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Abstract

For a property Π, Subgraph Complementation to Π is the problem to find whether there is a
subset S of vertices in the input graph G such that modifying G by complementing the subgraph
induced by S results in a graph satisfying the property Π. We prove that, the problem of Subgraph
Complementation to T -free graphs is NP-Complete, for T being a tree, except for 40 trees of at
most 13 vertices (a graph is T -free if it does not contain any induced copies of T ). Further, we
prove that these hard problems do not admit any subexponential-time algorithms, assuming the
Exponential Time Hypothesis. As an additional result, we obtain that Subgraph Complementation
to paw-free graphs can be solved in polynomial-time.

Keywords: Subgraph Complementation, Graph Modification, Trees, Paw

1 Introduction

A graph property is hereditary if it is closed under vertex deletion. It is well known that every
hereditary property is characterized by a minimal set of forbidden induced subgraphs. For example,
for chordal graphs, the forbidden set is the set of all cycles, for split graphs, the forbidden set is
{2K2, C4, C5}, for cluster graphs it is {P3}, and for cographs it is {P4}. The study of structural and
algorithmic aspects of hereditary graph classes is central to theoretical computer science.

A hereditary property is called H-free if it is characterized by a singleton set {H} of forbidden
subgraph. Such hereditary properties are very interesting for their rich structural and algorithmic
properties. For example, triangle-free graphs could be among the most studied graphs classes. There
is a rich structure theorem for claw-free graphs [1] and it is known that the Independent Set problem is
polynomial-time solvable for claw-free graphs [2]. There is a long list of papers on the Independent Set
problem on H-free graphs (for example, see [3–5]). Further, there are long standing open problems,
such as Erdős-Hajnal conjecture, related to H-free graphs.

We study a graph recognition problem, known as subgraph complementation related to H-free
graphs. A subgraph complement of a graph G is a graph G′ obtained from G by flipping the adjacency
of pairs of vertices of a set S ⊆ V (G). The operation is known as subgraph complementation and
is denoted by G′ = G ⊕ S. The operation was introduced by Kamiński et al. [6] in relation with
clique-width of a graph. For a class G of graphs, subgraph complementation to G is the problem
to check whether there is a set of vertices S in the input graph G such that G ⊕ S ∈ G. The set
of all subgraph complements of graphs in G is denoted by G(1). Note that the problem subgraph
complementation to G is a recognition problem of G(1). A systematic study of this problem has been
started by Fomin et al. [7]. They obtained polynomial-time algorithms for this problem for various
classes of graphs including triangle-free graphs and P4-free graphs. A superset of the authors of this
paper studied it further [8] and settled the complexities of this problem (except for a finite number of
cases) when G is H-free, for H being a complete graph, a path, a star, or a cycle. They proved that
subgraph complementation to H-free graphs is polynomial-time solvable if H is a clique, NP-Complete
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if H is a path on at least 7 vertices, or a star graph on at least 6 vertices, or a cycle on at least 8
vertices. Further, none of these hard problems admit subexponential-time algorithms, assuming the
Exponential-Time Hypothesis.

We study subgraph complementation to H-free graphs, where H is a tree. We come up with a
set T of 40 trees of at most 13 vertices such that if T /∈ T , then subgraph complementation to T -free
graphs is NP-Complete. Further these hard problems do not admit subexponential-time algorithm,
assuming the Exponential-Time Hypothesis. These 40 trees include some paths, stars, bistars (trees
with 2 internal vertices), tristars (trees with 3 internal vertices), and some subdivisions of claw. Among
these, for four paths (Pℓ, for 1 ≤ ℓ ≤ 4), the problem is known to be polynomial-time solvable. So,
our result leaves behind only 36 open cases. Additionally, we prove that the problem is hard when H
is a 5-connected prime non-self-complementary graph with at least 18 vertices. As a separate result,
we obtain that the problem can be solved in polynomial-time when H is a paw (the unique connected
graph on 4 vertices having a single triangle).

2 Preliminaries

In this section, we provide various definitions, notations, and terminologies used in this paper.
Graphs. For a graph G, the vertex set and edge set are denoted by V (G) and E(G) respectively.

A graph G is H-free if it does not contain H as an induced subgraph. We denote F(H) as the family
of H-free graphs. The vertex connectivity, K(G), of a graph G is the minimum number of vertices in
G whose removal causes G either disconnected or reduces G to a graph with only one vertex. A graph
G is said to be k-connected, if K(G) ≥ k. We denote the well-known graphs such as a complete graph,
an independent set, a star, a cycle, and a path, each of them on n vertices, by Kn, nK1, K1,n−1, Cn,
and Pn respectively.

A graph G, which is isomorphic to its complement G is called self-complementary graph. If G
is not isomorphic to G, then it is called non-self-complementary. The join of two graphs G and H,
denoted by G ×H, is a graph in which each vertex in G is adjacent to all vertices in H. By G +H,
we denote the disjoint union of two graphs G and H. Similarly by rG, we denote the disjoint union
of r copies of a graph G. By G[H], we denote the graph obtained from G by replacing each vertex of
G with H. That is, V (G[H]) = V (G)× V (H), and E(G[H]) = {((u, v)(u′, v′))|(u, u′) ∈ E(G) or (u =
u′and (v, v′) ∈ E(H)}. We denote G −X as the graph obtained from G by removing the vertices in
X.

The open neighborhood of a vertex v ∈ V (G), denoted by N(v), is the set of all the vertices
adjacent to v, i.e., N(v) := {w | vw ∈ E(G)}, and the closed neighborhood of v, denoted by N [v],
is defined as N(v) ∪ {v}. A pair of independent vertices in a graph G are called false-twins, if they
have the same neighborhood in G. Let u be a vertex and X be a vertex subset of G. Let NX(u)
and NX(u) denote the neighborhood of u inside the sets X and V (G) \X, respectively. We extend
the notion of adjacency to set of vertices as: two sets A and B of vertices of G are adjacent (resp.,
non-adjacent) if each vertex of A is adjacent (resp., non-adjacent) to each vertex of B. Let G′ be
a graph and u ∈ V (G′). We say that a graph H is obtained from H ′ by vertex duplication, if H is
obtained from H ′ by replacing each vertex in H ′ by an independent set of size ri ≥ 1. A set of vertices
R is said to be untouched by a set S in V (G), if R ∩ S = ∅.

A tree is an acyclic graph, and the disjoint union of trees is called a forest. The internal tree T ′

of a tree T is a tree obtained by removing all the leaves of T . The center of a star graph K1,x is the
vertex which is connected to all the leaves of K1,x. A bistar graph Tx,y, for x ≥ 1 and y ≥ 1, is a
graph obtained by joining the centers a and b of two star graphs K1,x and K1,y respectively, where a
is the x-center (the vertex adjacent to x leaves) and b is the y-center (the vertex adjacent to y leaves)
of Tx,y. Similarly, tristar graph Tx,y,z, for x ≥ 1, y ≥ 1 and z ≥ 1, is a graph obtained by joining
the centers a, b, and c of three star graphs K1,x, K1,y, and K1,z respectively in such a way that a, b, c
induce a K1,2 with b as the center. The subdivision of claw, denoted by Cx,y,z for x ≥ 1, y ≥ 1, z ≥ 1,
is a graph obtained from the claw, K1,3, by subdividing its three edges x− 1 times, y − 1 times, and
z − 1 times respectively. Some examples are given in Figure 1.

Modular decomposition. A vertex subsetX of G is a module if NX(u) = NX(v) for all u, v ∈ X.
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(a) P5 (b) K1,3 (c) T1,2 (d) T1,3,2 (e) C1,2,3

Figure 1: Some examples of trees

The trivial modules of a graph G are ∅, V (G), and all the singletons {v} for v ∈ V (G). A graph is
prime if it has at least 3 vertices and all its modules are trivial, and nonprime otherwise. A nontrivial
module M is a strong module of a graph G if for every other module M ′ in G, if M ∩M ′ 6= ∅, then
either M ⊆M ′ or M ′ ⊆M . A module which induces an independent set is called independent module
and a module which induces a clique is called clique module. Let G be a nonprime graph such that
both G and G are connected graphs. Then there is a unique partitioning P of V (G) into maximal
strong modules. The quotient graph QG of G has one vertex for each set in P and two vertices in QG

are adjacent if and only if the corresponding modules are adjacent in G. The modular decomposition
theorem due to Gallai [9] says that QG is a prime graph. We refer to [10] for more details on modular
decomposition and related concepts.

Boolean satisfiability problems. In a 3-SAT formula, every clause contains exactly three
literals of distinct variables and the objective of the 3-SAT problem is to find whether there exists a
truth assignment which assigns TRUE to at least one literal per clause. The problem is among the
first known NP-Complete problems. The Exponential-Time Hypothesis (ETH) and the Sparsification
Lemma imply that 3-SAT cannot be solved in subexponential-time, i.e., in time 2o(n+m), where n
is the number of variables and m is the number of clauses in the input formula. To prove that a
problem does not admit a subexponential-time algorithm, it is sufficient to obtain a linear reduction
from a problem known not to admit a subexponential-time algorithm, where a linear reduction is a
polynomial-time reduction in which the size of the resultant instance is linear in the size of the input
instance. All our reductions are trivially linear and we may not explicitly mention the same. We refer
to the book [11] for a detailed description.

In a k-SAT formula, every clause contains exactly k literals. The objective of the k-SAT≥2

problem is to find whether there is a truth assignment for the input k-SAT formula such that at least
two literals per clause are assigned TRUE. For every k ≥ 4, there are two simple linear reductions
from 3-SAT to 4-SAT≥2 and then to k-SAT≥2 to prove the hardness of k-SAT≥2. Replace every
clause (ℓ1 ∨ ℓ2 ∨ ℓ3) in the input Φ of 3-SAT by a clause (ℓ1 ∨ ℓ2 ∨ ℓ3 ∨ x1) - this makes sure that Φ is
satisfiable if and only if there is a truth assignment which assigns TRUE to at least two literals per
clause of the new formula. A linear reduction from 4-SAT≥2 to k-SAT≥2 is also trivial: Replace every
clause (ℓ1 ∨ ℓ2∨ ℓ3 ∨ ℓ4) in the input Φ of 4-SAT≥2 by 2k−4 clauses each of them contains ℓ1, ℓ2, ℓ3, ℓ4,
and either the positive literal or the negative literal of k − 4 new variables x1, x2, . . . , xk−4. The 2k−4

clauses are to make sure that all combinations of the negative and positive literals of the new variables
are present which makes sure that Φ is satisfiable (with two true literal per clause) if and only if the
new formula is satisfiable (with two true literals per clause). Since k is a constant, this reduction is a
linear reduction.

Proposition 2.1 (folklore). k-SAT≥2 is NP-Complete. Further, the problem cannot be solved in time
2o(n+m), assuming the ETH.

By G ⊕ S, for a graph G and S ⊆ V (G), we denote the graph obtained from G by flipping the
adjacency of pairs of vertices in S. The problem that we deal with in this paper is given below.

SC-to-F(H) : Given a graph G, find whether there is a set S ⊆ V (G) such that G⊕S is H-free.

We make use of the following known results.

Proposition 2.2 ( [8]). Let T be a path on at least 7 vertices. Then SC-to-F(T ) is NP-Complete.
Further, the problem cannot be solved in time 2o(|V (G)|), unless the ETH fails.

Proposition 2.3 ( [8]). Let T be a star on at least 6 vertices. Then SC-to-F(T ) is NP-Complete.
Further, the problem cannot be solved in time 2o(|V (G)|), unless the ETH fails.
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We say that two problems A and B are polynomially equivalent, if there is a polynomial-time
reduction from A to B and there is a polynomial-time reduction from B to A.

Proposition 2.4 ( [8]). SC-to-F(H) and SC-to-F(H) are polynomially equivalent.

3 Reductions for general graphs

In this section, we introduce two reductions which will be used in the next section to prove hardness
for SC-to-F(H), when H is a tree. We believe that these reductions will be very useful in an
eventual dichotomy for the problem for general graphs H. The first reduction is a linear reduction
from SC-to-F(H ′) to SC-to-F(H) where H is obtained from H ′ by vertex duplication. The second
reduction proves that for every 5-connected non-self-complementary prime graph H with a clique or
independent set of size 4, SC-to-F(H) is NP-Complete and does not admit a subexponential-time
algorithm, assuming the ETH.

3.1 Graphs with duplicated vertices

Here, with the help of a linear reduction, we prove that the hardness results for a prime graph H ′

translates to that for H, where H is obtained from H ′ by vertex duplication.

Lemma 3.1. Let H ′ be a prime graph with vertices V (H ′) = {v1, v2, . . . , vt}. Let H be a graph
obtained from H ′ by replacing each vertex vi in H

′ by an independent set Ii of size ri, for some integer
ri ≥ 1. Then there is a linear reduction from SC-to-F(H ′) to SC-to-F(H).

Let H ′ and H be graphs mentioned in Lemma 3.1. Let r be the maximum integer among the ris,
i.e., r = maxi=t

i=1 ri. We note that H ′ is the quotient graph of H. See Figure 2 for an example.

Construction 1. Given a graph G′ and an integer r ≥ 1, the graph G is constructed from G′ as
follows: for each vertex u of G′, replace u with a set Wu which induces an rKr. The so obtained graph
is G (see Figure 3 for an example).

(a) H ′ (b) H

Figure 2: An example of H ′ and H. Here, r1 = r2 = r4 = 1, r3 = r5 = 2, and r = 2, assuming an
order of vertices of H ′ from left to right.

(a) G′ (b) G

Figure 3: An example of Construction 1 for a graph G′ isomorphic to P7, and for an interger r = 2.
The lines connecting two circles (bold or dashed) indicate that the vertices corresponding to that
circles are adjacent.

Lemma 3.2. If G′ ⊕ S′ ∈ F(H ′) for some S′ ⊆ V (G′), then G⊕ S ∈ F(H), where S is the union of
vertices in Wu for every vertex u ∈ S′.

Proof. Let an H be induced by A (say) in G ⊕ S. Recall that G is constructed by replacing each
vertex u in G′ with a moduleWu which induces an rKr. If A ⊆Wu for some vertex u in G′, then H is
an induced subgraph of either rKr (if u /∈ S′) or rKr (if u ∈ S′). Then H ′, the quotient graph of H, is
either an independent set or a complete graph. This is not true as H ′ is a prime graph. Therefore, A
has nonempty intersection with more than one Wus. For a vertex u in G′, either Wu is a subset of S
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(if u ∈ S′) or Wu has empty intersection with S (if u /∈ S). Therefore, if A has nonempty intersection
with Wu, then A∩Wu is a module of the H induced by A. Therefore, A∩Wu ⊆ Ii for some 1 ≤ i ≤ t.
Let Ui be the set of vertices u in G′ such that Ii (in the H induced by A) has a nonempty intersection
with Wu. Arbitrarily choose one vertex from Ui. Let A′ be the set of such chosen vertices for all
1 ≤ i ≤ t. We claim that A′ induces an H ′ in G′ ⊕ S′. Let ui and uj be the vertices chosen for Ii and
Ij respectively, for i 6= j. Since A ∩Wui

⊆ Ii and A ∩Wuj
⊆ Ij, and i 6= j, we obtain that ui 6= uj . It

is enough to prove that ui and uj are adjacent in G
′⊕S′ if and only if vi and vj are adjacent in H

′. If
ui and uj are adjacent in G′ ⊕ S′, then Wui

and Wuj
are adjacent in G⊕ S. This implies that Ii and

Ij are adjacent in H. Hence vi and vj are adjacent in H
′. For the converse, assume that vi and vj are

adjacent in H ′. This implies that Ii and Ij are adjacent in H. Therefore, Wui
and Wuj

are adjacent
in G⊕ S. Hence ui and uj are adjacent in G′ ⊕ S′. This completes the proof.

