dynamic program. We later argue that the geometry of
range space for Type-0 ranges allows us to use only a polynomial number of choices.

DP-template-1 An alternative approach is to consider both point and begin-range events.
That is, x = xi is either incident to a point pi ∈ P or to the left vertical side of a range Ri ∈ R.
Then, we can define a subproblem by the tuple S(i, k′, Pf ) which represents the maximum number
of points in (Pi \ Pf ) that can be exposed by removing k′ ranges in Ri. If we define x0 = 0, then
S(0, k, ∅) gives the optimal number of exposed points. Let P (Ri) ⊆ P be the set of points contained
in the range Ri, then we have the following recurrence.
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S(i, k′, Pf ) = max

®
S(i+ 1, k′ − 1, Pf ) delete range Ri

S(i+ 1, k′, Pf ∪ P (Ri)) Ri not deleted

(event x = xi was beginning of a range Ri ∈ Ri)

= max

®
S(i+ 1, k′, Pf ) if pi ∈ Pf , cannot expose pi

S(i+ 1, k′, Pf ) + 1 otherwise, expose pi

(otherwise, event x = xi was a point pi ∈ Pi)

In the above formulation, at each begin-range event for some Ri ∈ Ri, we have two choices: delete
Ri or do not delete Ri. If Ri was deleted, we reduce the budget k′ by one. Otherwise, if Ri was
not deleted, we can never expose the points in P (Ri), and therefore we add P (Ri) to the forbidden
point set Pf . The correctness of the dynamic program follows from the fact that for every point pi,
all the ranges containing it must begin before x = xi, and we expose pi only if those ranges were
deleted. Again, it is not obvious how many different subsets Pf are needed by the dynamic program.
However, we will later show that by keeping track of polynomial number of sets Pf , we can solve
max-exposure with Type-1 ranges.

We note that the Type-0 and Type-1 ranges may superficially seem symmetric but once we fix
the order of computing subproblems, they become structurally different. Therefore, we would need
slightly different techniques to handle each type. For the ease of exposition, we present dynamic
programs for Type-0 and Type-1 ranges separately and finally combine them. Also note that if
the ranges in R are intervals on the real line (max exposure in 1D), then both DP-template-0 and
DP-template-1 can be easily applied to obtain a polynomial time algorithm.

We will now define the following ordering relations that will be useful later. Let ` be a horizontal
line, and let d(p, `) denote the orthogonal distance of p ∈ P from `. If p, p′ ∈ P are two points, we
say that p is closer to ` than p′ if d(p, `) < d(p′, `). Similarly, for a range R ∈ R that is anchored to
`, let d(R, `) be the vertical distance inside the unit square C between ` and the side of R parallel
to `. If R,R′ ∈ R are two ranges, we say that R is closer (or equivalently R′ is farther) from ` if
both R,R′ are anchored to ` and d(R, `) < d(R′, `). (See Figure 4.)

4.1.1 Max-exposure with Type-0 Ranges

Recall that Type-0 ranges intersect the vertical lines x = 0 and are anchored to either `0 or `1. We
will apply the formulation discussed in DP-template-0. The key challenge here is to bound the
number of possible deleted range sets Rd. Towards that end, we make the following claim. Recall
that Ri is the set of active ranges at x = xi.

Lemma 6. Let q0, q1 be the two exposed points strictly to the left of x = xi that are closest to `0
and `1 respectively. Then our dynamic program only needs to consider the set of deleted ranges
Rd = Ri ∩ (R(q0) ∪R(q1)) at x = xi conditioned on q0, q1.

Proof. Observe that since R consists of Type-0 ranges, every range in Ri must intersect the vertical
line x = xi. Suppose we partition Ri into ranges R0

i that are anchored to `0 and R1
i that are

anchored to `1. Let P ′ ⊆ P be the set of all exposed points strictly to the left of x = xi. Observe
that for all p ∈ P ′, any range R ∈ R0

i that contains p must also contain q0. Therefore, we must have
R0
i ∩ R(p) ⊆ R0

i ∩ R(q0), for all p ∈ P ′. Similarly, R1
i ∩ R(p) ⊆ R1

i ∩ R(q1), for all p ∈ P ′. This
gives us

⋃
p∈P ′ Ri ∩R(p) = Ri ∩ (R(q0) ∪R(q1)). Therefore, the set Rd consists of all the active

ranges that contain at least one exposed point and were therefore deleted to the left of x = xi.
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Therefore, if our dynamic program remembers the exposed points q0, q1, then we can compute the
deleted range set Rd = Ri ∩ (R(q0) ∪R(q1)) at x = xi. There are O(m2) choices for the pair q0, q1,
so the number of possible sets Rd is also O(m2). We can therefore identify our subproblems by the
tuple S(i, k′, q0, q1) which represents the maximum number of exposed points with x-coordinates
xi or higher using k′ rectangles from the set Ri \Rd. With ki = |R(pi)\Rd|, we obtain the following
recurrence:

