
ar
X

iv
:2

10
2.

10
56

8v
1 

 [
m

at
h.

C
O

] 
 2

1 
Fe

b 
20

21

TS-Reconfiguration of Dominating Sets in circle and

circular-arc graphs *

Nicolas Bousquet1 and Alice Joffard1
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Abstract

We study the dominating set reconfiguration problem with the token sliding rule. It consists, given
a graph G = (V, E) and two dominating sets Ds and Dt of G, in determining if there exists a sequence
S =< D1 := Ds, . . . , Dℓ := Dt > of dominating sets of G such that for any two consecutive dominating
sets Dr and Dr+1 with r < t, Dr+1 = Dr \ u ∪ v, where uv ∈ E.

In a recent paper, Bonamy et al. [3] studied this problem and raised the following questions: what is
the complexity of this problem on circular arc graphs? On circle graphs? In this paper, we answer both
questions by proving that the problem is polynomial on circular-arc graphs and PSPACE-complete on cir-
cle graphs.

Keywords: reconfiguration, dominating sets, token sliding, circle graphs, circular arc graphs.

1 Introduction

Reconfiguration problems consist, given an instance of a problem, in determining if (and in how many
steps) we can transform one of its solutions into another one via a sequence of elementary operations
keeping a solution along this sequence. The sequence is called a reconfiguration sequence.

Let Π be a problem and I be an instance of Π. Another way to describe a reconfiguration problem is to
define the reconfiguration graph RI , whose vertices are the solutions of the instance I of Π, and in which two
solutions are adjacent if and only if we can transform the first solution into the second in one elementary
step. In this paper, we focus on the so-called REACHABILITY problem which, given an instance I of a prob-
lem Π and two solutions I, J of I, returns true if and only if there exists a reconfiguration sequence from
I to J keeping a solution all along. Other works have focused on slightly different problems such as the
connectivity of the reconfiguration graph or its diameter, see e.g. [4, 7, 8]. Reconfiguration problems arise
in various fields such as combinatorial games, motion of robots, random sampling, or enumeration. Recon-
figuration has been intensively studied for various rules and problems such as satisfiability constraints [7],
graph coloring [1, 6], vertex covers and independent sets [10, 11, 13] or matchings [2]. The reader is referred
to the surveys [14, 16] for a more complete overview on reconfiguration problems. In this work, we focus
on dominating set reconfiguration. Throughout the paper, all the graphs are finite and simple.

Let G = (V,E) be a graph. A dominating set of G is a subset of vertices X such that, for every v ∈ V ,
either v ∈ X or v has a neighbor in X . A dominating set can be seen as a subset of tokens placed on vertices
which dominates the graph. Three types of elementary operations, called reconfiguration rules, have been
studied for the reconfiguration of dominating sets.

*This work was supported by ANR project GrR (ANR-18-CE40-0032).
†firstname.lastname@liris.cnrs.fr
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• The token addition-removal rule (TAR) where each operation consists in either removing a token from a
vertex, or adding a token on any vertex (keeping a dominating set).

• The token jumping rule (TJ) where an operation consists in moving a token from a vertex to any vertex
of the graph (keeping a dominating set).

• The token sliding rule (TS) where an operation consists in sliding a token from a vertex to an adjacent
vertex.

In this paper, we focus on the reconfiguration of dominating sets with the token sliding rule. Note that
we authorize (as well as in the other papers on the topic, see [3]) the dominating sets to be multisets. In
other words, several tokens can be put on the same vertex. Bonamy et al. observed in [3] that this choice
can modify the reconfiguration graph and the set of dominating sets that can be reached from the initial
one. More formally, we consider the following problem:

DOMINATING SET RECONFIGURATION UNDER TOKEN SLIDING (DSRTS )
Input: A graph G, two dominating sets Ds and Dt of G.
Output: Does there exist a dominating set reconfiguration sequence from Ds to Dt under the token sliding
rule ?