Lemma 3.3. If G ⊕ S ∈ F(H) for some S ⊆ V (G), then G′ ⊕ S′ ∈ F(H ′), where S′ is a subset of
vertices of G′ obtained in such a way that whenever all vertices of a Kr from a module Wu (which
induces an rKr) is in S, then the corresponding vertex u in G′ is included in S′.

Proof. Suppose G′ ⊕ S′ contains an H ′ induced by a set A′ = {v1, v2, . . . , vt}. If a vertex u in G′ is
in S′, then all vertices of a Kr from Wu is in S. Therefore, there is an independent set of size r in
Wu∩S. Similarly, if u /∈ S′, then there is an independent set of size r in Wu \S formed by one vertex,
which is not in S, from each copy of Kr in Wu which is not in S. We construct A as follows: for each
vertex vi ∈ A′, if vi ∈ S′, include in A an independent set Ii ⊆ Wvi ∩ S such that |Ii| = r1, and if
vi /∈ S′, include in A an independent set Ii ⊆Wvi \ S such that |Ii| = ri. We claim that A induces an
H in G ⊕ S. Note that each chosen Ii is a module in G ⊕ S. Since Ii ⊆ S if and only if vi ∈ S′, we
obtain that Ii and Ij are adjacent in G⊕ S if and only if vi and vj are adjacent in the H ′ induced by
A′. This completes the proof.

Lemma 3.1 follows directly from Lemma 3.2 and 3.3. When the lemma is applied on trees, we get
the following corollary. We note that the quotient tree QT of a tree is prime if and only if T is not a
star graph - by our definition, a prime graph has at least 3 vertices.

Corollary 3.4. Let T be a tree which is not a star graph, and let QT be its quotient tree. Then there
is a linear reduction from SC-to-F(QT ) to SC-to-F(T ).

3.2 5-connected graphs

Here, we obtain hardness results for SC-to-F(H), where H is a 5-connected graphs satisfying some
additional constraints.

Theorem 3.5. Let H be a 5-connected, non self-complementary, prime graph with an independent set
of size 4 or with a clique of size 4. Then SC-to-F(H) is NP-Complete. Further, the problem cannot
be solved in time 2o(|V (G)|), unless the ETH fails.

We have the following corollary from the fact that the Ramsey number R(4, 4) = 18.

Corollary 3.6. Let H be a 5-connected, non self-complementary, prime graph with at least 18 vertices.
Then SC-to-F(H) is NP-Complete. Further, the problem cannot be solved in time 2o(|V (G)|), unless
the ETH fails.

Let H be a 5-connected graph satisfying the constraints mentioned in Theorem 3.5. Let H has t
vertices and let V ′ ⊆ V (H) induces either a K4 or a 4K1 in H. We use Construction 2 for a reduction
from 4-SAT≥2 to prove Theorem 3.5.

Construction 2. Let Φ be a 4-SAT formula with n variables X1,X2, · · · ,Xn, andm clauses C1, C2, · · · ,
Cm. We construct the graph GΦ as follows.

• For each variable Xi in Φ, the variable gadget also named as Xi consists of the union of two
special sets Xi1 = {xi} and Xi2 = {xi}, and t− 2 other sets Xi3,Xi4 . . . Xit such that each Xij ,
for 3 ≤ j ≤ t induces an H. Make the adjacency between these Xijs in such a way that taking
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one vertex each from these sets induces an H, where Xi1 and Xi2 correspond to two non-adjacent
vertices, if V ′ forms a K4, and correspond to two adjacent vertices, if V ′ forms a 4K1. If V ′

forms a clique then add an edge between Xi1 and Xi2, and if V ′ forms an independent set, then
remove the edge between Xi1 and Xi2. The vertices xis and xis are called literal vertices denoted
by a set L, which induces a clique, if V ′ is a clique, and induces an independent set, if V ′ is an
independent set.

• For each clause Ci of the form (ℓi1 ∨ ℓi2 ∨ ℓi3 ∨ ℓi4) in Φ, the clause gadget also named as Ci

consists of t− 4 copies of H denoted by Cij, for 1 ≤ j ≤ (t− 4). Let the four vertices introduced
(in the previous step) for the literals ℓi1, ℓi2, ℓi3, and ℓi4 be denoted by Li = {yi1, yi2, yi3, yi4}.
The adjacency among each of these Cijs and the literal vertices Li is in such a way that, taking
one vertex from each Cijs and the vertices in Li induces an H.

This completes the construction.

An example of the construction is shown in Figure 5 for a graph H given in Figure 4. Keeping
a module isomorphic to H guarantees that not all vertices in the module is present in a solution S
of GΦ (i.e., GΦ ⊕ S is H-free). The purpose of variable gadget Xi is to make sure that both xi and
xi are not placed in a solution S, so that we can assign TRUE to all literals corresponding to literal
vertices placed in S, to get a valid truth assignment for Φ. On the other hand, any truth assignment
assigning TRUE to at least two literals per clause makes sure that the set S formed by choosing literal
vertices corresponding to TRUE literals destroys copies of H formed by clause gadgets Ci and the
corresponding sets Li of literal vertices.

Figure 4: An example of a 5-connected, non-self-complementary, prime graph with a K4 (formed by
the lower four vertices)

C11 C12 C13 C14 C15

C16

X11

x1

X12

x1

X21

x2

X22

x2

X31

x3

X32

x3

X41

x4

X42

x4

X13

X15

X17

X19

X14

X16

X18

X110

X23

X25

X27

X29

X24

X26

X28

X210

X33

X35

X37

X39

X34

X36

X38

X310

X43

X45

X47

X49

X44

X46

X48

X410

C1

X1 X2 X3 X4

Figure 5: An example of Construction 2 for the formula Φ = C1 where C1 = x1 ∨ x2 ∨ x3 ∨ x4
corresponding to the graph H shown in Figure 4 with a K4. The lines connecting two rectangles
indicate that each vertex in one rectangle is adjacent to all vertices in the other rectangle. If there is
no line shown between two rectangles, then the vertices in them are non-adjacent, with the exceptions
– (i) all the vertices in a red rectangle (dashed) together form a clique; (ii) the rectangles in each green
rectangle (dashed) are adjacent.
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Lemma 3.7. Let Φ be a yes-instance of 4-SAT≥2 and ψ be a truth assignment satisfying Φ. Then
GΦ⊕S is H-free where S is the set of literal vertices whose corresponding literals were assigned TRUE
by ψ.

Proof. Let GΦ⊕S contain an H induced by A (say). SinceH is a prime graph and H is not isomorphic
to H, A ∩ Y ≤ 1 where Y is a module isomorphic to H. Thus, | A ∩Xij | is at most one. Therefore,
since {xi, xi} is not a subset of S, we obtain that Xi does not have an induced H in GΦ ⊕ S. Recall
that, the vertices in Xij (for 3 ≤ j ≤ t) are non-adjacent to V (G) \Xi, and H is 5-connected. This
implies that A ∩ (Xi \ {xi, xi}) = ∅.

Since Ci contains t − 4 sets of Hs, |Ci ∩ A| ≤ t − 4. Now assume that A contains vertices from
two clause gadgets Ci and Cj. Since the vertices in Ci are only adjacent to the four literal vertices
corresponding to the clause Ci, and H is 5-connected, removing the four literal vertices corresponding
to Ci disconnects the graph which is not possible –note that Ci and Cj are non-adjacent. Hence, A
contains vertices from at most one clause gadget Ci.

Note that L induces a Kn × nK1 in GΦ ⊕ S, if V ′ induces a clique, and induces a Kn + nK1 in
GΦ ⊕ S, if V ′ induces an independent set. Therefore, H is not an induced subgraph of the graph
induced by L in GΦ⊕S. Recall that the vertices in A∩C are from at most one clause gadget Ci, and
at most one vertex from each of the sets Cij in Ci is in A ∩ Ci . We know that Ci is non-adjacent to
all literal vertices corresponding to the literals not in the clause Ci, and H is 5-connected. Therefore,
A ∩ L = {yi,1, yi,2, yi,3, yi,4}. Since at least two vertices in A ∩ L is in S, the graph induced by A in
G⊕ S is not isomorphic to H.

Lemma 3.8. Let Φ be an instance of 4-SAT≥2. If GΦ⊕S is H-free for some S ⊆ V (GΦ), then there
exists a truth assignment satisfying Φ.

Proof. Let GΦ ⊕ S be H-free for some S ⊆ V (GΦ). We want to find a satisfying truth assignment of
Φ. Since each of the Cijs in Ci, for 1 ≤ i ≤ m and 1 ≤ j ≤ t− 4, induces an H, there is at least one
vertex in each Cij which is not in S. Then, if at least two vertices from Li are not in S, then there
is an induced H by vertices in Li and one vertex each from Cij \ S, for 1 ≤ j ≤ t − 4. Therefore, at
least two vertices from Li are in S. Next we prove that {xi, xi} is not a subset of S. For each Xij (for
3 ≤ j ≤ t), since each of them induces an H, at least one vertex is not in S. Then, if both xi and xi
are in S, then there is an H induced by xi, xi, and one vertex each from Xij \ S, for 3 ≤ j ≤ t. Now,
it is straight-forward to verify that assigning TRUE to every literal xi such that xi ∈ S, is a valid
satisfying truth assignment of Φ.

Now, Theorem 3.5 follows from Lemma 3.7 and Lemma 3.8.

4 Trees

By T we denote the set P ∪ T1 ∪ T2 ∪ T3 ∪ C, where P = {Px | 1 ≤ x ≤ 5}, T1 = {K1,x | 1 ≤ x ≤ 4},
T2 = {Tx,y | 1 ≤ x ≤ y ≤ 4}, T3 = {T1,0,1, T1,0,2} ∪ {Tx,y,z | x = 1, 1 ≤ y ≤ 4, z ≤ 5}, and C =
{C1,1,1, C1,1,2, C1,1,3, C1,2,2, C1,2,3, C2,2,2, C2,2,3}. These sets denote the paths, stars, bistars, tristars,
and subdivisions of claw not handled by our reductions.

We note that |P| = 5, |T1| = 4, |T2| = 10, |T3| = 22, and |C| = 7. But, a star graph K1,x is a path
in P if x ≤ 2, the bistar graph T1,1 is the path P4, the tristar graphs T1,0,1 is P5, and the subdivision
of claw C1,1,1 is the star graph K1,3, C1,1,2 is the bistar graph T1,2, C1,1,3 is the tristar graph T1,0,2,
and C1,2,2 is the tristar graph T1,1,1. Therefore, |T | = 40, and the tree of maximum order in T is T1,4,5
with 13 vertices. We prove the following theorem in this section.

Theorem 4.1. Let T be a tree not in T . Then SC-to-F(T ) is NP-Complete. Further, the problem
cannot be solved in time 2o(|V (G)|), unless the ETH fails.

This task is achieved in seven sections. In the first section, we prove that there is a linear reduction
from SC-to-F(T ′) to SC-to-F(T ), where T is a prime tree and T ′ is its internal tree. In the second
section, we deal with trees with at least 4 leaves and at least 3 internal vertices, and satisfying some
additional constraints. Then in third and fourth sections, we prove the hardness for bistars and tristars
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respectively, leaving behind a finite number of open cases. Fifth section proves the hardness for P6,
thereby leaving only one unsolved case (P5) among paths. Sixth section settles subdivions of claw
sans a finite number of cases. We combine all these results in seventh section to prove Theorem 4.1.

4.1 Removing leaves

In this section, with a very simple reduction, we prove that the hardness transfers from T ′ to T , where
T is a prime tree and T ′ is its internal tree. We use Construction 3 for the reduction. See Figure 6,
for an example of T and T ′.

Lemma 4.2. Let T be a prime tree and let T ′ be its internal tree. Then there is a linear reduction
from SC-to-F(T ′) to SC-to-F(T ).

(a) T ′ (b) T

Figure 6: An example of T ′ and T

T T T T

G′

G

Figure 7: An example of Construction 3

Construction 3. Let (G′, T ) be the input to the construction, where G′ is a graph and T is a prime
tree. The graph G is constructed from G′ as follows: for every vertex u of G′, introduce a T , denoted
by Wu in the neighbourhood of u. (See Figure 7 for an example.)

Lemma 4.3. If G′ ⊕ S′ ∈ F(T ′) for some S′ ⊆ V (G′), then G⊕ S′ ∈ F(T ).

Proof. Let a T be induced by a set A in G⊕S′. Note that T is a prime graph and T is not isomorphic
to T . Thus, Wu does not induce a T . For any vertex v ∈ Wu, the only neighbor of v in V (G) \Wu

is u. Hence A ∩ G′ is nonempty. Let u ∈ G′ be a vertex in A. Recall that the vertices in Wu are
the only neighbors of u in V (G) \ V (G′). Since T is a prime tree and Wu induces a module in G,
|A ∩Wu| ≤ 1. Thus, A ∩Wu cannot contain any internal vertex of T which implies that G′ ⊕ S′

contains a T ′. However, that is not possible according to the statement of the lemma.

Lemma 4.4. If G⊕ S ∈ F(T ) for some S ⊆ V (G), then G′ ⊕ S′ ∈ F(T ′), where S′ = S ∩ V (G′).

Proof. If G′ ⊕S′ contains a T ′ induced by A (say), then G⊕S will contain a T unless for at least one
vertex u ∈ A, all vertices of Wu belong to S. However, in that case we will have a T induced by Wu

in G⊕ S, which is a contradiction.

Now, Lemma 4.2 follows from Lemma 4.3 and Lemma 4.4.

4.2 Trees with at least 4 leaves and 3 internal vertices

In this section, we prove hardness results for SC-to-F(T ), when T is a tree with at least 4 leaves
and at least 3 internal vertices, and satisfying some additional constraints. The reduction is from
k-SAT≥2.
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Theorem 4.5. Let T be a tree with at least 4 leaves and at least 3 internal vertices. Let T ′ be the
internal tree of T . Assume that the following properties are satisfied.

(i) If T ′ is a star graph, then at least one of the following conditions are satisfied:

(a) every leaf of T ′ has at least two leaves of T as neighbors, or

(b) the center of the star T ′ has no leaf of T as neighbor, or

(c) T is either a C1,2,2,2, or a C1,2,2,2,2.

(ii) There are no two adjacent vertices of degree 2 in T such that neither of them is adjacent to any
leaf of T .

Then SC-to-F(T ) is NP-Complete. Further, the problem cannot be solved in time 2o(|V (G)|), unless
the ETH fails.

Let T be a tree and T ′ be its internal tree. Assume that T satisfies the conditions of Theorem 4.5.
Let T has p internal vertices and k leaves. Then, T has t = p+ k vertices, and T ′ has p vertices. Let
V (T ) = {v1, v2, . . . , vt}, where {v1, v2, . . . , vp} forms the internal vertices. Without loss of generality,
we assume that v1 and v2 are adjacent. Let M = {M1,M2, . . . ,Mt′} be the modular decomposition of
T , where t′ = k′+p, where k′ is the number of modules containing leaves. Let {M1,M2, . . . ,Mp} forms
the modules (Mi = {vi}, for 1 ≤ i ≤ p) containing the internal vertices, and {Mp+1,Mp+2, . . . ,Mt′}
forms the modules containing leaves. Let r be the maximum size of modules containing leaves, i.e.,
r = maxi=t′

i=p+1{|Mi|}. Let QT be the quotient tree of T . By R, we denote the graph QT [rKr], i.e., R

is the graph obtained from QT by replacing each vertex by a disjoint union of r copies of Kr.
We use Construction 4 for the reduction from k-SAT≥2. The reduction is very similar to the

reduction used to handle 5-connected graphs in Section 3.2.

(a) T (b) T ′

M1

M2 M3

M4 M5

(c) QT

Figure 8: An example of a Tree T (8a) which satisfies the properties of Theorem 4.5, its internal tree T ′

(8b), and its quotient graph QT (8c) in which five modules of T are represented with circles (dotted).
The bold circles represent the vertices in T . The lines connecting two circles (dotted) indicate that
each vertex in one circle is adjacent to all vertices in the other circle.