S(i, k′, q0, q1) =

max

®
S (i+ 1, k′ − ki, closer(q0, pi), closer(q1, pi)) + 1 expose pi

S (i+ 1, k′, q0, q1) pi not exposed

where the function closer(q0, pi) returns whichever of q0, pi is closer to `0, and closer(q1, pi) returns
whichever of q1, pi is closer to `1. The optimal solution is given by S(0, k, q∗0, q

∗
1), where q∗0 = (0, 1)

and q∗1 = (0, 0) are two artificial points with R(q∗0) = R(q∗1) = ∅ (not contained in any range). The
base case is defined by the rightmost event at vertical line x = 1 and is initialized with zeroes for all
q0, q1 and k′ ≥ 0. Any subproblem with k′ < 0 has value −∞.

4.1.2 Max-exposure with Type-1 Ranges

Next we consider the case when we only have Type-1 ranges in R. Unfortunately in this case, our
previous dynamic program does not work and we need to remember a different set of parameters.
More precisely, we will apply the formulation discussed in DP-template-1, and bound the number
of possible forbidden point sets Pf . Recall that Pi is the set of active points at x = xi (with
x-coordinate xi or higher).

Lemma 7. Let Q0, Q1 be two ranges that begin to the left of x = xi and were not deleted. Moreover,
Q0 is anchored to and is farthest from `0. Similarly Q1 is anchored to and is farthest from `1
(Figure 5). Then the forbidden point set at x = xi is given by Pf = Pi ∩ (P (Q0) ∪ P (Q1)), where
P (Q) is the set of points contained in range Q.

Proof. Recall that the set Ri consists of ranges that have at least one corner to the right of the
vertical line x = xi. Since we are dealing with Type-1 ranges, every range that begins to the left of
x = xi lies in Ri. Now let R′ ⊆ Ri be the set of ranges that begin to the left of x = xi and were
not deleted. Here Pi is the set of points in P that have x-coordinate xi or higher. Now consider any
range R ∈ R′. Recall that R must be anchored to either `0 or `1. If R was anchored to `0, then
every point of Pi that lies in R also lies in Q0. Otherwise R was anchored to `1, so every point of
Pi that lies in R also lies in Q1. Therefore,

⋃
R∈R′ (Pi ∩ P (R)) = Pi ∩ (P (Q0) ∪ P (Q1)), which is

precisely the forbidden point set Pf .

`0

`1

xi

Q1

Q0

Figure 5: Undeleted ranges Q0 and Q1 far-
thest from `0 and `1 respectively.

R1

R2

p1

R

R′

p

p′
p2

p3

(a) (b)

Figure 6: Remembering one of R1, R2 in (a) or one of p1, p2
in (b) is not sufficient.
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Notation Explanation

R(p) ranges containing point p
P (R) points contained in range R
q0, q1 exposed points closest to `0, `1
Q0, Q1 undeleted ranges farthest from `0, `1
Pi points with x-coordinate at least xi (active points)
Ri ranges with at least one corner to the right of x = xi (active ranges)
Ri0 subset of Ri that are Type-0 (active Type-0 ranges at x = xi)
Pf forbidden point set given by Pf = Pi ∩ (P (Q0) ∪ P (Q1))
Rd deleted range set given by Rd = Ri0 ∩ (R(q0) ∪R(q1))

Table 1: A table of commonly used notations and their explanations.

Therefore, if our dynamic program remembers the ranges Q0 and Q1, we can compute the
forbidden point set Pf = Pi ∩ (P (Q0)∪P (Q1)) at x = xi. Since there are O(n2) choices for the pair
Q0, Q1, the number of possible sets Pf is also O(n2). We can now identify the subproblems by the
tuple S(i, k′, Q0, Q1) which represents the maximum number of points in Pi \Pf that are exposed
by deleting k′ ranges that begin on or after x = xi. This gives us the following recurrence.