Dominating Set Reconfiguration under Token Sliding. The dominating set reconfiguration problem has
been widely studied with the token addition-removal rule. Most of the earlier works focused on the condi-
tions that ensure that the reconfiguration graph is connected in function of several graph parameters, see
e.g. [5, 8, 15]. From a complexity point of view, Haddadan et al. [9], proved that the reachability problem
is PSPACE-complete under the addition-removal rule, even when restricted to split graphs and bipartite
graphs. They also provide linear time algorithms in trees and interval graphs.

More recently, Bonamy et al. [3] studied the dominating set reconfiguration problem under token sliding.
They proved that DSRTS is PSPACE-complete, even restricted to split, bipartite or bounded tree-width
graphs. On the other hand, they provide polynomial time algorithms for cographs and dually chordal
graphs (which contain interval graphs). In their paper, they raise the following question: is it possible to
generalize the polynomial time algorithm for interval graphs to circular arc-graphs ?

They also ask if there exists a class of graphs for which the maximum dominating set problem is NP-
complete but its TS-reconfiguration counterpart is polynomial. They propose the class of circle graphs as a
candidate.

Our contribution. In this paper, we answer the questions raised in [3]. First, we prove the following:

Theorem 1. DSRTS is polynomial in circular arc graphs.

The very high level idea of the proof is as follows. If we fix a vertex of the dominating set then we
can unfold the rest of the graph to get an interval graph. We can then use as a black-box the algorithm of
Bonamy et al. on interval graphs to determine if we can slide the fixed vertex of the dominating set to some
more desirable position.

Our second main result is the following:

Theorem 2. DSRTS is PSPACE-complete in circle graphs.

This is answering a second question of [3]. The proof is inspired from the proof that DOMINATING SET

IN CIRCLE GRAPHS is NP-complete [12] but has to be adapted for the reconfiguration framework.
Both our results and the previously known results about the complexity of DSRTS in graph classes are

summarized in Figure 1.
We left open the following question also raised by Bonamy et al. [3]: does there exist a graph class for

which MAXIMUM DOMINATING SET is NP-complete but TS-REACHABILITY is polynomial? In the recon-
figuration world, such results are not frequent but exist. For instance the existence of a reconfiguration
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sequence between two 3-colorings can be decided in polynomial time [6] while finding a 3-coloring is NP-
complete.

We also raise the following question: what is the complexity of the DSRTS problem for outerplanar
graphs? Outerplanar graphs form a natural subclass of circle graphs, of bounded treewidth graph, and of
planar graphs on which the complexity of the problem is PSPACE-complete.

PSPACE-complete

Polynomial

Circle

Perfect

Cographs

Chordal

Split

Threshold

Tree

Bounded treewidth

Bounded pathwidth

Bounded bandwidth Bipartite Planar

Interval

Proper Interval

Circular Arc

Circular Interval

Dually chordal

Figure 1: The complexity of DSRTS in several graph classes. The thick rectangles are the results we show
in this paper and the other ones are previously known results.

2 Preliminaries

Let G = (V,E) be a graph. Given a vertex v ∈ V , N(v) denotes the open neighborhood of v, i.e. the set
{y ∈ V : vy ∈ E}.

A multiset is defined as a set with multiplicities. In other words, in a multiset an element can appear
several times. The number of times an element appears is the multiplicity of this element. The multiplicity
of an element that does not appear in the multiset is 0. Let A and B be multisets. The union of A and B,
denoted by A ∪B, is the multiset containing only elements of A or B, and in which the multiplicity of each
element is the sum of their multiplicities in A and B. The difference A \ B denotes the multiset containing
only elements of A, and in which the multiplicity of each element is the difference between its multiplicity
in A and its multiplicity in B (if the result is negative then the element is not in A\B). By abuse of language,
all along this paper, we may refer to multisets as sets.

A dominating set D of G is a multiset of elements of V , such that for any v ∈ V , v ∈ D or there exists
u ∈ D such that uv ∈ E.

Under the token sliding rule, a move vi  vj , from a set Sr to a set Sr+1, denotes the token sliding
operation along the edge vivj from vi to vj , i.e. Sr+1 = Sr ∪ vj \ vi. We say that a set S is before a set S′ in a
reconfiguration sequence S if S contains a subsequence starting with S and ending with S′.