Construction 4. Let Φ be a k-SAT formula with n variables X1,X2, · · · ,Xn, andm clauses C1, C2, · · · ,
Cm. We construct the graph GΦ as follows.

• For each variable Xi in Φ, the variable gadget, also named Xi, consists of two special sets
Xi1 = {xi},Xi2 = {xi}, and t′ − 2 other sets Xi3,Xi4, . . . ,Xit′ , where each of the set in

{Xi3,Xi4, . . . ,Xit′} induces an R. We have Xi =
⋃j=t′

j=1 Xij . The sets Xia and Xib are adjacent
if and only if Ma and Mb are adjacent. We remove the edge between Xi1 and Xi2 to end the
construction of the variable gadget (recall that v1 and v2 are adjacent in T ). Let X =

⋃i=n
i=1 Xi.

The vertices xi and xi are called literal vertices, and L is the set of all literal vertices. The set
L forms an independent set of size 2n.

• For each clause Ci in Φ of the form (ℓi1 ∨ ℓi2 ∨ ℓi3 ∨ . . . ∨ ℓik), the clause gadget, also named
Ci, consists of p copies of T s called Ci1, Ci2, . . . Cip. The set of union of all clause gadgets is
denoted by C. Let the k vertices introduced (in the previous step) for the literals ℓi1, ℓi2, ℓi3, . . . ℓik
be denoted by Li = {yi1, yi2, yi3, . . . yik}. Make the adjacency among these sets Cijs and the
corresponding literal vertices in Li in such a way that, taking one vertex from each set Cij along
with the literal vertices Li induces a T , where the vertices in Li correspond to the k leaves of T .
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We observe that Ci is obtained from the internal tree of T where each vertex is replaced by T .
In addition to this, every vertex in Ci is adjacent to all literal vertices corresponding to literals
not in Ci.

• For all i 6= j, the set Ci is adjacent to the set Cj .

• The vertices in Xi \ {xi, xi} are adjacent to V (G) \Xi, for 1 ≤ i ≤ n.

This completes the construction of the graph GΦ (see Figure 9 for an example).

C11

C12 C13

X11

x1

X12

x1

X21

x2

X22

x2

X31

x3

X32

x3

X41

x4

X42

x4

X11

X13

X15 X21

X23

X25 X31

X33

X35 X41

X43

X45

C1

X1 X2 X3 X4

Figure 9: An example of Construction 4 for the formula Φ = C1 where C1 = x1 ∨ x2 ∨ x3 ∨ x4
corresponding to the tree T shown in Figure 8. The bold lines (respectively dashed lines) connecting
two rectangles indicate that each vertex in one rectangle is adjacent (respectively non-adjacent) to all
vertices in the other rectangle. If there is no line shown between two rectangles, then the vertices in
them are adjacent, with an exception – all the vertices in the red rectangle (dashed) together form an
independent set. Similarly, if there is no line shown between two rectangles in the dotted rectangles,
then the rectangles in them are non-adjacent.

Observation 4.6 says that T cannot be an induced subgraph of any of the Xijs and any of the Cis,
and that any solution of GΦ leaves an independent set of size r untouched in Xij , which induces an
R.

Observation 4.6. (i) T is not an induced subgraph of R.

(ii) T is not an induced subgraph of Ci for any 1 ≤ i ≤ m.

(iii) Let S be a subset of vertices of GΦ such that GΦ⊕S is T -free. Then there is an independent set
of size r in Xij \ S for any 1 ≤ i ≤ n and 3 ≤ j ≤ t′.

Proof. To prove (i) by contradiction, assume that A induces a T in QT [rKr]. Clearly, there is no
induced copy of T in rKr. Therefore, A must have nonempty intersection with more than one copy
of rKr. Since QT and QT [rKr] have t

′ modules each, A must have nonempty intersection with every
copy of rKr. Then the quotient graph of the graph induced by A is QT , which is not isomorphic to
QT , as no nontrivial tree is self-complementary. Therefore, A does not induce T .

To prove (ii) by contradiction, assume that A induces a T in Ci. We recall that Ci represents the
internal tree of T , where each vertex is replaced by T . Since no nontrivial tree is self-complementary,
A must have nonempty intersection with at least two sets Cij and Ciℓ. Then, the graph induced by A
has only at most p modules, which contradicts with the fact that T has t′ > p modules.

To prove (iii) by contradiction, assume that there is no independent set of size r in Xij untouched
by S. This implies that, for every copy of rKr in Xij, one clique of size r is in S. Let A be a union of
such cliques, one from each copy of rKr. The set A induces QT [Kr] in GΦ, and QT [rK1] in GΦ ⊕ S.
Since T is an induced subgraph of QT [rK1], we obtain a contradiction.
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Before proving the forward direction of the correctness of the reduction, we handle a few cases in
the forward direction separately.

Lemma 4.7. Let Φ be a yes-instance of k-SAT≥2 and ψ be a truth assignment satisfying Φ. Let S
be the set of literal vertices whose corresponding literals were assigned TRUE by ψ. Then there exists
no set A such that A induces a T in GΦ ⊕S, and A ⊆ C ∪L and |A \ (Ci ∪Li)| = 1, and |A∩Ci| ≥ 2
(for some 1 ≤ i ≤ n).

Proof. Assume for a contradiction that there exists such a set A. Let A \ (Ci ∩ Li) = {w}. Clearly,
A ∩ Ci is an independent set - otherwise, there is a triangle formed by w and two adjacent vertices
in A ∩ Ci. Further, w is an internal vertex of the tree induced by A. We recall that the independent
number of a tree T is at most |V (T )| − 1, which is achieved when the tree is a star graph. Since Ci

corresponds to the internal tree T ′ (having p vertices) of T , we obtain that A ∩ Ci can have vertices
from only p − 1 modules, say Ci1, Ci2, . . . , Cip−1 of Ci, and A has nonempty intersection with p − 1
sets in Ci when T ′ is a star graph. Since A ∩ Li induces a subgraph of K2 + (k − 2)K1 (at least
two vertices of Li are in S), all the leaves of the tree induced by A cannot be from Li. Therefore,
at least one leaf is from Ci. Since Li can contribute only one internal vertex, p − 2 internal vertices
of the tree must be from Ci (the remaining internal vertex is w). This implies that A has nonempty
intersection with p − 1 sets say Ci1, Ci2, . . . , Cip−1 (a leaf and an internal vertex cannot come from a
set Ciℓ, which is a module). Hence the internal tree T ′ of T is a star graph. Let x, x′ ∈ A∩Li be such
that x is the internal vertex which is adjacent to x′. The vertex x cannot get a leaf from Ci as w is
adjacent to every vertex in Ci. Then x is an internal vertex of the tree having a single leaf (x′) of T
as neighbor. Further, the center vertex (w) of the internal star has a leaf of T (from Ci) as neighbor.
Then, by the assumption in the statement of Theorem 4.5, T is either C1,2,2,2 or C1,2,2,2,2. Let T be
C1,2,2,2. Let Ci1 correspond to the root of the internal tree and Ci2, Ci3, and Ci4 correspond to the
leaves of the internal tree T ′ of T . Let yi1, yi2, yi3, and yi4 correspond to the leaves of T adjacent to
Ci1, Ci2, Ci3, and Ci4 respectively. Clearly, A contains ci2 ∈ Ci2, ci3 ∈ Ci3, ci4 ∈ Ci4, and all vertices
in Li = {yi1, yi2, yi3, yi4}. Then, all vertices in A ∩ Ci are internal vertices of the tree, which is a
contradiction. The case when T is C1,2,2,2,2 can be handled in a similar way.

Lemma 4.8. Let Φ be a yes-instance of k-SAT≥2 and ψ be a truth assignment satisfying Φ. Let S
be the set of literal vertices whose corresponding literals were assigned TRUE by ψ. Then there exists
no set A such that A induces a T in GΦ ⊕ S, and A ⊆ Ci ∪ Cj ∪ L, and |A ∩ Ci| = |A ∩ Cj| = 1 (for
some 1 ≤ i 6= j ≤ n).

Proof. Assume that A ∩ Ci = {ci} and A ∩ Cj = {cj}. Since the rest of the vertices in A are from L,
there is at most one internal vertex from L ∩A. If there are no internal vertices from A ∩ L, then T
has only at most two internal vertices, a contradiction. Assume that there is one internal vertex from
L∩A. Then A induces a tristar graph. Without loss of generatlity, assume that ci is the center of the
internal P3 and x is the internal vertex from L, and x′ ∈ L be the leaf adjacent to x. Assume that
ci has no attached leaf, i.e., T is the tristar graph T1,0,k−1. Since none of the leaves are adjacent to
ci, all k leaves are from Li, i.e., Li ⊆ A (recall that ci is adjacent to all literal vertices correspond to
literals not in Ci). This is a contradiction, as there is an edge induced by Li in GΦ ⊕ S. Therefore, ci
has some attached leaves in the tree induced by A. Hence, by the condition (i) of Theorem 4.5, T is
either C1,2,2,2 or C1,2,2,2,2. These cases give contradictions as then there are more than three internal
vertices.

Lemma 4.9. Let Φ be a yes-instance of k-SAT≥2 and ψ be a truth assignment satisfying Φ. Let S
be the set of literal vertices whose corresponding literals were assigned TRUE by ψ. Then T is not an
induced subgraph of the graph induced by Ci ∪ Li in GΦ ⊕ S, for any 1 ≤ i ≤ n.

Proof. Assume that A ⊆ Ci ∪ Li induces a T in GΦ ⊕ S. By Observation 4.6(ii), A is not a subset
of Ci. Clearly, A ∩ Li can have at most one edge, as L induces Kn + nK1 in GΦ ⊕ S. No other
vertex in A ∩ Li other than the end vertices of this edge can be an internal vertex of the T induced
by A (by construction, no vertex in Li has two modules Cij and Ciℓ as neighbors as the vertices in Li

correspond to the leaves of T ). Therefore, at least p− 2 internal vertices are from A ∩ Ci.
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Since Li cannot contribute all leaves (at least two vertices in Li are in S), at least one leaf must
be from Ci. Therefore, Ci contributes only at most p − 1 internal vertices. Therefore, there are two
vertices u, v ∈ Li ∩ A such that uv is an edge in GΦ ⊕ S. Assume that Ci contributes exactly p − 1
internal vertices. Then A has nonempty intersection with all modules Cij in Ci. Then, the edge uv in
A ∩ Li along with the path through A∩Ci from the neighbor of u in A ∩Ci and the neighbor of v in
A ∩ Ci forms a cycle, which is a contradiction.

Therefore, exactly p−2 internal vertices are from Ci. Then, both u and v must be internal vertices.
Then, only at most k − 2 leaves are from A ∩ Li. Let Cia and Cib be the two modules in Ci which
do not contribute internal leaves. Each of Cia and Cib contributes only at most two leaf vertices (T
is 3K1-free). If both Cia and Cib contribute leaves, then there is a cycle as described in the previous
case. Therefore, exactly k−2 leaves are from A∩Li and two leaves are from one module, say Cia. Let
w1 and w2 be the leaves contributed by Cia. Assume that v is adjacent Cia. Let u

′ be the neighbor of
u, other than v, in the tree. Let u′ ∈ Ciℓ. We note that a 6= ℓ (otherwise, there is a triangle formed by
u, v, and a vertex in A ∩ Cia). Let T

′′ be the tree induced by A. By leaf-degree of a vertex in a tree,
we mean the number of leaves adjacent to that vertex in the tree. The leaf-degree sequence of a tree is
the non-decreasing sequence of leaf-degrees of vertices of the tree. We claim that there is a mismatch
in the leaf-degree sequences of T and T ′′, which provides a contradiction. We know that the set U
containing one vertex each from all modules, except from Cia, Cib, and Ciℓ, two vertices w1, w2 ∈ Cia,
u′ ∈ Ciℓ, and the vertices in Li induces T

′′ in GΦ ⊕ S. Further, Li ∪ U ∪ {u′, w1, cib} induces a T in
GΦ, where cib is any vertex in Cib. Every vertex in U ∪ (Li \ {u, v}) has the same leaf-degree in T and
T ′′. The leaf-degree of u′ is one less in T ′′ than that in T (u is not a leaf in T ′′). The leaf-degree of
u is 0 in both T and T ′′. The leaf-degree of v is 0 in T and 2 in T ′′ (v is a leaf in T , and is adjacent
to 2 leaves - w1 and w2 - in T ′′). The leaf-degree of cia is 1 in T (v is the only leaf, otherwise there
will be a C4 in T ′′ induced by w1, w2, v, and the other leaf) and w1 and w2 have leaf-degree 0 in T ′′.
The leaf-degree of cib is 0 in T (if it is adjacent to some leaf, then that leaf in Li has no neighbor in
T ′′, which is not true). This implies that the leaf-degree sequences of T and T ′′ are not the same (see
Figure 10a for an example).

w1 w2u′
Cil

w1 w2

Cia

w1 w2

w1 w2

Cib

u v

R

Li

(a)

w1 w2u′
Cil

w1 w2

Cia

w w2

u v

R

Li

(b)

Figure 10: The cases discussed in Lemma 4.9, when Ci contributes exactly two leaves

Therefore, there is a vertex w ∈ A ∩ Ci which is adjacent to the two leaf vertices from Cia (see
Figure 10b for an example). Then u and v form two adjacent internal vertices with degree 2 such that
neither u nor v is adjacent to a leaf of T , which contradicts with condition (ii) of Theorem 4.5.

With Lemma 4.7, Lemma 4.8, and Lemma 4.9, we are ready to prove the forward direction of the
reduction.

Lemma 4.10. Let Φ be a yes-instance of k-SAT≥2 and ψ be a truth assignment satisfying Φ. Then
GΦ ⊕S ∈ F(T ) where S is the set of literal vertices whose corresponding literals were assigned TRUE
by ψ.
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Proof. Let GΦ ⊕ S contain a T induced by A (say). We prove the lemma with the help of a set of
claims.

Claim 1: A is not a subset of Xi, for 1 ≤ i ≤ n.
Assume that A is a subset of Xi. By Observation 4.6(i), A is not a subset of Xij , for 1 ≤ j ≤ t′.

Therefore, A has nonempty intersection with at least two sets Xij and Xiℓ. Since Xi induces a
graph with at most t′ modules, and T has t′ modules, A has nonempty intersection with all sets Xij

(1 ≤ j ≤ t′). Since {xi, xi} is not a subset of S, we obtain that the quotient graph of the graph
induced by A, which is a forest of two trees, is not isomorphic to QT , which is a contradiction.

Claim 2: Let X ′
i = Xi \ {xi, xi} and Xi = V (GΦ) \Xi. If |A∩X ′

i| ≥ 1, then A∩Xi = ∅. Similarly,
if |A ∩Xi| ≥ 1, then A ∩X ′

i = ∅.
For a contradiction, assume that A contains at least one vertex from X ′

i and at least one vertex
from Xi. Since X

′
i and Xi are adjacent, either |A ∩X ′

i| = 1 or |A ∩Xi| = 1.
Assume that A∩X ′

i = {u}. Since T has at least 3 internal vertices and (A∩X ′
i)∪ (A∩Xi) induces

a star graph, both xi and xi are in A. Then T is the tristar graph T1,t−5,1, which is a contradiction
as condition (i) of Theorem 4.5 is not satisfied. Assume that A ∩ Xi = {u}. Then with the same
argument as given above, we obtain that the graph induced by A is T1,t−5,1, which is a contradiction.

Claim 3: A is not a subset of L, the set of all literal vertices.
This follows from the fact that L induces a Kn + nK1 in GΦ ⊕ S.
Claim 4: A cannot have nonempty intersections with three distinct clause gadgets Ci, Cj, and Cℓ.
Claim 5: There exists no Ci and Cj (i 6= j) such that |A ∩ Ci| ≥ 2 and |A ∩ Cj| ≥ 2.
Claim 4 and 5 follow from the fact that Ci and Cj are adjacent for i 6= j and T does have neither

a triangle nor a C4.
Claim 6: A is not a subset of C.
For a contradiction, assume that A ⊆ C. By Claim 4, A cannot have nonempty intersections

with three distinct clause gadgets Ci, Cj , and Cℓ. By Observation 4.6, A cannot be a subset of Ci.
Therefore, A has nonempty intersection with exactly two clause gadgets Ci and Cj in C. Then A
induces a star graph, which is a contradiction as T has at least 3 internal vertices.