S(i, k′, Q0, Q1) =

max

®
S(i+ 1, k′ − 1, Q0, Q1) delete range Ri

S(i+ 1, k′, farther(Q0, Ri), farther(Q1, Ri)) Ri not deleted

(event x = xi was beginning of a range Ri ∈ R)

max

®
S(i+ 1, k′, Q0, Q1) if pi ∈ Pf , cannot expose pi

S(i+ 1, k′, Q0, Q1) + 1 otherwise, expose pi

(otherwise, event x = xi was a point pi ∈ P )

Here, the function farther simply updates the ranges Q0, Q1 with Ri if needed. More precisely, if
Ri is anchored to `0 and is farther from `0 than Q0, then farther(Q0, Ri) returns Ri, otherwise it
returns Q0. Similarly, if Ri is anchored to `1, and is farther from `1 than Q1, then farther(Q1, Ri)
returns Ri, otherwise it returns Q1.

The optimal solution is given by P (0, k,Q∗0, Q
∗
1), where Q∗0, Q

∗
1 are two artificial ranges of zero-

width : Q∗0 is anchored to `0 and is defined by corners (0, 0) and (0, 1); similarly, Q∗1 is anchored to
`1 and is defined by corners (0, 1) and (1, 1).

Remark 1. We note that remembering a constant number of exposed points q0, q1 (DP-template-0)
or a constant number of undeleted ranges Q1, Q2 (DP-template-1) by themselves cannot solve both
Type-0 and Type-1 ranges. For instance, in Figure 6(a) with Type-0 ranges, if R1, R2 were both not
deleted but we remembered one of them, then we will incorrectly expose one of p, p′. Similarly in
Figure 6(b) with Type-1 ranges, if p1, p2 were both exposed but we only remembered one of them,
we will pay for one of the ranges R,R′ again when we expose p3. However, since both the dynamic
programs for Type-0 and Type-1 ranges express subproblems at event i in terms of subproblems at
event i+ 1, we can easily combine them with minor adjustments.
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4.1.3 Combining them together

In the following, we will combine the dynamic programs for Type-0 and Type-1 ranges to obtain a
dynamic program for max-exposure in a unit square C. We will need a couple of changes. First,
the events at x = xi are now defined by either a point pi ∈ P or beginning of a Type-1 range
Ri. Next, the deleted range set Rd at x = xi will only consist of Type-0 ranges and is defined
as Rd = Ri0 ∩ (R(q0) ∪ R(q1)) where Ri0 ⊆ Ri is the set of Type-0 ranges that intersect the
vertical line x = xi. The forbidden point set Pf = Pi ∩ (P (Q0) ∪ P (Q1)) stays the same. Here
q0, q1, Q0, Q1 are same as defined before. (For the sake of convenience, Table 1 lists these notations
with explanation.)

The subproblems represent the maximum number of points in Pi \ Pf that can be exposed by
deleting k′ ranges from Ri \Rd. If ki = |(R(pi)∩Ri0) \Rd|, then we obtain the following combined
recurrence.

S(i, k′, q0, q1, Q0, Q1) =

max


S(i+ 1, k′, q0, q1, Q0, Q1) if pi ∈ Pf , cannot expose pi

S(i+ 1, k′, q0, q1, Q0, Q1) choose to not expose pi

S(i+ 1, k′ − ki, closer(q0, pi), closer(q1, pi), Q0, Q1) + 1 expose pi

(event x = xi was a point pi ∈ Pi)

max

®
S(i+ 1, k′ − 1, q0, q1, Q0, Q1) delete Type-1 range Ri

S(i+ 1, k′, q0, q1, farther(Q0, Ri), farther(Q1, Ri)) Ri not deleted

(event x = xi was beginning of a Type-1 range Ri ∈ Ri)

The optimal solution is given by S(0, k, q∗0, q
∗
1, Q

∗
0, Q

∗
1). The correctness of the above

formulation follows from the fact that when we choose to expose pi, we are guaranteed that all
Type-1 ranges in R(pi) have already been deleted, and the expression ki only charges for Type-0
ranges containing pi. As for the running time, for each event x = xi, we compute O(kn2m2) entries
and computing each entry takes constant time. Since there are O(n + m) events, we obtain the
following.

Lemma 8. Given a set P of m points in a unit square C and a set of n unit square ranges R, we
can compute their max-exposure in O(k(n+m)n2m2) time.