Claim 7: If |A ∩ Ci| ≥ 2 and A ∩ Cj 6= ∅ (i 6= j), then (A ∩ L) ⊆ Li.
Let u be a vertex in A ∩ L \ Li. Then there is a C4 formed by u and two vertices in A ∩ Ci and

one vertex from A ∩ Cj.
We are ready to prove the lemma. By Claim 1, A is not a subset of Xi. By Claim 2, A cannot

have vertices from both Xi \ {xi, xi} and Xi. This implies that A ⊆ L ∪C. By Claim 3, A cannot be
a subset of L and by Claim 6, A cannot be a subset of C. Therefore, A contains vertices from both L
and C. By Claim 4, A cannot have nonempty intersections with three distinct clause gadgets Ci, Cj

and Cℓ. Therefore, A ∩ C ⊆ (Ci ∪ Cj). Assume that A has nonempty intersection with both Ci and
Cj . By Claim 5, we can assume that |A ∩ Cj| = 1 and |A ∩ Ci| ≥ 1. Assume that |A ∩Ci| ≥ 2. Then
by Claim 7, (A ∩ L) ⊆ Li. Then by Lemma 4.7, A cannot induce a T . Let |A ∩ Ci| = |A ∩ Cj | = 1.
Then by Lemma 4.8, A cannot induce a T .

Assume that A ∩ C ⊆ Ci for some clause gadget Ci. Assume that A ∩ C has exactly one vertex.
Then the rest of the vertices in A are from L and only one from L can be an internal vertex. Therefore,
T has only at most two internal vertices, a contradiction. Therefore, A∩Ci has at least two vertices.
If there are at least two vertices in A \ Li, then those two vertices along with two vertices in A ∩ Ci

forms a C4. Therefore, A ∩ (L \ Li) has at most one vertex. Assume that |A ∩ (L \ Li)| = 1. Then,
by Lemma 4.7, A cannot induce a T . Assume that A ⊆ Ci ∪ Li. Then we get a contradiction by
Lemma 4.9.

The backward direction of the proof of correctness of the reduction is easy.

Lemma 4.11. Let Φ be an instance of k-SAT≥2. If GΦ⊕S ∈ F(T ) for some S ⊆ V (GΦ), then there
exists a truth assignment satisfying Φ.

Proof. Let GΦ ⊕ S ∈ F(T ) for some S ⊆ V (GΦ). We want to find a satisfying truth assignment of Φ.
We know that each of the sets Cij , for 1 ≤ i ≤ m and 1 ≤ j ≤ p, induces a T . Therefore, each such
set has at least one vertex not in S. Hence at least two vertices in Li must belong to S, otherwise
there is an induced T by vertices in Li and one vertex each from Cij \ S, for 1 ≤ j ≤ p.
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Similarly, each set Xij , for 1 ≤ i ≤ n and 3 ≤ j ≤ t′, induces a QT [rKr]. By Observation 4.6(iii),
there is an independent set of size r untouched by S in Xij . Assume that both xi and xi are in S.
Then there is a copy of QT [rK1] in GΦ⊕S, induced by {xi, xi} and one copy of rK1 from each Xij \S
(for 3 ≤ j ≤ t′). Since T is an induced subgraph of QT [rK1], we get a contradiction. Therefore, both
{xi, xi} is not a subset of S. Now, it is straight-forward to verify that assigning TRUE to each literal
corresponding to the literal vertices in S is a satisfying truth assignment for Φ.

Now, Theorem 4.5 follows from Lemma 4.10 and Lemma 4.11. A special case of tristar graphs
comes as a corollary of Theorem 4.5.

Corollary 4.12. Let x, y, z be integers such that x ≤ z and either of the following conditions is
satisfied.

(i) x = 1, y = 0, z ≥ 3, or

(ii) x ≥ 2

Then SC-to-F(Tx,y,z) is NP-Complete. Further, the problem cannot be solved in time 2o(|V (G)|),
unless the ETH fails.

4.3 Bistar graphs

In this section, we prove the hardness for SC-to-F(T ), where T is a bistar graph Tx,y, where y ≥ 5.
Recall that, by our convention, x ≤ y. The reduction is from SC-to-F(K1,y).

Theorem 4.13. Let x, y be two integers such that 1 ≤ x ≤ y and y ≥ 5. Then SC-to-F(Tx,y) is
NP-Complete. Further, the problem cannot be solved in time 2o(|V (G)|), unless the ETH fails.

Lemma 4.14. Let x, y be two integers such that 1 ≤ x ≤ y and y ≥ 3. Then there is a linear reduction
from SC-to-F(K1,y) to SC-to-F(Tx,y).

Let Tx,y be a bistar graph such that x and y satisfy the constraints mentioned in Lemma 4.14.
Clearly, Tx,y has t = x+ y+2 vertices. Construction 5 is used for the reduction from SC-to-F(K1,y)
to SC-to-F(Tx,y).

Construction 5. Let (G′, x, y) be the input to the construction, where G′ is a graph and x and y
are integers such that 1 ≤ x ≤ y and y ≥ 3. Let t = x + y + 2. For every vertex u of G′, introduce
x + 1 sets of Ky denoted by Yu1

, Yu2
, . . . , Yux+1

, out of which Yux+1
is in the neighbourhood of u and

the sets Yu1
, Yu2

, . . . , Yux are in the neighbourhood of Yux+1
. Further, for each set Yui

, for 1 ≤ i ≤ x
introduce a set Uui

, which contains x+2 sets of Tx,ys denoted by Uij for 1 ≤ j ≤ x+2. The adjacency
among these sets Uij and Yui

is in such a way that taking one vertex from each set Uij along with the
complement of Yui

together induces a Tx,y. Introduce a set of vertices Uux+1
which contains x+1 copies

of Tx,y denoted by U(x+1)1, U(x+1)2, . . . U(x+1)(x+1). The edges from U(x+1)js are in such a way that,
taking the complement of Yux+1

along with one vertex from Yux, and one vertex each from U(x+1)js
induces a Tx,y. Further, make Uux adjacent to Uux+1

. Let Wu be the set of all new vertices created for

a vertex u ∈ V (G′), i.e., Wu =
⋃i=x+1

i=1 (Yui
∪ Uui

). We note that there are no edges between Wu and
Wu′ for two vertices u and u′ in G′. This completes the construction of the graph G (see Figure 11
for an example).

The purpose of Uui
is to make sure that not all vertices in Yui

is in a solution S of G, so that if
at all there is a K1,y induced in G′ ⊕ (S ∩ V (G′)), we get a contradiction, as then there will be a Tx,y
induced in G⊕ S by the vertices in the K1,y and one vertex each, which is not in S, from the Yui

s.

Lemma 4.15. If G′ ⊕ S′ ∈ F(K1,y) for some S′ ⊆ V (G′), then G⊕ S′ ∈ F(Tx,y).

Proof. Let a Tx,y be induced by a set A in G⊕ S′. Assume that both the x-center (a vertex adjacent
to x leaves) a and the y-center (a vertex adjacent to y leaves) b of the Tx,y are from G′. Since each
vertex in G′ is adjacent to only a clique outside G′, at most one leaf of a and at most one leaf of b
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Yu3

Yu2
Yu1

G′

Uu1
Uu2

Uu3 G

Figure 11: An example of Construction 5 for x = 2 and y = 5. Each rectangle (bold) represents a
Tx,y and each triangle represents a K5. The lines connecting two entities (rectangle/triangle/circle)
indicate that vertices corresponding to one entity is adjacent to the vertices representing the other
entity.

are from outside G′. Therefore, G′ ⊕ S′ has an induced Tx−1,y−1, which contains an induced K1,y, a
contradiction. Let one of the centers, say u, be from V (G′), and the other, say u′, is from Wu. Then
u′ ∈ Yux+1

. Since the size of the maximum independent set in the neighborhood of any vertex in Yux+1

in Wu is x, we obtain that there is a K1,y induced in G′ ⊕ S′, which is a contradiction. Assume that
both a and b are from the new vertices created in G. Since Wu and Wu′ are not adjacent for two
vertices u, u′ ∈ V (G′), we obtain that both a and b are from Wu for some vertex u ∈ V (G′). Let one
of the centers, say v of Tx,y is from Yux+1

. Then the other center, say v′ is from any of the sets Yuj

for 1 ≤ j ≤ x. We observe that for every vertex w ∈ Yuj
, the size of the maximum independent set

in the neighborhood of w in Wu \ Yux+1
is 2 < y (recall that each Ujℓ induces a T which is 3K1-free).

Therefore, v′ = a, the x-center of Tx,y, and v is the y-center of the Tx,y. Further, x ≤ 2. But, the size
of the maximum independent set in the neighborhood of v, excluding the clique containing v′, is x.
This implies that x = y ≤ 2, which is a contradiction. Therefore, both a and b are from Wu \ Yux+1

.
It is straight-forward to verify that there are no two adjacent vertices a, b in Wu \ Yux+1

, and an
independent set I of size x + y in Wu \ {a, b} such that a is adjacent to and b is non-adjacent to x
vertices in I, and b is adjacent to and a is non-adjacent to y vertices in I.

The converse of the lemma turns out to be true as well.

Lemma 4.16. If G⊕S ∈ F(Tx,y) for some S ⊆ V (G), then G′⊕S′ ∈ F(K1,y), where S
′ = S ∩V (G).

Proof. We observe that for every vertex u, set Uij induces a Tx,y. Therefore, S cannot contain all
the vertices in Uij . If Yui

, for 1 ≤ i ≤ x, is a subset of S, then Yui
and one vertex each from Uij \ S

(for 1 ≤ j ≤ x + 2) induce a Tx,y in G ⊕ S. Therefore, at least one vertex of Yui
is not in S. If

Yux+1
is a subset of S, then Yux+1

and one vertex from Yux \ S, and one vertex each from U(x+1)j \ S
(for 1 ≤ j ≤ x + 1) induce a Tx,y. Therefore, at least one vertex of Yux+1

is not in S. Assume that
there is a K1,y induced by a set A in G′ ⊕ S′. Then, A along with one vertex each from Yuj

\ S, for
1 ≤ j ≤ x+ 1, induce a Tx,y in G⊕ S, which is a contradiction.

Now, Lemma 4.14 follows from Lemma 4.15 and Lemma 4.16. Further, Theorem 4.13 follows from
Lemma 4.14 and Proposition 2.3.

4.4 Tristar graphs

Recall that, in Section 4.2, as a corollary of the main result we have resolved some cases of tristar
graphs: we proved that SC-to-F(Tx,y,z) is hard if x ≥ 2 or if x = 1, y = 0, z ≥ 3. In this section, we
handle the rest of the cases when x = 1 and y ≥ 1, except for a finite number of cases. First we give
a linear reduction from SC-to-F(Ty,z−1) to SC-to-F(Tx,y,z). This will take care of the cases when
y ≥ 5 or z ≥ 6 (recall that Ty,z−1 is hard if y ≥ 5 or z ≥ 6). But, for the reduction to work, there is an
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additional constraint that z ≥ 3. So, to handle the case when z ≤ 3, we introduce another reduction
which is from SC-to-F(K1,y) and does not have any constraint on z. Thus, the main result of this
section is the following.

Theorem 4.17. Let 1 ≤ x ≤ z, and y ≥ 0 be integers such that y ≥ 5 or z ≥ 6. Then SC-to-

F(Tx,y,z) is NP-Complete. Further, the problem cannot be solved in time 2o(|V (G)|), unless the ETH
fails.

First we introduce the reduction from SC-to-F(Ty,z−1) to SC-to-F(Tx,y,z).

Lemma 4.18. Let x, y, z be integers such that x = 1, y ≥ 1, and z ≥ 3. Then there is a linear
reduction from SC-to-F(Ty,z−1) to SC-to-F(Tx,y,z).

Let T be a tristar graph Tx,y,z satisfying the properties stated in Lemma 4.18. Construction 6 is
used for the reduction from SC-to-F(Ty,z−1) to SC-to-F(Tx,y,z). The reduction is similar to that
used for bistars, but simpler.

Construction 6. Let (G′, y, z) be the input to the construction, where G′ is a graph, y ≥ 1, and
z ≥ 3 are integers. Let t = y + z + 4. For every vertex u of G′, introduce a Kz, denoted by Ku, in
the neighbourhood of u. Further, introduce t − z copies of T denoted by Xui

, for 1 ≤ i ≤ t − z, in
the neighbourhood of Ku. The union of Xui

, for 1 ≤ i ≤ x, is denoted by Xu. The adjacency among
these Xui

s and Ku is in such a way that taking z vertices from the complement of Ku and one vertex
each from Xui

s induces a T . Let Wu denote the set of all vertices introduced for a vertex u in G′,
i.e., Wu = Ku ∪Xu. We observe that Wu and Wv are non-adjacent for any two vertices u, v ∈ V (G′).
This completes the construction of the graph G (see Figure 12 for an example).

-

v

q r s

u

p

KvKu

Kp Kq Kr Ks

G′

Xu Xv

Xp

Xq

Xs

Xr

G

Figure 12: An example of Construction 6 with x = 1 and y = 1 and z = 4. Each bold rectangle
represents a Tx,y,z and each triangle represents a K4. The lines connecting two entities (rectan-
gle/triangle/circle) represents all possible edges between the vertices in those entities.

Lemma 4.19. If G′ ⊕ S′ ∈ F(Ty,z−1) for some S′ ⊆ V (G′), then G⊕ S′ ∈ F(Tx,y,z).

Proof. Let a Tx,y,z be induced by a set A in G ⊕ S′. Let a, b, c be the x-center, y-center, and the
z-center, respectively of the Tx,y,z induced by A. Assume that a, b, c ∈ V (G′). Since a, b, and c get
only at most one leaf from Wa, Wb, and Wc respectively, there is a Ty,z−1 in G′ ⊕ S′. Assume that
a, b ∈ V (G′) and c is from Wb. Then, c can have at most two leaves from Xb, which is a contradiction.
The case when b, c ∈ V (G′) and a ∈Wb gives a contradiction as there is a Ty,z−1 in G′ ⊕ S′. Assume
that only a is from G′ and b, c are from Wa. Then b does not get any leaf, which means that y = 0,
which is a contradiction. The case when c is from G′ and a, b are from Wa can be handled in a similar
way. Note that it is not possible that only b, among the centers, is from G′, as the neighborhood of
b in Wb is a clique. Assume that a, b, c ∈ Wu for some vertex u in G′. Then A must be subset of
{u} ∪Ku ∪Xu for some u ∈ G′. It is straight-forward to verify that there is no induced Tx,y,z in the
graph induced by {u} ∪Ku ∪Xu in G⊕ S′. This completes the proof.

16



The converse of the lemma turns out to be true as well.

Lemma 4.20. If G ⊕ S ∈ F(Tx,y,z) for some S ⊆ V (G), then G′ ⊕ S′ ∈ F(Ty,z−1), where S′ =
S ∩ V (G′).

Proof. Since each Xui
induces a Tx,y,z, at least one of its vertices is not in S. Therefore, at least one

vertex of Ku is not in S, otherwise, the complement of Ku along with one vertex each from Xui
\ S

induces a Tx,y,z. Then, if G′ ⊕ S′ contains a Ty,z−1 induced by a set A (say), then there is a Tx,y,z
in G ⊕ S induced by A along with one vertex each from Xa \ S,Xb \ S, and Xc \ S, where b and c
are the y-center and (z − 1)- center respectively of Ty,z−1 and a is one of the leaf of b in Ty,z−1. This
completes the proof.

Lemma 4.18 follows from Lemma 4.19 and Lemma 4.20. Now, we introduce the reduction from
SC-to-F(K1,y) to SC-to-F(Tx,y,z).

Lemma 4.21. Let x, y, z be integers such that 1 ≤ x ≤ z, y ≥ 3. Then there is a linear reduction from
SC-to-F(K1,y) to SC-to-F(Tx,y,z).

Let Tx,y,z be a tristar graph satisfying the properties stated in Lemma 4.21. Construction 7 is used
for the reduction.

Construction 7. Let (G′, x, y, z) be the input to the construction, where G′ is a graph, and z ≥ x ≥ 1
and y ≥ 3, are integers. Let t = x+ y + z + 3. For every vertex u of G′, introduce two Kys, denoted
by Pu1 and Pu2, in the neighbourhood of u. Further, introduce x copies of Tx,y,z denoted by Xui

, for
1 ≤ i ≤ x, in the neighbourhood of Pu1, and z copies of Tx,y,z denoted by Zui

, for 1 ≤ i ≤ z, in the
neighbourhood of Pu2. The union of Xui

, for 1 ≤ i ≤ x, is denoted by Xu, and the union of Zui
s,

for 1 ≤ i ≤ z is denoted by Zu. Introduce a set X ′
u which contains t− y copies of Tx,y,zs, denoted by

X ′
ui

for 1 ≤ i ≤ t− y. The adjacency among these X ′
ui
s is in such a way that taking y vertices from

the complement of Pu1 and one vertex each from X ′
ui
s induces a Tx,y,z. Similarly, introduce a set Z ′

u

which contains t − y copies of Tx,y,z, denoted by Z ′
ui
, for 1 ≤ i ≤ t − y. The adjacency among these

Z ′
ui
s is in such a way that taking y vertices from the complement of Pu2 and one vertex each from Z ′

ui
s

induces a Tx,y,z. Further, Xu is adjacent to X ′
u and Zu is adjacent to Z ′

u. Let Wu denote the set of
all vertices introduced for a vertex u in G′, i.e., Wu = Pu1 ∪Pu2 ∪Xu ∪Zu ∪X

′
u ∪Z

′
u. This completes

the construction of the graph G (see Figure 13 for an example).

Pu2Pu1

G′

ZuXu Z ′
uX ′

u

G

Figure 13: An example of Construction 7 with x = 2, y = 5, and z = 2. Each bold rectangle represents
a Tx,y,z and each triangle represents a K5. The lines connecting two entities (rectangle/triangle/circle)
indicate the existence of all possible edges between the vertices of the entities.

It is straight-forward to verify that the following observation holds true due to the adjacency
between Xu and X ′

u, and between Zu and Z ′
u.

Observation 4.22. Let u be any vertex in G′. Then there is no P4 induced by vertices in Wu such
that at least one of the internal vertex of the P4 is from either Pu1 or Pu2.
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Lemma 4.23. If G′ ⊕ S′ ∈ F(K1,y) for some S′ ⊆ V (G′), then G⊕ S′ ∈ F(Tx,y,z).

Proof. Let a Tx,y,z be induced by a set A in G ⊕ S′. Let a, b, c be the x-center, the y-center, and
the z-center, respectively of the Tx,y,z induced by A. Assume that a, b, c ∈ V (G′). Since b gets only
at most two leaves from Wb, there is a K1,y in G′ ⊕ S′ induced by a, b, c, and y − 2 leaves of b from
the Tx,y,z. Assume that a, b ∈ V (G′) and c is from Wb. Then b can get at most one leaf from Wb.
Therefore, there is a K1,y in G′ ⊕ S′ induced by a, b, and y − 1 leaves of b from the Tx,y,z. The case
when b, c ∈ V (G′) and a ∈Wb is symmetrical. Assume that only b is from G′ and a and c are fromWb.
Then none of the leaves of b are fromWb. Therefore, there is a K1,y induced by b and its y leaves from
the Tx,y,z. Assume that a ∈ V (G′) and b and c are from Wa. Then b is from Pa1 or Pa2. Then there is
a P4 (due to the fact that y, z ≥ 1) induced by some vertices inWa such that one of the internal vertex
of the P4 is from either Pa1 or Pa2. By Observation 4.22, this is not true. This is a contradiction.
The case when c ∈ V (G′) and a and b are from Wc is symmetrical. Therefore, a, b, c ∈ Wu for some
u ∈ V (G′). If b is from Pu1 or Pu2, then we get a contradiction using Observation 4.22. Therefore, b
is from Wu \ (Pu1 ∪ Pu2). In this case, it can be verified that, since y ≥ 3, there is no Tx,y,z where at
most one leaf is from G′.

The converse of the lemma also is true.

Lemma 4.24. If G⊕S ∈ F(Tx,y,z) for some S ⊆ V (G), then G′⊕S′ ∈ F(K1,y), where S
′ = S∩V (G′).

Proof. Since each Xui
induces a Tx,y,z, at least one of its vertices is not in S. The case is same with

X ′
ui
s, Zui

s, and Z ′
ui
s. Therefore, at least one vertex of Pu1 is not in S, otherwise, the complement

of Pu1 along with one vertex each from X ′
ui

\ S induces a Tx,y,z. Similarly, Pu2 is not a subset of S.
Then, if G′ ⊕ S′ contains a K1,y induced by a set A (say), then there is a Tx,y,z in G⊕ S induced by
A along with one vertex each from Pu1 \ S,Pu2 \ S, and one vertex each from Xui

\ S, for 1 ≤ i ≤ x,
and one vertex each from Zui

\ S, for 1 ≤ i ≤ z. This completes the proof.

Lemma 4.21 follows from Lemma 4.23 and Lemma 4.24. Now, we are ready to prove Theorem 4.17.

Proof of Theorem 4.17. Let the integers x, y, z satisfy the constraints given in the theorem, i.e., 1 ≤
x ≤ z, y ≥ 0, and either y ≥ 5 or z ≥ 6. If x ≥ 2 or if y = 0, then the statements follow from
Corollary 4.12. Assume that x = 1 and y ≥ 1. Let z ≥ 6. Then by Lemma 4.18, there is a linear
reduction from SC-to-F(Ty,z−1) to SC-to-F(Tx,y,z). Then the statements follow from Theorem 4.13.
Let y ≥ 5. Then by Lemma 4.21, there is a linear reduction from SC-to-F(K1,y) to SC-to-F(Tx,y,z).
Then the statement follows from Proposition 2.3.

4.5 Paths

By Proposition 2.2, SC-to-F(Pℓ) is hard for every ℓ ≥ 7. Here, we extend the result to P6.

Theorem 4.25. SC-to-F(P6) is NP-Complete. Further, the problem cannot be solved in time
2o(|V (G)|), unless the ETH fails.

Proposition 2.2 and Theorem 4.25 imply Corollary 4.26.

Corollary 4.26. Let ℓ ≥ 6 be an integer. Then SC-to-F(Pℓ) is NP-Complete. Further, the problem
cannot be solved in time 2o(|V (G)|), unless the ETH fails.

Construction 8 is used for SC-to-F(P6). The reduction is from 3-SAT. The reduction is similar
to other reductions that we introduced from various boolean satisfiability problems. Since a P6 has
neither a 4K1 nor a K4, the usual technique of keeping an independent set of size 4 of the literal
vertices does not work. To overcome this hurdle, we introduce a vertex in the clause gadgets.

Construction 8. Let Φ be a 3-SAT formula with n variables X1,X2, · · · ,Xn, andm clauses C1, C2, · · · ,
Cm. We construct the graph GΦ as follows.
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• For each variable Xi in Φ, the variable gadget, also named Xi, consists of two special sets Xi1 =
{xi},Xi2 = {xi}, and four other sets Xi3,Xi4,Xi5,Xi6, where each of the set in {Xi3,Xi4,Xi5,Xi6}
induces a P6. The set Xi1 is adjacent to Xi3 which is adjacent to Xi5. Similarly, the set Xi2 is
adjacent to Xi4 which is adjacent to Xi6. Let X =

⋃i=n
i=1 Xi. The vertices in Xi1(= {xi}) and

Xi2(= {xi}) (for 1 ≤ i ≤ n − 1) are called literal vertices, and let L be the union of all literal
vertices. The set L induces an independent set of size 2n.

• For each clause Ci of the form (ℓi1∨ ℓi2∨ ℓi3) in Φ, the clause gadget, also named as Ci, consists
of a set Ci2 which contains a single vertex ci2 and two copies of P6 denoted by Ci1 and Ci3. The
sets Ci1 and Ci2 are adjacent. Let the three sets introduced (in the previous step) for the literals
ℓi1, ℓi2, ℓi3 be denoted by Li = {yi1, yi2, yi3}. Each Cij is adjacent to yij, for 1 ≤ j ≤ 3, and
Ci3 is adjacent to yi2. In addition to this, every vertex in Ci is adjacent to all literal vertices
corresponding to literals not in Ci with an exception- Ci2 is adjacent to none of the literal vertices
corresponding to literals not in Ci. The union of all clause gadgets Ci is denoted by C, and their
vertices are called clause vertices.

• For all i 6= j, make the set Ci adjacent to the set Cj, and then remove the edge between Ci2 and
Cj2.

• For 1 ≤ i ≤ n, the vertices in Xi \ {xi, xi} are adjacent to V (G) \Xi.

This completes the construction of the graph GΦ (see Figure 14 for an example).

C11 C12 C13

X11

x1

X12

x1

X21

x2

X22

x2

X31

x3

X32

x3

X13 X14

X15 X16

X23 X24

X25 X26

X33 X34

X35 X36

C1

X1 X2 X3

Figure 14: An example of Construction 8 for the formula Φ = (x1 ∨ x2 ∨ x3). The bold lines (respec-
tively dashed lines) connecting two rectangles indicate that each vertex in one rectangle is adjacent
(respectively non-adjacent) to all vertices in the other rectangle. If there is no line shown between
two rectangles, then the vertices in them are adjacent, with the exceptions – (i) all the vertices in the
red rectangle (dashed) together form an independent set; (ii) if there is no line shown between two
rectangles in the dotted rectangles, then the rectangles in them are non-adjacent.

To prove the forward direction of the correctness of the reduction, we need a few lemmas to handle
some special cases arising in the forward direction.

Lemma 4.27. Let Φ be a yes-instance of 3-SAT and ψ be a truth assignment satisfying Φ. Then
there exists no set A of vertices such that A ⊆ (L∩C), (A∩C) ⊆ (Ci∪Cj), |A∩Ci| = 2, |A∩Cj| = 1,
and A induces a P6 in GΦ ⊕S, where S is the union of the clause vertices ci2, for 1 ≤ i ≤ m, and the
set of literal vertices whose corresponding literals were assigned TRUE by ψ.

Proof. Let A ∩Ci = {cia, cib} and A ∩Cj = {cj}. Clearly, ciacjcib is a P3. Then A ∩ L induces either
a P3 or a K2 +K1. The former is a contradiction as L induces Kn+nK1. Assume that A∩L induces
a K2 +K1. Let A ∩ L = {q1, q2, q3} and let q2q3 be the edge in the K2 +K1 induced by A ∩ L. Note
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that cj is adjacent to none of the vertices in {q1, q2, q3} Since there is no vertex in Cℓ1 ∪ Cℓ3 (for any
1 ≤ ℓ ≤ m) which is non-adjacent to three vertices in L, we obtain that cj ∈ Cj2. Therefore, cj ∈ S.
Since cj is in S, cj is non-adjacent to at most one vertex in S– recall that Cj2 is non-adjacent to
all vertices in L except yj2, thereby adjacent to all vertices in S except yj2 if it is in S. Thus, cj is
adjacent to at least one of q2, q3, which leads to a contradiction.

Lemma 4.28. Let Φ be a yes-instance of 3-SAT and ψ be a truth assignment satisfying Φ. Then
there exists no set A of vertices such that A ⊆ (L ∩ C), A ∩ C ⊆ Ci and A induces a P6 in GΦ ⊕ S,
where S is the union of the clause vertices ci2, for 1 ≤ i ≤ m, and the set of literal vertices whose
corresponding literals were assigned TRUE by ψ.

Proof. If |A∩Ci| = 1, then A∩L induces a graph which has an induced P3, which is a contradiction.
If |A ∩ Ci| = 2, then A ∩ Ci induces either a K2 or a 2K1. Assume that A ∩ Ci induces a K2. Then,
A ∩ L induces either a P4, or a P3 +K1, or a 2K2 - all of them lead to contradictions. Assume that
A ∩ Ci induces a 2K1. Then, A ∩ L induces either a P4, or a P3 +K1, or a 2K2, or a K2 + 2K1 - the
first three cases lead to contradictions.

Now assume that A ∩ L induces a K2 + 2K1. Let cia and cib be the vertices from A ∩ C. Let
q1, q2, q3, q4 be the vertices from A ∩ L such that q3q4 induces an edge. Thus, {q1, q2} /∈ S and
{q3, q4} ∈ S– recall that the vertices in S ∩L induces a clique. Without loss of generality, assume that
cia is adjacent to q1 and q2 and cib is adjacent to q2 and q3, i.e., q1ciaq2cibq3q4 is the P6 induced by A
in GΦ ⊕ S. Since Ci1 and Ci2 are adjacent, A ∩ Ci contains vertices from either Ci1 and Ci3, or Ci2

and Ci3. Both cia and cib are non-adjacent to two vertices in {q1, q2, q3, q4}. But none of the vertices
in Ci1 ∪Ci3 is non-adjacent to two vertices in GΦ ⊕ S. This implies that cia, cib /∈ Ci1 ∪Ci3, which is
a contradiction.

If |A∩Ci| = 3, then A∩Ci induces a K2 +K1. Clearly, ci1 ∈ Ci1, ci2 ∈ Ci2, ci3 ∈ Ci3 are the three
vertices in Ci ∩ L, where ci1ci2 is the edge in the K2 +K1 induced by A ∩ Ci. Then A ∩ L induces
either a P3 or a K2 +K1 or a 3K1. The first case gives a contradiction. Assume that A∩L induces a
K2 +K1. Let q1, q2, q3 be the vertices from A ∩ L in which q1q2 is the edge. Let p1p2p3p4p5p6 be the
P6 induced by A. Now there can be four cases- (i) p1, p2, p4 belong to A ∩ Ci and p3, p5, p6 belong to
A ∩ L; (ii) p2, p3, p6 belong to A ∩ Ci and p1, p4, p5 belong to A ∩ L; (iii) p3, p4, p6 belong to A ∩ Ci,
p1, p2, p5 belong to A ∩ L; (iv) p1, p2, p5 belong to A ∩ Ci, p3, p4, p6 belong to A ∩ L.

Now consider the case (i) : i.e., p1, p2, p4 belong to A ∩Ci and p3, p5, p6 belong to A ∩ L. Clearly,
p4 is ci3 and q2 and q3 are adjacent to ci3. Further, either ci1 or ci2 is adjacent to q3. and both ci1
and ci2 are non-adjacent to both q1 and q2. But {q1, q2, ci2} ∈ S. This is a contradiction as then ci2
must be adjacent to either q1 or q2.

Now consider the case (ii) and (iii): In both cases, p6 must be ci3 and hence ci3 is non-adjacent
to at least two vertices among {q1, q2, q3}. This is a contradiction, as ci3 is non-adjacent to only one
vertex (yi1) in GΦ ⊕ S.

Now consider case (iv): p1, p2, p5 are in A ∩ Ci. Then ci3 = p5 and either ci1 = p1 or ci2 = p1. If
ci2 = p1, then ci2 is not adjacent to {q1, q2} ∈ S, which is a contradiction as ci2 is non-adjacent to
only at most one vertex (yi2) in S ∩ L. Therefore, ci1 = p1. Then ci1 is non-adjacent to all the three
vertices q1, q2, and q3, which is a contradiction.