4.2 A Constant Factor Approximation

We now use the preceding algorithm to solve the max-exposure problem for general set of points
and unit square ranges within a factor 4 of optimum. In particular, we compute a set of 4k ranges
in R such that the number of points exposed in P by deleting them is at least the optimal number
of points. Suppose we embed the ranges R on a uniform unit-sized grid G, and define C as the
collection of all cells in G that contain at least one point of P . Then we can solve exactly for each
cell in C and combine them using dynamic programming as described in Algorithm 2 (DP-Approx).
See also Figure 7.

Lemma 9. If P ∗ ⊆ P is the optimal set of exposed points, then global(1, 4k) ≥ |P ∗|, that is , the
algorithm DP-Approx achieves a 4-approximation and runs in O(k(n+m)n2m2) time.

Proof. Consider the optimal set of ranges R∗ ⊆ R. Observe that each range R ∈ R∗ intersects at
most four grid cells. Let Ri = R ∩ Ci be the rectangular region defined by intersection of R and Ci.
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Figure 7: Embedding a max-exposure instance with unit square ranges on a unit-sized grid. Optimal solution
in each grid cell can be computed exactly using Lemma 8.

Algorithm 2 DP-Approx

1. Apply Lemma 8 to solve max-exposure locally in every cell Ci ∈ C for all 0 ≤ ki ≤ k. Call
this a local solution denoted by local(P (Ci),R(Ci), ki), where P (Ci) ⊆ P is the set of points
contained in cell Ci and R(Ci) is the set of ranges intersecting Ci.

2. Process cells in C in any order C1, C2, . . . , Cg, and define global(i, k′) as the maximum number
of points exposed in the cells Ci through Cg using k′ ranges. Combine local solutions to obtain
global(i, k′) as follows.

global(i, k′) = max
0≤ki≤k′

global(i+ 1, k′ − ki) + local(P (Ci), R(Ci), ki)

3. Return global(1, 4k) as the number of exposed points.

Clearly, there are at most four regions Ri for each R ∈ R∗ and therefore 4k in total. At this point,
the regions in cell Ci are disjoint from regions in some other cell Cj ∈ C. Therefore, optimal solution
exposes |P ∗| points over a set of cells C∗ such that the set R∗ has at most 4k disjoint components
in the cells C∗. Since we can solve the problem exactly for each cell and can combine them using
the above dynamic program, we have that global(1, 4k) ≥ |P ∗| and we achieve a 4-approximation.

For the running time, we observe that solving max-exposure locally in a cell Ci takes O(k(ni +
mi)n

2
im

2
i ) time, where ni is the number of ranges that intersect Ci and mi is the number of points

in P that lie in Ci. Summed over all cells, we get the following bound.∑
i

k(ni +mi)n
2
im

2
i ≤ k

∑
i

(ni +mi)
∑
i

n2i
∑
i

m2
i

≤ k(n+m) (
∑
i

ni)
2 (
∑
i

mi)
2 = O(k(n+m)n2m2)

Once the local solutions are computed, the dynamic program that merges them into a global solution
has O(k|C|) subproblems and computing each subproblem takes O(k) time. Recall that every cell in
C contains at least one point, so |C| ≤ n and the merge step takes an additional O(k2n) time.

4.3 Towards a PTAS

In this section, we will show how to extend the exact algorithm for the restricted max-exposure
instance where all points lie inside a unit square (Lemma 8) to obtain an exact solution for the
max-exposure instance where all points are contained in a h×h square C. Without loss of generality,
we can assume that the lower left corner of C is at the origin (0, 0) and C is subdivided into h2

unit-sized grid cells.
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Observe that a major hurdle in generalizing the dynamic program from Section 4.1 for max-
exposure in a unit square cell to the grid C is that a range R can be double counted in multiple
cells. Specifically, range R may contain exposed points in at most four cells of C and can be counted
in each one of them. (See also Figure 8.) Indeed a natural generalization of the earlier dynamic
program to h anchor lines avoids double counting of ranges in the same column of C (vertical
neighbors). However, some additional work is required to avoid double counting in adjacent columns
(horizontal and diagonal neighbors).

(c)(a)

R R

(b)

R

Figure 8: Examples where a deleted range R can potentially be counted in two cells that are: (a) vertical
neighbors (b) horizontal neighbors (c) diagonal neighbors

To handle this, we first apply the following transformation which we call flattening of the grid C.