Assume that A ∩ L induces a 3K1. Let q1, q2, q3 be the vertices from A ∩ L. Let p1p2p3p4p5p6 be
the P6 induced by A. This means that {p2, p3, p5} ∈ A ∩ Ci, where p2p3 is an edge. Clearly, ci3 is
p5. There are two cases - either ci1 is p2 or ci2 is p2. Assume that ci1 is p2. Then, without loss of
generality, assume that q1ci1ci2q2ci3q3 is the P6. This means that p2 (ci1) is non-adjacent to q2, q3,
which implies that {q2, q3} = {yi2, yi3}. Similarly, p5 (ci3) is non-adjacent to q1, which implies that
q1 = yi1. Thus, A ∩ L ⊆ Li. Since ci2 and at least one vertex in Li belong to S, A induces a graph
which is not isomorphic to P6, which is a contradiction. Now assume that p3 = ci1, p2 = ci2, p5 = ci3,
p1 = q1, p4 = q2, and p6 = q3. This means that p3 = ci1 is non-adjacent to q1, q3, which implies that
{q1, q3} = {yi2, yi3}. Similarly, P5 (ci3) is non-adjacent to q1, which implies that q1 = yi1. This gives
a contradiction as q1 can not be corresponding two different vertices.

Now, we prove the forward direction with the help of Lemma 4.27 and Lemma 4.28.
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Lemma 4.29. Let Φ be a yes-instance of 3-SAT and ψ be a truth assignment satisfying Φ. Then
GΦ ⊕ S ∈ F(P6) where S is the union of the clause vertices ci2, for 1 ≤ i ≤ m and the set of literal
vertices whose corresponding literals were assigned TRUE by ψ.

Proof. Let GΦ ⊕ S contain a P6 induced by A (say). We prove the lemma with the help of a set of
claims.

Claim 1: A is not a subset of Xi, for 1 ≤ i ≤ n.
Assume that A is a subset of Xi, for some 1 ≤ i ≤ n. Since P6 is a prime graph and P6 is not

isomorphic to P6, A ∩ Y ≤ 1, where Y is a module isomorphic to P6. Thus, |A ∩Xij | is at most one.
Since Xi has six sets and each of them contains at most one vertex of A, then each Xij (for 1 ≤ j ≤ 6)
has exactly one vertex of A. Recall that {xi, xi} is not a subset of S. Hence, we obtain that the graph
induced by A is a 2P3 which is not isomorphic to P6, which is a contradiction.

Claim 2: For 1 ≤ i ≤ n, let X ′
i = Xi \ {xi, xi} and Xi = V (GΦ) \ Xi. If |A ∩ X ′

i| ≥ 1, then
A ∩Xi = ∅. Similarly, if |A ∩Xi| ≥ 1, then A ∩X ′

i = ∅.
For a contradiction, assume that A contains at least one vertex from X ′

i and at least one vertex
from Xi. Since X

′
i and Xi are adjacent, either |A ∩X ′

i| = 1 or |A ∩Xi| = 1.
Assume that A ∩X ′

i = {u}. We note that V (GΦ) \ (X
′
i ∪Xi) = {xi, xi}. Therefore, |A ∩Xi| ≥ 3.

This implies that there is a claw (K1,3) formed by u and three vertices in Xi, which is a contradiction
as there is no claw in a P6. Assume that A∩Xi = {u}. Then with the same argument as given above,
we obtain that the graph induced by A contains a claw as a subgraph, which is a contradiction.

Claim 3: A is not a subset of L, the set of all literal vertices.
This follows from the fact that L induces a Kn + (n)K1 in GΦ ⊕ S.
Claim 4: A cannot have nonempty intersections with three distinct clause gadgets Ci, Cj, and Cℓ.
Claim 5: There exists no Ci and Cj (i 6= j) such that |A ∩ Ci| ≥ 2 and |A ∩ Cj| ≥ 2.
Claim 4 and 5 follow from the fact that Ci is adjacent to Cj (for i 6= j), in GΦ ⊕ S and the fact

that there is neither a triangle nor a C4 in a P6.
Claim 6: A is not a subset of C.
Since P6 is a prime graph and P6 is not isomorphic to P6, A∩Cij has at most one vertex. Therefore,

A∩Ci has at most three vertices. By Claim 4, A cannot have nonempty intersections with three clause
gadgets Ci, Cj and Cℓ. Therefore, A has nonempty intersection with exactly two sets Ci and Cj and
|A ∩ Ci| = |A ∩ Cj| = 3, which is a contradiction by Claim 5.

Claim 7: If |A ∩ Ci| > 2, then A ∩ Cj = ∅ (i 6= j).
If A contains three vertices from Ci and at least one vertex from Cj , then there is a claw in the

graph induced by A as Ci and Cj are adjacent in GΦ ⊕ S.
Now, we are ready to prove the lemma. By Claim 1, A is not a subset of Xi (for 1 ≤ i ≤ n). By

Claim 2, A cannot have vertices from both Xi \ {xi, xi} and Xi (for 1 ≤ i ≤ n − 1). This implies
that A ⊆ L ∪ C. By Claim 3, A cannot be a subset of L and by Claim 6, A cannot be a subset of C.
Therefore, A contains vertices from both L and C. By Claim 4, A cannot have nonempty intersections
with three distinct sets Ci, Cj and Cℓ. Therefore, A ∩ C ⊆ (Ci ∪ Cj). Assume that A has nonempty
intersection with both Ci and Cj. By Claim 5 and Claim 7, we can assume that |A ∩ Cj | = 1 and
|A ∩ Ci| ≤ 2. Assume that |A ∩Ci| = 2. Then the statement follows from Lemma 4.27. Now, assume
that A∩Ci = {ci} and A∩Cj = {cj}. This means that A∩L induces either a P4, or a P3 +K1, or a
2K2 - all of them lead to contradictions. Thus, we can conclude that A∩C contains vertices from Ci

only. Then the statement follows from Lemma 4.28. This completes the proof.

The converse is also true.

Lemma 4.30. Let Φ be an instance of 3-SAT. If GΦ ⊕ S ∈ F(P6) for some S ⊆ V (GΦ) then there
exists a truth assignment satisfying Φ, i.e., TRUE to at least one literal per clause.

Proof. Let GΦ ⊕ S ∈ F(P6) for some S ⊆ V (GΦ). We want to find a satisfying truth assignment of
Φ. We know that each of the sets Ci1 and Ci3, for 1 ≤ i ≤ m, induces a P6. Therefore, each such set
has at least one vertex not in S. Hence at least one vertex in Li = {yi1, yi2, yi3} must belong to S,
otherwise there is an induced P6 in GΦ ⊕ S by vertices in Li and one vertex each from Ci2, Ci1 \ S,
and Ci3 \ S.
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Similarly, each set Xij , for 1 ≤ i ≤ n and 3 ≤ j ≤ 6, induces a P6. Therefore, Xij has at least
one vertex untouched by S. Hence, if both xi and xi are in S, then there is an induced copy of P6 in
GΦ ⊕ S, which is a contradiction. Therefore, {xi, xi} is not a subset of S. Now, it is straight-forward
to verify that assigning TRUE to each literal corresponding to the literal sets which are subsets of S
is a satisfying truth assignment for Φ.

Now, Theorem 4.25 follows from Lemma 4.29 and Lemma 4.30.

4.6 Subdivisions of claw

A subdivision of a claw has exactly three leaves. Due to this, we cannot handle them using the
reduction used to handle trees with 4 leaves (Theorem 4.5). Let T = Cx,y,z be a subdivision of claw,
where x ≤ y ≤ z. If x = y = 1, then T is obtained from Pz+2 by duplicating a leaf. Therefore, we
can use Lemma 3.1 and Corollary 4.26 to prove the hardness, when z ≥ 4. If y > 1, then T is prime
and if T has at least 9 vertices, then T is 5-connected (we will prove this in this section). Then the
hardness results for 5-connected prime graphs can be used to prove the hardness for T and hence for
T (Proposition 2.4). But, there is a special subdivision of claw, C1,2,4, which is not handled by any
of these reductions. Further, there is an infinite family of trees, which is obtained by duplicating the
leaf adjacent to the center of the claw in C1,2,4, not handled by Theorem 4.5. This requires us to
handle C1,2,4 separately. We will start this section with a reduction for C1,2,4 and end by proving the
hardness of SC-to-F(T ) if T is not among 7 specific subdivisions of claw.

Let T be the subdivided claw C1,2,4 as shown in Figure 15.

Theorem 4.31. SC-to-F(C1,2,4) is NP-Complete. Further, the problem cannot be solved in time
2o(|V (G)|), unless the ETH fails.

Figure 15: The subdivided claw C1,2,4

Construction 9 is used for a reduction from 4-SAT≥2 to SC-to-F(C1,2,4). The reduction is similar
to the one used to prove hardness for trees having 3 internal vertices and 4 leaves.

Construction 9. Let Φ be a 4-SAT≥2 formula with n variables X1,X2, · · · ,Xn, and m clauses
C1, C2, · · · , Cm. We construct the graph GΦ as follows.

• For each variable Xi in Φ, the variable gadget, also named Xi, consists of two special sets
Xi1 = {xi},Xi2 = {xi}, and six other sets Xi3,Xi4,Xi5,Xi6,Xi7,Xi8, where each of the set in
{Xi3,Xi4,Xi5,Xi6,Xi7,Xi8} induces a C1,2,4. The set Xij is adjacent to Xi(j+2), for 1 ≤ j ≤ 5.

Further, the sets Xi2 and Xi8 are adjacent. Let X =
⋃i=n

i=1 Xi. The vertices xi and xi are called
literal vertices, and L is the set of all literal vertices. The set L forms an independent set of size
2n.

• For each clause Ci of the form (ℓi1∨ℓi2∨ℓi3∨ℓi4) in Φ, the clause gadget also named as Ci consists
of four copies of C1,2,4s denoted by Ci1, Ci12, Ci3, and Ci4. Let the four vertices introduced (in
the previous step) for the literals ℓi1, ℓi2, ℓi3, ℓi4 be denoted by Li = {yi1, yi2, yi3, yi4}. The sets
Ci1 and Ci2 are adjacent to yi1. The sets Ci2 and Ci3 are adjacent to yi2. The sets Ci3 and Ci4

are adjacent to yi3. Additionally, Ci3 is adjacent to yi4. Further, every vertex in Ci is adjacent
to all literal vertices corresponding to literals not in Ci. The union of all clause gadgets Ci is
denoted by C and their vertices are called clause vertices.

• For all i 6= j, the set Ci is adjacent to the set Cj .

• For 1 ≤ i ≤ n, the vertices in Xi \ {xi, xi} are adjacent to V (G) \Xi.

This completes the construction of the graph GΦ (see Figure 16 for an example)
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Figure 16: An example of Construction 9 for the formula Φ = C1, where C1 = x1 ∨ x2 ∨ x3 ∨ x4
corresponding to C1,2,4, shown in Figure 15. The bold (respectively dashed) lines connecting two
rectangles indicate that each vertex in one rectangle is adjacent (respectively non-adjacent) to all
vertices in the other rectangle. If there is no line shown between two rectangles, then the vertices in
them are adjacent, with an exception – all the vertices in the red rectangle (dashed) together form an
independent set. Similarly, if there is no line shown between two rectangles in the dotted rectangles,
then the rectangles in them are non-adjacent.

Lemma 4.32. Let Φ be a yes-instance of 4-SAT≥2 and ψ be a truth assignment satisfying Φ. Then
GΦ ⊕ S ∈ F(C1,2,4), where S is the set of literal vertices whose corresponding literals were assigned
TRUE by ψ.

Proof. Let GΦ ⊕ S contain a C1,2,4 induced by A (say). We prove the lemma with the help of a set of
claims.

Claim 1: A is not a subset of Xi, for 1 ≤ i ≤ n.
Assume that A is a subset of Xi. Since C1,2,4 is a prime graph and C1,2,4 is not isomorphic to

C1,2,4 as no nontrivial tree is self-complementary, A∩Y ≤ 1, where Y is a module isomorphic to C1,2,4.
Thus, |A∩Xij| is at most one. Therefore, A has nonempty intersection with at least two sets Xij and
Xiℓ. Since C1,2,4 has 8 vertices, A has nonempty intersection with each set Xij (for 1 ≤ j ≤ 8). Recall
that {xi, xi} is not a subset of S. Hence, we obtain that the graph induced by A is 2P4, which is a
contradiction.

Claim 2: Let X ′
i = Xi \ {xi, xi} and Xi = V (GΦ) \Xi. If |A∩X ′

i| ≥ 1, then A∩Xi = ∅. Similarly,
if |A ∩Xi| ≥ 1, then A ∩X ′

i = ∅.
For a contradiction, assume that A contains at least one vertex from X ′

i and at least one vertex
from Xi. Since X

′
i and Xi are adjacent, either |A∩X ′

i| = 1 or |A∩Xi| = 1. Assume that A∩X ′
i = {u}.

Note that V (GΦ) \ (X
′
i ∪Xi) = {xi, xi}. Therefore, A contains at least 5 vertices from Xi. Then the

graph induced by A has a K1,5, which is a contradiction, as there is no K1,5 in C1,2,4. Assume that
A ∩Xi = {u}. Then with the same argument as given above, we obtain that the graph induced by A
contains K1,5, which is a contradiction.

Claim 3: A is not a subset of L, the set of all literal vertices.
This follows from the fact that L induces a Kn + nK1 in GΦ ⊕ S.
Claim 4: A cannot have nonempty intersections with three distinct clause gadgets Ci, Cj, and Cℓ.
Claim 5: There exists no Ci and Cj (i 6= j) such that |A ∩ Ci| ≥ 2 and |A ∩ Cj| ≥ 2.
Claim 4 and 5 follow from the fact that Ci and Cj are adjacent for i 6= j and C1,2,4 does have

neither a triangle nor a C4.
Claim 6: A is not a subset of C.
For a contradiction, assume that A ⊆ C. By Claim 4, A cannot have nonempty intersections with

three distinct clause gadgets Ci, Cj , and Cℓ. Since C1,2,4 is a prime graph and C1,2,4 is not isomorphic
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to C1,2,4, we obtain that |A ∩ Cij | is at most one. Thus, A ∩ Ci induces an independent set of size at
most four, which implies that A cannot be a subset of Ci. Now assume that A has vertices from exactly
two sets Ci and Cj . Since Ci and Cj are adjacent, A induces a star graph which is a contradiction.

Claim 7: If |A ∩ Ci| ≥ 2, then |A ∩ (L \ Li)| is at most one.
It follows from the fact that Ci is adjacent to all vertices in A ∩ (L \ Li) and C1,2,4 does not have

a C4.
We are ready to prove the lemma. By Claim 1, A is not a subset of Xi. By Claim 2, A cannot

have vertices from both Xi \ {xi, xi} and Xi. This implies that A ⊆ L ∪C. By Claim 3, A cannot be
a subset of L and by Claim 6, A cannot be a subset of C. Therefore, A contains vertices from both L
and C. By Claim 4, A cannot have nonempty intersections with three distinct clause gadgets Ci, Cj

and Cℓ. Therefore, A ∩ C ⊆ (Ci ∪ Cj). Assume that A has nonempty intersection with both Ci and
Cj . By Claim 5, we can assume that |A ∩ Cj | = 1 and |A ∩ Ci| ≥ 1.

Let A ∩ Cj = {cj}. Assume that |A ∩ Ci| = 4. Then, A induces a graph containing a K1,4, which
is a contradiction. If |A ∩ Ci| = 3, then A ∩ C induces a K1,3, which implies that A ∩ L induces a
P3 +K1, which is a contradiction. Let |A ∩ Ci| = 2. Since A ∩ C induces a P3, A ∩ L induces either
a T1,2, or a P4 +K1, or a 2K2 +K1, or a P3 + P2, or a P3 + 2K1, which is a contradiction. Assume
that |A ∩Ci| = 1, then A ∩C induces a K2, which implies that A ∩ L induces a graph containing Pa,
for a ≥ 3 which is a contradiction. Thus, it is clear that the vertices in A ∩ C are from at most one
clause gadget Ci.