Flattening the grid C Intuitively, the flattening process transforms a h× h grid into a h2 × 1
vertical slab by shifting the i-th column and aligning it on top of the (i−1)-th column. More precisely,
we label the cells column by column from left to right and bottom to top in each column. That is,
cells of the column 1 are labeled as 1, 2, . . . , h and the cells of column 2 are labeled h+ 1, . . . , 2h
and so on. Then, flattening refers to simply stacking all the cells in their numbered order. In
other words, we shift the coordinates of all points and parts of ranges in column i of the grid C by
(−(i− 1), (i− 1)h), for all 2 ≤ i ≤ h. (See also Figure 9.)

a b

cd

a

d

b

c

Figure 9: Flattening a 2 × 2 grid containing one unit square range that is split into Type-0 and Type-1
components.

After this transformation, all x-coordinates are within the range [0, 1] and y-coordinates are
within the range [0, h2]. Moreover, every range R is split into two possibly disconnected half-ranges
which preserve the following important property that follows readily from the fact that the ranges
are unit squares.

Lemma 10. Let R be a range and Ci, Ci+1 be the two consecutive columns of the grid C intersected
by range R. Then, R is Type-1 with respect to cells in Ci and Type-0 with respect to cells in Ci+1,
and after the flattening transformation, the x-coordinate at which R begins as a Type-1 range in Ci
is the same as the x-coordinate at which R finishes as Type-0 range in Ci+1.

Proof. The range R intersects the vertical line x = i which is coincident with the right (resp. left)
boundary of cells in Ci (resp. Ci+1). Therefore, R is Type-1 in cells of Ci and Type-0 in cells of Ci+1.
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Let the x-coordinate of left boundary of R (that lies in i-th column) be (i− 1) + δ. Therefore,
the x-coordinate of right boundary of R would be (i− 1) + δ + 1 = i+ δ, and it will lie in (i+ 1)-th
column. After the transformation both these coordinate values would be δ.

From the above lemma, it follows that every range R ∈ R has a Type-0 component and a Type-1
component which may lie in non-consecutive cells. In the rest of the discussion, we will refer to these
components by their type as prefix. For example, Type-0 range R refers to the Type-0 component
of R.

Once we have flattened the grid C, our algorithm is an almost straightforward extension of
the dynamic program from Section 4.1 to h2 + 1 anchor lines `0, `1, `h2 . Same as before, we
process the two types of events : x = xi is a point pi and x = xi is beginning of Type-1 range Ri.
However at every x = xi, we will now need to remember the set q = {q+0 , q

−
0 , . . . , q

+
h2
, q−
h2
} of O(h2)

points consisting of closest exposed points q+j , q
−
j respectively above and below every anchor line `j .

Similarly, we will need to remember the set Q = {Q+
0 , Q

−
0 , . . . , Q

+
h2
, Q−

h2
} of O(h2) ranges consisting

of farthest undeleted Type-1 ranges Q+
j , Q

−
j respectively above and below every anchor line `j .

Then at x = xi, we extend the definitions from Table 1 to obtain the forbidden point set
Pf = Pi ∩

⋃
Q∈Q P (Q) and the deleted range set Rd = Ri0 ∩

⋃
q∈q R(q). Recall that Pi is the

set of points with x-coordinate at least xi and Ri0 is the set of Type-0 ranges that are active at
x = xi. Also recall that P (Q) denotes the set of points contained in range Q and R(q) denotes the
set of ranges containing point q. This gives us the following dynamic program which we will refer to
as DP-Flattened. Same as before, we have ki = |(R(pi) ∩Ri0) \ Rd|.

S(i, k′, q, Q) =

max


S(i+ 1, k′, q, Q) if pi ∈ Pf , cannot expose pi

S(i+ 1, k′, q, Q) choose to not expose pi

S(i+ 1, k′ − ki, closer(q, pi), Q) + 1 expose pi

(event x = xi was a point pi ∈ Pi)

max


S(i+ 1, k′, q, Q) if Ri ∈ Rd, already deleted

S(i+ 1, k′ − 1,q, Q) delete Type-1 range Ri

S(i+ 1, k′, q, farther(Q, Ri)) Ri not deleted

(event x = xi was beginning of a Type-1 range Ri ∈ Ri)

Here, closer(q, pi) denotes the operation of updating the appropriate closest exposed point
in q with point pi. More precisely, let Cj be the cell bounded by anchor lines `j−1 and `j that
contains the exposed point pi. We update q such that q+j−1 = closer(q+j−1, pi) and q−j = closer(q−j , pi).
Similarly, let `j be the anchor line intersecting Ri, then farther(Q, Ri) denotes the operation of
updating Q with the farthest undeleted range on both sides of `j as Q+

j = farther(Q+
j , Ri) and

Q−j = farther(Q−j , Ri). The optimal solution is given by S(0, k, q∗, Q∗), where q∗, Q∗ consist of
the initial values for each anchor line.