If |A∩Ci| = 1, then A∩L induces a graph containing P3. Since L induces a Kn+nK1, it leads to
a contradiction. If |A ∩ Ci| = 2, then also A ∩ L induces a graph containing a P3. Let, |A ∩ Ci| = 3.
Then by claim 7, A∩ (L\Li) is at most one. Let w ∈ A∩ (L\Li). Thus, A contains a K1,3 with center
as w. Therefore, A ∩ Li induces a P3 which is a contradiction. If A ∩ (L \ Li) = ∅, then |A ∩ L| = 4.
This leads to a contradiction as A contains only seven vertices. Now assume that |A ∩Ci| = 4. Then
by claim 7, A∩ (L \Li) is at most one. Let w ∈ A∩ (L \ Li). Thus, the graph induced by A contains
a K1,4 with center as w, which is a contradiction. Therefore A ∩ L ⊆ Li. Since at least two vertices
in A ∩ Li is in S, the graph induced by A contains at least one edge more than that of C1,2,4, which
gives a contradiction.

Lemma 4.33. Let Φ be an instance of 4-SAT≥2. If GΦ ⊕ S ∈ F(C1,2,4) for some S ⊆ V (GΦ) then
there exists a truth assignment satisfying Φ.

Proof. Let GΦ ⊕ S ∈ F(C1,2,4) for some S ⊆ V (GΦ). We want to find a satisfying truth assignment
of Φ. We know that each of the sets Cij , for 1 ≤ i ≤ m and 1 ≤ j ≤ 4, induces a C1,2,4. Therefore,
each such set has at least one vertex not in S. Hence at least two vertices in Li must belong to S,
otherwise there is an induced C1,2,4 by vertices in Li and one vertex each from Cij \ S, for 1 ≤ j ≤ 4.

Similarly, each set Xij , for 1 ≤ i ≤ n and 3 ≤ j ≤ 8, induces a C1,2,4. Therefore, Xij has at
least one vertex untouched by S. Hence, if both xi and xi are in S, then there is an induced copy of
C1,2,4 in GΦ ⊕ S, which is a contradiction. Therefore, both {xi, xi} is not a subset of S. Now, it is
straight-forward to verify that assigning TRUE to each literal corresponding to the literal vertices in
S is a satisfying truth assignment for Φ.

Now, Theorem 4.31 follows from Lemma 4.32 and Lemma 4.33.
We observe that, for any integer t ≥ 4, the subdivision of claw C1,1,t−2 is obtained by introducing

a false-twin for a leaf of a Pt. Then, Observation 4.34 follows directly from Lemma 3.1.

Observation 4.34. There is a linear reduction from SC-to-F(Pt) to SC-to-F(C1,1,t−2).

Next we prove that T is 5-connected for all subdivisions of claw T having at least 9 vertices.

Observation 4.35. Let T be a subdivision of claw. Then T is 5-connected if and only if T contains
at least 9 vertices.

Proof. It is trivial to observe that the complement of a forest is disconnected if and only if the forest
contains a single tree which is a star graph. Assume that T has at least 9 vertices. Let V ′ be a subset
of vertices such that T − V ′ is disconnected. Then T − V ′ is a star graph of at most 4 vertices (there
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are no star graph of 5 vertices induced in T ). This implies that |V ′| ≥ 5. Therefore T is 5-connected.
Now, assume that T has only at most 8 vertices. Then, let V ′ be the set of vertices not in the unique
claw in T . Clearly, |V ′| ≤ 4 and T − V ′ is disconnected. Therefore, T is not 5-connected.

Now, we are ready to prove the main result of this section.

Theorem 4.36. Let x ≤ y ≤ z be integers such that at least one of the following conditions are
satisfied.

(i) x = 1, y = 2, z = 4, or

(ii) x = y = 1, and z ≥ 4, or

(iii) x+ y + z ≥ 8.

Then SC-to-F(Cx,y,z) is NP-Complete. Further, the problem cannot be solved in time 2o(|V (G)|),
unless the ETH fails.

Proof. Let T be SC-to-F(Cx,y,z) If x = 1, y = 2, and z = 4, then the statements follow from
Theorem 4.31. If x = y = 1, and z ≥ 4, then by Observation 4.34, there is a linear reduction from
SC-to-F(Pz+2) to SC-to-F(Cx,y,z). Then the statements follow from Corollary 4.26. Assume that
y > 1. Then T is a prime graph. If x+y+z ≥ 8, then T has at least 9 vertices and by Observation 4.35,
T is 5-connected. If there is an independent set of size 4 in T , then by Theorem 3.5, SC-to-F(T ) is
NP-Complete and cannot be solved in subexponential-time, assuming the ETH. Then the statements
follow from Proposition 2.4. So, it is sufficient to prove that T has an independent set of size 4. Let
c be the unique vertex with degree 3 in T and let {c1, c2, c3} be the leaves in T . If {c, c1, c2, c3} forms
an independent set, then we are done. Otherwise, at least one of the leaves, say c1 is adjacent to c.
Then T −{c} contains an isolated vertex c1 and two nontrivial paths such that one of them has length
at least two. Then clearly, there is an independent set of size 4 in T − c, and hence in T .

Corollary 4.37 follows directly from the constraints in Theorem 4.36.

Corollary 4.37. Let T be a subdivision of claw not in {C1,1,1, C1,1,2, C1,1,3, C1,2,2, C1,2,3, C2,2,2, C2,2,3}.
Then SC-to-F(T ) is NP-Complete. Further, the problem cannot be solved in time 2o(|V (G)|), unless
the ETH fails.

4.7 Putting them together

In this section, we prove the main result (Theorem 4.1) of this paper by using the results proved so
far. We need a few more observations.

Observation 4.38. Let T be a prime tree such that there are two adjacent internal vertices u, v which
are not adjacent to any leaf of T . Then either of the following conditions is satisfied.

(i) T has an independent set of size 4 and T is 5-connected, or

(ii) T is either a P6, or a P7, or the subdivision of claw C1,2,4.

Proof. Let the neighbor of u other than v be u′. Similarly, let the neighbor of v other than u be v′.
By the assumption, neither u′ nor v′ is a leaf. Let Tu′ be the subtree containing u′ in T − u, and let
Tv′ be the subtree containing v′ in T − v. Let x be the number of vertices in Tu′ excluding u′ and let
y be the number of vertices in Tv′ excluding v

′, i.e., x = |Tu′ | − 1, and y = |Tv′ | − 1. Without loss
of generality, assume that x ≤ y. Since u′ and v′ are not leaves, we obtain that x ≥ 1 and y ≥ 1. If
x = 1 and y = 1, then T is P6. If x = 1 and y = 2, then T is P7. If x = 1 and y = 3, then T is C1,2,4

(recall that T is prime). If x = 1 and y ≥ 4, then there is no subset V ′ of size at most 4 such that
T − V ′ is a star graph. Therefore, T is 5-connected. Further, there is an independent set of size 4 in
T . If x = 2 and y = 2, then T is P8. Then T is 5-connected and T has an independent set of size 4.
If x = 2 and y ≥ 3, then T has an independent set of size 4 and T is 5-connected. The case is same
when x ≥ 3.
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Now, we are ready to prove the main theorem.

Proof of Theorem 4.1. Let T ′ be the internal tree and QT be the quotient tree of T . Let p be the
number of internal vertices of T . If p = 1, then T is a star graph and the statements follow from
Proposition 2.3. If p = 2, then T is a bistar graph and the statements follow from Theorem 4.13. If
p = 3, then T is a tristar graph and the statements follow from Theorem 4.17. Assume that p ≥ 4.
If T has only two leaves, then T is isomorphic to Pℓ, for ℓ ≥ 6. Then the statements follow from
Corollary 4.26. If T has exactly three leaves, then T is a subdivision of claw. Then the statements
follow from Corollary 4.37. Assume that T has at least four leaves.

If QT has two adjacent internal vertices which are not adjacent to any leaves, then by Observa-
tion 4.38, either (i) QT has an independent set of size 4 and QT is 5-connected or (ii) QT is either a
P6, or a P7, or a C1,2,4. If (i) is true, then SC-to-F(QT ) is NP-Complete and cannot be solved in
subexponential-time (assuming the ETH). Then, so is for SC-to-F(QT ), by Proposition 2.4. Then
the statements follow from Lemma 3.1. If (ii) is true, then the statements follow from Corollary 4.26,
Theorem 4.31, and Lemma 3.1. Therefore, assume that QT has no two adjacent internal vertices
not adjacent to any leaves of QT . Hence, T has no two adjacent internal vertices not adjacent to
any leaves of T . Then, if T ′ (the internal tree) is not a star graph, then the statements follow from
Theorem 4.5. Assume that T ′ is a star graph. Assume that the condition (i) of Theorem 4.5 is not
satisfied, i.e., the center of T ′ has at least one leaf of T as neighbor, one leaf of T ′ has exactly one
leaf of T as neighbor, and T is neither C1,2,2,2 nor C1,2,2,2,2. Assume that T has exactly 4 internal
vertices. Then T ′ is a claw and QT is C1,2,2,2. Then by Theorem 4.5, SC-to-F(QT ) is NP-Complete
and cannot be solved in subexponential-time (assuming the ETH). Then the statements follow from
Lemma 3.1. Similarly, when T has exactly 5 internal vertices, we obtain that QT is C1,2,2,2,2 and
then the statements follow from Theorem 4.5 and Lemma 3.1. Assume that T has at least 6 internal
vertices. Then, T ′ is a K1,a, for some a ≥ 5. Then by Lemma 4.2, there is a linear reduction from SC-

to-F(K1,a) to SC-to-F(QT ). By Proposition 2.3, SC-to-F(K1,a) is NP-Complete and cannot be
solved in subexponential-time (assuming the ETH). Then the statements follow from Lemma 3.1.

5 Polynomial-time algorithm

In this section, we prove that SC-to-F(paw) can be solved in polynomial-time. We use a result by
Olariu [12] that every component of a paw-free graph is either triangle-free or complete mutitpartite.

Proposition 5.1 ( [12]). A graph G is a paw-free if and only if each component of G is either
triangle-free or complete multipartite.

A graph is complete multipartite if and only if it does not contain any K2 + K1. It is known
that SC-to-F(K3) and SC-to-F(K2 +K1) can be solved in polynomial-time. The former is proved
in [7] and the latter is implied by another result from [7] that Subgraph Complementation problems
admit polynomial-time algorithms if the target graph class is expressible in MSO1 and has bounded
clique-width.

Proposition 5.2 ( [7]). SC-to-F(K3) and SC-to-F(K2 +K1) are solvable in polynomial-time.

Our algorithm works as follows: If there is a solution which transforms the input graph into a
single paw-free component, then we use Proposition 5.2. If S transforms G into multiple components,
then we guess vertices belonging to a constant number of those components and then try to obtain
S by analysing the neighborhood of the guessed vertices. We also use the following two observations,
which say that it is safe to assume that the input graph does not contain any independent module or
clique module of size at least 4.

Observation 5.3. Let G be a graph having an independent module I of size at least 4. Let G′ be
the graph obtained from G by removing I and introducing an independent module I ′ of size 3 with
the same adjacency as that of I. Then, G is a yes-instance of SC-to-F(paw) if and only if G′ is a
yes-instance of SC-to-F(paw).
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Proof. Let G be a yes-instance. Let S be a solution of G. Initialize S′ = S \ I. Include in S′ vertices
from I ′ in such a way that |S′∩ I ′| = |S∩ I|, if 0 ≤ |S∩ I| ≤ 1, and |S′∩ I ′| = 2, if 2 ≤ |S∩ I| ≤ |I|−1,
and |S′ ∩ I ′| = 3, if I ⊆ S. We claim that S′ is a solution of G′. For a contradiction, assume that
there is a set A′ ⊆ V (G′) which induces a paw in G′ ⊕ S′. If A′ has no vertices from I ′, then A′

induces a paw in G ⊕ S, which is a contradiction. Therefore, A′ ∩ I ′ 6= ∅. Initialize A to be A′ \ I ′.
Assume that |A′ ∩ I ′| = 1. Let A′ ∩ I ′ = {u′}. Then, include in A a vertex from I ∩ S if u′ ∈ S′, and
a vertex from I \ S, if u′ /∈ S′. Then A induces a paw in G ⊕ S. Let |A′ ∩ I ′| = 2. Since there is no
independent module of size 2 in a paw, we obtain that at least one vertex of A′ ∩ I ′ must be in S′.
If both vertices in A′ ∩ I ′ is in S′, then include two vertices of S ∩ I in A. Then A induces a paw in
G⊕ S. If one vertex of A′ ∩ I ′ is in S′ and the other is not in S′, then include one vertex from S ∩ I
and one vertex from I \ S in A. Then A induces a paw in G ⊕ S. Let |A′ ∩ I ′| = 3. Since paw does
not have an independent module of size 2, we obtain that at least two vertices of A′ ∩ I ′ are in S′.
Since the triangle in a paw is not a module, we obtain that not all the three vertices in A′ ∩ I ′ can be
in S′. Therefore, exactly two vertices in A′ ∩ I ′ are in S′. Then, include two vertices of S ∩ I and one
vertex of I \ S in A. Then A induces a paw in G⊕ S.

For the other direction, assume that S′ is a solution of G′. Initialize S to be S′\I ′. Include vertices
from I to S in such a way that |S ∩ I| = |S′ ∩ I ′|, if 0 ≤ |S′ ∩ I ′| ≤ 2, |S ∩ I| = |I| if I ′ ⊆ S′. We
claim that S is a solution for G. For a contradiction, assume that A ⊆ V (G) induces a paw in G⊕ S.
If A has no vertices from I, then A induces a paw in G′ ⊕ S′, which is a contradiction. Therefore,
A ∩ I 6= ∅. Initialize A′ to be A \ I. Let |A ∩ I| = 1. Let A ∩ I = {u}. If u ∈ S, then include a vertex
u′ ∈ S′ ∩ I ′ in A′. If u /∈ S, then include a vertex u′ ∈ I ′ \S′ in A′. Then, A′ induces a paw in G′⊕S′.
Let |A ∩ I| = 2. Since a paw does not have an independent module of size 2, we obtain that at least
one vertex of A∩ I is in S. Assume that exactly one vertex of A∩ I is in S. Then, include in A′, one
vertex from I ′ ∩S′ and one vertex from I ′ \S′. Then A′ induces a paw in G′ ⊕S′. If both the vertices
in A∩ I are in S, then include in A′ two vertices in I ′∩S′. Then A′ induces a paw in G′⊕S′. Assume
that |A ∩ I| = 3. As observed before, at least two vertices in A ∩ I must be in S. Since the triangle
in a paw is not a module, not all three vertices in A ∩ I can be in S. Therefore, exactly two vertices
of A ∩ I is in S. Then, include in A′ two vertices from I ′ ∩ S′ and one vertex from I ′ \ S′. Then, A′

induces a paw in G′ ⊕ S′. We observe that all the 4 vertices in A cannot be from I. This completes
the proof.

The proof of Observation 5.4 is similar.

Observation 5.4. Let G be a graph having a clique module I of size at least 4. Let G′ be the graph
obtained from G by removing I and introducing a clique module I ′ of size 3 with the same adjacency
as that of I. Then, G is a yes-instance of SC-to-F(paw) if and only if G′ is a yes-instance of
SC-to-F(paw).