At any event x = xi, the above dynamic program accounts for the cost of deleting a range R in
one of two ways: either as a Type-0 range included in the term ki or as Type-1 range by paying
unit cost. In the next lemma, we show that every deleted range is counted exactly once and use it
to establish the correctness.

Lemma 11. The dynamic program DP-flattened computes an optimal solution for max-exposure
instance (R, P, k) in an h× h grid and runs in O(k(nm)O(h2)) time.
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Proof. The running time bound follows from the number of exposed points and undeleted ranges
we need to remember.

To prove correctness, consider an optimal set of deleted ranges R∗ and its exposed points P ∗.
Let the value of the solution returned by the dynamic program be the number of points it choses to
expose and the cost of the solution is the total cost of ranges it deletes. First, we claim that there
exists a sequences of choices at events x = xi where the dynamic program selects points and ranges
consistent with the optimal solution, that is, chooses to only expose points in P ∗ and to only delete
Type-1 ranges in R∗. This is easy to verify because because P ∗ ∩ Pf = ∅, so the dynamic program
can choose to expose point pi ∈ P ∗ when x = xi is a point-event. Indeed the value of the solution is
|P ∗|. Next we will show that every range in R∗ is counted exactly once, and therefore the cost of
the solution is also k.

We claim that at every point-event x = xi where we expose the point pi ∈ P ∗, all ranges in
R(pi) are deleted and counted exactly once. To see this, let R ∈ R(pi) be a range containing pi and
let x = xr be the x-coordinate at which R finishes as a Type-0 range and starts as a Type-1 range.
We have two disjoint cases.

1. pi is contained in Type-0 component of R. Let `j be the line to which Type-0 range R is
anchored. We have two subcases.

(a) R does not contains any exposed point to the left of x = xi. In this case, we charge
for R and remember that R has already been counted using the closest exposed points
q+j , q

−
j above and below `j . Therefore, we will have R ∈ Rd at least until x = xr, (when

it switches from being Type-0 to Type-1). Since R cannot be charged at x > xr, it is
charged exactly once in total.

(b) R contains an exposed point to the left of x = xi. Then we will have R ∈ Rd, and as
discussed above R was already counted and would not be charged again.

2. pi is contained in Type-1 component of R. Since pi is exposed, it is not contained in the
forbidden point set Pf . Therefore, R must be deleted when it began as a Type-1 event at
x = xr or else we would have pi ∈ Pf . As discussed above, if R was deleted as a Type-0 range
to the left of x = xr, we must have R ∈ Rd at x = xr, so it would not be charged again. If R
was not deleted as a Type-0 range, then it would be charged at x = xr as a Type-1 range and
is never charged again.

Therefore, the solution returned by dynamic program S(0, k,q∗,Q∗) has value at least optimal.

4.4 A (1 + ε)-Approximation Algorithm

We will now apply grid shifting technique by Hochbaum and Maas [20] to obtain an (1 + ε)-
approximation1. In particular, if P ∗ is the optimal set of exposed points, then we show how to
compute a set of (1 + ε)k ranges deleting which will expose at least |P ∗| points. Using similar ideas
but with small adjustments, we also show how to expose at least (1 − ε)|P ∗| points by deleting
exactly k ranges.

Theorem 3. There exists an algorithm for max-exposure with unit-square ranges running in
k(mn)O(1/ε2) time that exposes at least optimal number of points by deleting (1 + ε)k ranges.

1 The PTAS presented here simplifies and corrects an error in the PTAS that appeared in the conference version [21]
of the paper.
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Proof. For a given shift value a, b ∈ {0, . . . , h− 1}, we compute the optimal solution inside every
h× h cell Cij = [a+ ih, a+ (i+ 1)h]× [b+ jh, b+ (j + 1)h] for all i, j ∈ Z. Using the exact solution
in each cell as local solution, we use the algorithm DP-Approx (from Section 4.2) to combine them
into a global solution for the entire grid given by Sab = global(1, k(1 + ε)), with ε = d8/he. We
repeat this for every shift a, b, and return Sab that achieves the maximum value.