Proof. Let G be a yes-instance. Let S be a solution of G. Initialize S′ = S \ I. Include in S′ vertices
from I ′ in such a way that |S′∩ I ′| = |S∩ I|, if 0 ≤ |S∩ I| ≤ 1, and |S′∩ I ′| = 2, if 2 ≤ |S∩ I| ≤ |I|−1,
and |S′∩ I ′| = 3, if I ⊆ S. We claim that S′ is a solution of G′. For a contradiction, assume that there
is a set A′ ⊆ V (G′) which induces a paw in G′ ⊕ S′. If A′ has no vertices from I ′, then A′ induces a
paw in G⊕S, which is a contradiction. Therefore, A′ ∩ I ′ 6= ∅. Initialize A to be A′ \ I ′. Assume that
|A′ ∩ I ′| = 1. Let A′ ∩ I ′ = {u′}. Then, include in A a vertex from I ∩ S if u′ ∈ S′, and a vertex from
I \ S, if u′ /∈ S′. Then A induces a paw in G ⊕ S. Let |A′ ∩ I ′| = 2. Since there is no independent
module of size 2 in a paw, we obtain that at least one vertex of A′ ∩ I ′ is not in S′. If neither of the
two vertices in A′∩ I ′ is in S′, then include two vertices of I \S in A. Then A induces a paw in G⊕S.
If one vertex of A′ ∩ I ′ is in S′ and the other is not in S′, then include one vertex from S ∩ I and one
vertex from I \ S in A. Then A induces a paw in G ⊕ S. Let |A′ ∩ I ′| = 3. Since paw does not have
an independent module of size 2, we obtain that at least two vertices of A′ ∩ I ′ are not in S′. Since
the triangle in a paw is not a module, we obtain that at least one vertex in A′ ∩ I ′ must be in S′.
Therefore, exactly two vertices in A′ ∩ I ′ are not in S′. Then, include two vertices of I \ S and one
vertex of I ∩ S in A. Then A induces a paw in G⊕ S.

For the other direction, assume that S′ is a solution of G′. Initialize S to be S′\I ′. Include vertices
from I to S in such a way that |S ∩ I| = |S′ ∩ I ′|, if 0 ≤ |S′ ∩ I ′| ≤ 2, and |S ∩ I| = |I| if I ′ ⊆ S′. We
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claim that S is a solution for G. For a contradiction, assume that A ⊆ V (G) induces a paw in G⊕ S.
If A has no vertices from I, then A induces a paw in G′ ⊕ S′, which is a contradiction. Therefore,
A ∩ I 6= ∅. Initialize A′ to be A \ I. Let |A ∩ I| = 1. Let A ∩ I = {u}. If u ∈ S, then include a vertex
u′ ∈ S′ ∩ I ′ in A′. If u /∈ S, then include a vertex u′ ∈ I ′ \S′ in A′. Then, A′ induces a paw in G′⊕S′.
Let |A ∩ I| = 2. Since a paw does not have an independent module of size 2, we obtain that at least
one vertex of A∩ I is not in S. Assume that exactly one vertex of A∩ I is in S. Then, include in A′,
one vertex from I ′ ∩ S′ and one vertex from I ′ \ S′. Then A′ induces a paw in G′ ⊕ S′. If neither of
the two vertices in A ∩ I is in S, then include in A′ two vertices in I ′ \ S′. Then A′ induces a paw in
G′ ⊕ S′. Assume that |A ∩ I| = 3. As observed before, at least two vertices in A ∩ I must not be in
S. Since the triangle in a paw is not a module, at least one vertex in A∩ I is in S. Therefore, exactly
two vertices of A ∩ I are not in S. Then, include in A′ one vertex from I ′ ∩ S′ and two vertices from
I ′ \ S′. Then, A′ induces a paw in G′ ⊕ S′. We observe that all the 4 vertices in A cannot be from I.
This completes the proof.

It is trivial to note that removing paw-free components from the input graph is safe.

Proposition 5.5. Let G be a graph such that G′ is a connected paw-free component of it. Then G is
a yes-instance of SC-to-F(paw) if and only if G− V (G′) is a yes-instance of SC-to-F(paw).

Now onward, we assume that G has no paw-free component and no independent or clique module
of size at least 4. Step 1 of our algorithm takes care of the case when G is paw-free. If G is not
paw-free, then every solution S will have at least two vertices. Step 2 takes care of the case when
there is a solution which transforms the input graph into a single paw-free component. Step 3 handles
the case when there are at least three components in the resultant graph. Step 4 resolves the case
when there are exactly two components.

For integers p, q ≥ 1, a (p, q)-split partition of a graph G is a partition of its vertices into two
sets P,Q such that the maximum clique size of the subgraph induced by P is at most p and the
maximum independenet set of the subgraph induced by Q is at most q. If a graph admits a (p, q)-split
partition, then the graph is known as a (p, q)-split graph. It is known that all (p, q)-split graphs can
be recognized and all (p, q)-split partitions of them can be found in polynomial-time (see [8, 13, 14]).
We define a component partition of a graph G as a partition of its vertices into two sets P,Q such that
P induces a single component or an independent set of size at most 3, an Q contains the remaining
vertices. We observe that all component partitions of a graph can be found in polynomial-time.

Algorithm for SC-to-F(paw)
Input: A graph G.
Output: If G is a yes-instance of SC-to-F(paw), then returns YES;
returns NO otherwise.

Step 1 : If G is paw-free, then return YES.

Step 2 : If G is a yes instance of SC-to-F(K3), or a yes-instance of SC-to-F(K2 +K1), then
return YES.

Step 3 : For every triangle u, v, w in G, if (N(u) ∩N(v)) ∪ (N(u) ∩N(w)) ∪ (N(v) ∩N(w)) is a
solution, then return YES.

Step 4 : For every ordered pair of adjacent vertices (u, v), do the following:

(i) Compute Lu and Lv, the lists of (1, 2)-split partitions of N(u) and N(v) respectively.

(ii) Compute Ru and Rv, the lists of component partitions of N(u) and N(v) respectively.

(iii) For every (Pu, Qu) in Lu, and for every (Pv, Qv) in Lv, if Qu ∪ Qv is a solution, then
return YES.

(iv) For every (Xu, Yu) in Ru, and for every (Xv, Yv) in Rv, if Yu ∪ Yv is a solution, then
return YES.
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(v) For every (Xv , Yv) in Rv, do the following:

(a) For every set Y ′
v ⊆ Yv of size at least |Yv| − 2, do the following:

i. Initialize Z = {v}, and let I be the isolated vertices in G[N(u)].

ii. Add N(u) \ I to Z.

iii. Add to Z every vertex in I adjacent to some vertex in Xv.

iv. If Y ′
v ∪ Z is a solution, then return YES.

Step 5 : Return NO.

Next few lemmas state that the algorithm returns YES in various cases.

Lemma 5.6. If there exists a set S ⊆ V (G) such that G⊕ S is a connected paw-free graph, then the
algorithm returns YES.

Proof. By Proposition 5.1, a connected paw-free graph is either triangle-free or complete multipartite.
Hence G ⊕ S is triangle-free or complete multipartite. Recall that the complete multipartite graphs
are exactly the class of K2 +K1-free graphs. Then the algorithm returns YES at Step 2.

Let S be any solution ofG. Let G1, G2, . . . , Gt, for some integer t ≥ 1, be the connected components
of G⊕S. Let Si be the intersection of S with Gi (for 1 ≤ i ≤ t). For a vertex u ∈ Si, by Au we denote
the neighbors of u in Gi − Si. Note that Si and Sj are adjacent in G for i 6= j.

Lemma 5.7. Assume that there exists a set S ⊆ V (G) such that G⊕ S is a disjoint union of at least
three connected components. Then the algorithm returns YES.

Proof. Let S be a set as specified in the lemma. Let u ∈ S1, v ∈ S2, and w ∈ S3. Note that
N(u) ∩ N(v) ⊆ S and S \ (S1 ∪ S2) ⊆ N(u) ∩ N(v). Therefore, (N(u) ∩ N(v)) ∪ (N(u) ∩ N(w)) ∪
(N(v) ∩N(w)) = S. Then the algorithm returns YES at Step 3.

Lemma 5.8. Assume that there exists a set S ⊆ V (G) such that G ⊕ S is paw-free and G ⊕ S has
exactly two components and both of them are complete multipartite. Then the algorithm returns YES.

Proof. Let S be a solution as specified in the lemma. By Propositon 5.5, we can safely assume
S1, S2 6= ∅. Let u ∈ S1 and v ∈ S2. Both G1 − S1 and G2 − S2 are complete multipartite graphs. Let
I1, I2, . . . It1 be the independent set partition of G1−S1, and let J1, J2, . . . , Jt2 be the independent set
partition of G2 − S2. Clearly, each set Ia (for 1 ≤ a ≤ t1) and Ja (for 1 ≤ a ≤ t2) are independent
modules in G. Therefore, each of them has size at most 3. Therefore, if Au has at least 4 vertices, then
Au induces a connected component in G. Hence, if Au is disconnected, then it forms an independent set
of size at most 3. Similarly, if Av has at least 4 vertices, then Av induces a connected component in G,
and if Av induces a disconnected graph, then it forms an independent set of size at most 3. Therefore,
(Au, N(u) \Au) is a component partition of N(u). Similarly, (Av, N(v) \Av) is a component partition
of N(v). Note that S = (N(u) \ Au) ∪ (N(v) \ Av). Therefore, at Step 4(iv), the algorithm returns
YES.

Lemma 5.9. Assume that there exists a set S ⊆ V (G) such that G ⊕ S is paw-free and G ⊕ S has
exactly two components and both are triangle-free. Then the algorithm returns YES.

Proof. Let S be a solution as specified in the lemma. By Proposition 5.5, we can safely assume
S1, S2 6= ∅. Let u ∈ S1 and v ∈ S2. Both G1 − S1 and G2 − S2 are triangle-free graphs. Clearly,
Au is an independent set (i.e., K2-free)- otherwise there is a triangle in G1 ⊕ S1 formed by u and
two of its adjacent neighbors in Au. Further, S induces 3K1-free graphs in G, as both S1 and S2 are
3K1-free and they are adjacent. Therefore, (Au, N(u) \ Au) is a (1, 2)-split partition of N(u), and
(Av , N(v)\Av) is a (1, 2)-split partition of N(v). Note that, (N(u)\Au)∪(N(v)\Av) = S. Therefore,
the algorithm returns YES at Step 4(iii).

Lemma 5.10. Assume that there exists a set S ⊆ V (G) such that G⊕ S is paw-free and G ⊕ S has
exactly two components G1 and G2 such that G1 is triangle-free and G2 is complete multipartite. Then
the algorithm returns YES.
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Proof. Let u ∈ S1 and v ∈ S2. Note that (Av, N(v)\Av) is a component partition of N(v) (Av induces
either a connected graph or has at most three vertices (which forms an independent set)). Therefore, in
some iteration of the loop at Step 4(v), we get Xv = Av and Yv = S1∪(N(v)∩S2). By Observation 5.4,
there cannot be any clique module of size at least 4. Note that (N(v) ∪ {v}) ∩ S2 is a clique module.
Therefore, only at most two vertices of N(v) \Av are not in S1. Further, S1 ⊆ N(v) \Av . Therefore,
in some iteration of the loop at Step 4(v)(a), we get Y ′

v = S1. The vertex u cannot have two adjacent
neighbors in G1−S1 (otherwise, there will be a triangle in G1⊕S1). Therefore, every vertex a ∈ N(u)
which is having a common neighbor with u must be in S2. Similarly, every neighbor of u adjacent to
a vertex in Xv is in S2. By Step 4(v)(a)iii of the algorithm, we obtain all vertices of Z except possibly
the set I ′ of isolated vertices in G[N(u)] which are not adjacent to any vertex in Xv. It can be verified
that S \ I ′ is also a solution. Therefore, the algorithm return YES at Step 4(v)(a)iv.

Lemma 5.11. The algorithm returns YES if and only if G is a yes-instance.

Proof. Clearly, if the algorithm returns YES, then G is a yes-instance. For the other direction, assume
that G is a yes-instance. If there exists a solution S such that G⊕ S is a connected component, then
the algorithm returns YES by Lemma 5.6. If there exists a solution S such that G ⊕ S has at least
three connected components, then by Lemma 5.7, the algorithm returns YES. Assume that there is
no solution that transforms the graph into a single component or at least three components. Then
there must exists a solution S such that G⊕S has exactly two connected components G1 and G2. By
Proposition 5.1, each of G1 and G2 is either triangle-free or complete multipartite. Assume that both
G1 and G2 are complete multipartite. Then by Lemma 5.8, the algorithm returns YES. Assume that
both G1 and G2 are triangle-free. Then by Lemma 5.9, the algorithm returns YES. Now, assume that
G1 is triangle-free and G2 is complete multipartite. Then the algorithm returns YES by Lemma 5.10.
This completes the proof.

Now, Theorem 5.12 follows from Lemma 5.11 and the fact that all split partitions and all component
partitions of a graph can be obtained in polynomial-time.

Theorem 5.12. SC-to-F(paw) can be solved in polynomial-time.

References

[1] Maria Chudnovsky and Paul D Seymour. The structure of claw-free graphs. Surveys in
combinatorics, 327:153–171, 2005.

[2] George J. Minty. On maximal independent sets of vertices in claw-free graphs. J. Comb. Theory,
Ser. B, 28(3):284–304, 1980.

[3] Peter Gartland and Daniel Lokshtanov. Independent set on $\mathrm{P} {k}$-free graphs in
quasi-polynomial time. In Sandy Irani, editor, 61st IEEE Annual Symposium on Foundations
of Computer Science, FOCS 2020, Durham, NC, USA, November 16-19, 2020, pages 613–624.
IEEE, 2020.

[4] Daniel Lokshantov, Martin Vatshelle, and Yngve Villanger. Independent set in P5-free graphs
in polynomial time. In Chandra Chekuri, editor, Proceedings of the Twenty-Fifth Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA 2014, Portland, Oregon, USA, January
5-7, 2014, pages 570–581. SIAM, 2014.

[5] Marcin Pilipczuk, Michal Pilipczuk, and Pawel Rzazewski. Quasi-polynomial-time algorithm
for independent set in Pt-free graphs via shrinking the space of induced paths. In Hung Viet
Le and Valerie King, editors, 4th Symposium on Simplicity in Algorithms, SOSA 2021, Virtual
Conference, January 11-12, 2021, pages 204–209. SIAM, 2021.

[6] Marcin Kaminski, Vadim V. Lozin, and Martin Milanic. Recent developments on graphs of
bounded clique-width. Discret. Appl. Math., 157(12):2747–2761, 2009.

30



[7] Fedor V. Fomin, Petr A. Golovach, Torstein J. F. Strømme, and Dimitrios M. Thilikos. Subgraph
complementation. Algorithmica, 82(7):1859–1880, 2020.

[8] Dhanyamol Antony, Jay Garchar, Sagartanu Pal, R. B. Sandeep, Sagnik Sen, and R. Subashini.
On subgraph complementation to h-free graphs. In Lukasz Kowalik, Michal Pilipczuk, and
Pawel Rzazewski, editors, Graph-Theoretic Concepts in Computer Science - 47th International
Workshop, WG 2021, Warsaw, Poland, June 23-25, 2021, Revised Selected Papers, volume 12911
of Lecture Notes in Computer Science, pages 118–129. Springer, 2021.

[9] Tibor Gallai. Transitiv orientierbare graphen. Acta Mathematica Hungarica, 18(1-2):25–66, 1967.

[10] Michel Habib and Christophe Paul. A survey of the algorithmic aspects of modular decomposition.
Comput. Sci. Rev., 4(1):41–59, 2010.

[11] Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.

[12] Stephan Olariu. Paw-fee graphs. Inf. Process. Lett., 28(1):53–54, 1988.

[13] Sudeshna Kolay and Fahad Panolan. Parameterized algorithms for deletion to (r, ℓ)-graphs. In
Prahladh Harsha and G. Ramalingam, editors, 35th IARCS Annual Conference on Foundation
of Software Technology and Theoretical Computer Science, FSTTCS 2015, volume 45 of LIPIcs,
pages 420–433. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, (2015).

[14] Sudeshna Kolay and Fahad Panolan. Parameterized algorithms for deletion to (r, l)-graphs.
CoRR, abs/1504.08120, 2015.

31


	1 Introduction
	2 Preliminaries
	3 Reductions for general graphs
	3.1 Graphs with duplicated vertices
	3.2 5-connected graphs

	4 Trees
	4.1 Removing leaves
	4.2 Trees with at least 4 leaves and 3 internal vertices
	4.3 Bistar graphs
	4.4 Tristar graphs
	4.5 Paths
	4.6 Subdivisions of claw
	4.7 Putting them together

	5 Polynomial-time algorithm