To see why this exposes at least optimal number of points, consider an optimal set of deleted
ranges R∗ and sets R∗a,R∗b ⊆ R∗ intersected by boundary grid lines x = a + ih and y = b + jh
respectively, for all i, j. These grid lines split the intersected ranges into at most Zab = 2|R∗a|+2|R∗b |
disjoint components. ∑

0≤a,b<h
Zab = 2h

∑
0≤a<h

|R∗a|+ 2h
∑

0≤b<h
|R∗b | ≤ 8hk

=⇒ min
0≤a,b<h

Zab ≤ 8k/h

The first inequality holds because every range can touch at most two grid lines, so we have∑
0≤a<h |R∗a| ≤ 2k and

∑
0≤b<h |R∗b | ≤ 2k. Hence there exists a shift value a, b for which the ranges

in optimal solution have at most k(1+ε) disjoint components in cells Cij . Therefore, global(1, k(1+ε))
returns at least an optimal number of points.

Theorem 4. There exists an algorithm for max-exposure with unit-square ranges running in
k(mn)O(1/ε2) time that exposes at least (1− ε) fraction of optimal number of points by deleting k
ranges.

Proof. For a given shift value a, b ∈ {0, . . . , h− 1}, we first preprocess the input by discarding points
so that the set of ranges intersecting the boundary grid lines x = a + ih and y = b + jh do not
contain any point. Specifically, for every shift value a, b, discard the points that are within a unit
distance from grid boundary lines x = a+ ih or y = b+ jh for all i, j. On the modified input, we
run the exact solution in each cell as local solution, and then use DP-Approx (from Section 4.2) to
combine them into a global solution for the entire grid given by Sab = global(1, k). We repeat this
for every shift a, b, and return Sab that achieves the maximum value.

Let P ∗ be the optimal set of exposed points. It remains to show that the above algorithm
exposes at least (1− ε)|P ∗| points. To see this, for the shift value a, b, consider the set of discarded
points P ∗a , P

∗
b ⊆ P ∗ that are within a unit distance from x = a + ih and y = b + jh respectively.

These |P ∗a |+ |P ∗b | will not be exposed by our algorithm∑
0≤a,b<h

|P ∗a |+ |P ∗b | = h
∑

0≤a<h
|P ∗a |+ h

∑
0≤b<h

|P ∗b | ≤ 4h|P ∗|

=⇒ min
0≤a,b<h

(|P ∗a |+ |P ∗b |) ≤ 4|P ∗|/h

The first inequality holds because every point can lie within a unit distance of at most two horizontal
(resp. vertical) lines, so we have

∑
0≤a<h |P ∗a | ≤ 2k and

∑
0≤b<h |P ∗b | ≤ 2|P ∗|. Therefore, there

exists some a, b for which the number of remaining points in the input is at most (1 − 4/h)|P ∗|.
Since every h × h cell is mutually independent, global(1, k) returns at least (1 − ε)|P ∗| exposed
points, where ε = d4/he.

5 Extensions and Applications

In this section, we discuss some extensions and applications of our the results from previous section.
We say that the range family R consists of fat rectangles if every range R ∈ R is a rectangle of
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bounded aspect ratio. Moreover, we say that R consists of similar and fat rectangles, if ranges in R
are rectangles and the ratio of the largest to the smallest side in R is constant. We show that if R
consists of similar and fat rectangles, one can achieve a constant approximation. Moreover, if R
consists of fat rectangles one can achieve a bicriteria O(

√
k)-approximation.

5.1 Approximation for Similar and Fat Rectangles

Let a, b be the length of smallest and largest sides of rectangles in R such that b/a = c is constant.
Then we can modify the input instance as follows. Replace each range R ∈ R by covering it with
at most c2 squares of sidelength a such that the areas occupied by R and its replacements are the
same. Now, we have a modified set of ranges R′ consisting of squares that have the same sidelength.
Consider the optimal solution with k ranges R∗ that exposes m∗ points. It is easy to see that the
set R∗ corresponds to at most c2k ranges in the modified instance, and therefore deleting c2k ranges
from R′ exposes at least m∗ points. Therefore, we can run the polynomial-time 4-approximation
algorithm (Lemma 9) to obtain a set of at most 4c2k ranges that expose at least m∗ points.

Theorem 5. Given a set of points P , a set of rectangle ranges R such that the ratio of the
largest to the smallest side in R is bounded by a constant, then there exists a polynomial time
O(1)-approximation algorithm for max-exposure.

5.2 Approximation for Fat Rectangles

We now consider the case when rectangles in R have bounded aspect ratio. That is for all rectangles
R ∈ R, the ratio of its two sides is bounded by a constant c. We transform the input ranges R
to obtain a modified set of ranges R′ as follows. For each rectangle R ∈ R, let x be the length
of the smaller side of R. Then we replace R by at most dce squares each of sidelength x. If m∗

is the optimal number of points exposed by deleting k ranges from R, then there exists a set of
O(k) ranges in R′ deleting which will expose at least m∗ points. Observe that the set R′ consists of
square ranges, of possibly different sizes. Therefore, if we can obtain an f -approximation for square
ranges, we can easily obtain O(f)-approximation with fat rectangles.

5.2.1 A Bicriteria O(
√
k)-approximation for Squares

We will describe an approximation algorithm for the case when the set of ranges R consists of
axis-aligned squares. We achieve an approximation algorithm in three steps. First, we partition the
point set by assigning the points to one of the input squares. Next, we solve the problem exactly for
a fixed input square. Finally, we combine these solutions to achieve a good approximation to the
optimal solution.

We define A : P → R to be a function that assigns a point in P to exactly one range in R.
If R(pi) is the set of squares that contain pi, then A(pi) is the smallest square in R(pi). This
assignment scheme ensures the following property.

Lemma 12. Let R ∈ R be a square and let PR = A−1(R) be the set of points assigned to it.
Moreover, let R′ ⊆ R be the set of squares that intersect R and contain at least one point in PR.
Then, every square R′ ∈ R′ must have sidelength bigger than that of R, and therefore contains at
least one corner of R.

Now suppose we fix a square R, and consider a restricted max-exposure instance with the set of
its assigned points PR. Since, ranges that contain a point in PR are all bigger then R, this case is
essentially the same as points inside a unit square, and therefore Lemma 8 can be easily extended
to solve it exactly. This gives us the following algorithm. Here 1 ≤ α ≤ k is a parameter.
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Algorithm 3 Greedy-Squares

1. For every square R ∈ R, apply Lemma 8 over the point set PR to expose the maximum set of
points P (R, k) ⊆ PR by deleting k ranges.

2. Order squares in R by decreasing |P (R, k)| values, and pick the set S ⊆ R of first α squares.

3. Return
⋃
R∈S P (R, k) as the set of exposed points.

Lemma 13. Let m∗ be the optimal number of points exposed using k squares, then algorithm
Greedy-Squares computes a set of at most αk squares that expose at least αm∗/k points.

Proof. It is easy to see that the number of squares is at most αk. To show the bound on number of
points exposed, consider the optimal set R∗ of k ranges and let the optimal set of points exposed
by R∗ to be P ∗. We will now use the same assignment procedure A∗ : P ∗ → R∗ to assign points
in P ∗ to a square in R∗. That is, A∗(pi) is the smallest square in R∗ that contains pi. We claim
that A∗(pi) = A(pi) for all pi ∈ P ∗ since every square that contains pi lies in R∗. Moreover, let P∗R
denote the set of points of P ∗ assigned to R.

Let m′ be the number of points exposed by the algorithm and assume that the squares in R are
ordered such that |P (Ri, k)| ≥ |P (Rj , k)| for all i < j. Then, we have the following.

m∗ =

∣∣∣∣∣∣ ⋃R∈R∗ P∗R
∣∣∣∣∣∣ =

∑
R∈R∗

|P∗R|

≤
∑

1≤i≤k
|P (Ri, k)| ≤ k

α

∑
1≤i≤α

|P (Ri, k)| =
k

α
m′

For α =
√
k, the above algorithm achieves a bicriteria O(

√
k)-approximation. Since an f -

approximation for square ranges gives an O(f)-approximation for fat rectangles, we obtain the
following.

Theorem 6. Given a set of points P and a set of ranges R consisting of rectangles of bounded
aspect ratio, then one can obtain a bicriteria O(

√
k)-approximation for max-exposure in polynomial

time.

6 Conclusion

In this paper, we introduced the max-exposure problem, proved its hardness, and explored approxi-
mation schemes for it. We showed that the problem is hard to approximate even when the range
space R consists of two types of rectangles. When the ranges are defined by translates of a single
rectangle, we presented a polynomial-time approximation scheme (PTAS). Some natural questions
to explore in the future include better approximation algorithms, and simpler range spaces such as
those defined by axis-aligned squares. For instance, can one achieve a constant factor approximation
for axis-aligned squares?

19



References
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