3



3 A polynomial time algorithm for circular arc-graphs

An interval graph G = (V,E) is an intersection graph of intervals of the real line. In other words, the set of
vertices is a set of real intervals I and two vertices are adjacent if their corresponding intervals intersect. A
circular arc graph G = (V,E) is an intersection graph of intervals of a circle. In other words, every vertex
is associated an arc A of the circle and there is an edge between two vertices if their two corresponding
arcs intersect. By abuse of notation, we refer to the vertices by their image arc. Circular arc graphs strictly
contain interval graphs (since long induced cycles are circular arc graphs and not interval graphs). Bonamy
et al. proved the following result in [3] that we will use as a black-box:

Theorem 3. [Bonamy et al. [1]] Let G be a connected interval graph, and Ds, Dt be two dominating sets of G of the
same size. There always exist a TS-reconfiguration sequence from Ds to Dt.

One can naturally wonder if Theorem 3 can be extended to circular arc graphs. The answer is negative
since, for every k, the cycle C3k of length 3k is a circular arc graph and there are only three dominating sets
of size exactly k (the ones containing vertices i mod 3 for i ∈ {0, 1, 2}) which are pairwise non adjacent for
the TS-rule.

However, we prove that we can decide in polynomial time if we can transform one dominating set into
another.The remaining of this section is devoted to prove Theorem 1.

Let G = (V,E) be a circular arc graph and Ds, Dt be two dominating sets of G of the same size k.
Assume first that there exists an arc v ∈ V that contains the whole circle. So A is a dominating set of G

and then for any two dominating sets Ds and Dt of G, we can move a token from Ds to v, then move every
other other token of Ds to a vertex of Dt (in at most two steps passing through A), and finally move the
token on v to the last vertex of Dt. Since a token is on v all along the transformation, all the intermediate
steps are indeed dominating sets. So if such an arc exists, there exists a reconfiguration sequence from Ds

to Dt.
From now on we assume that no arc contains the whole circle (and that no vertex is dominating the

graph). For any arc v ∈ V , the left extremity of v, denoted by ℓ(v), is the first extremity of v we meet when
we follow the circle clockwise, starting from a point outside of v. The other extremity of v is called the right
extremity and is denoted by r(v).We now construct Gu from G′

u. First remove the vertex u. Note that after
this deletion, no arc intersects the open interval (ℓ(u), r(u)) so the resulting graph is an interval graph. We
can unfold it in such a way the first vertex starts at position ℓ(u) and the last vertex ends at position r(u)
(see Figure 2). We add two new vertices, u′ and u′′, that correspond to each extremity of u. One has interval
(−∞, ℓ(u)] and the other has interval [r(u),+∞). Since no arc but u′ (resp. u′′) intersects (−∞, ℓ(u)] (resp.
[r(u),+∞)), we can create (n+2) new vertices only adjacent to u′ (resp. u′′). These 2n+4 vertices are called
the leaves of Gu.

Let us first prove the following straightforward lemma.

Lemma 1. Let G be a graph, and u and v be two vertices of G such that N(u) ⊆ N(v). If S is a dominating set
reconfiguration sequence in G, and S′ is obtained from S by replacing every occurrence of u by v in the dominating
sets of S, then S′ also is a dominating set reconfiguration sequence in G.

Proof. Every neighbor of u also is a neighbor of v. Thus, replacing u by v in a dominating set keeps the
domination of G. Moreover, any move that involves u can be applied if we replace it by v, which gives the
result.

In the proof of Theorem 1, we will need the following auxiliary graph Gu (see Figure 2 for an illustration
of the construction). Let u be a vertex of G that is maximal by inclusion (no arc strictly contains it). The
circular graph G′

u is the graph such that, for every v 6= u which is not contained in u, we create an arc Av′

which is the closure of Av \ Au
1. Since u is maximal by inclusion, v′ is an arc. We finally add in G′

u the
arc of u. Note that the set of edges in G′

u might be smaller than the one of G but any dominating set of G

1In other words, the arc of v′ is the part of the arc of v that is not included in the arc of u. Also note that the fact that A′

v is the
closure of that arc ensures that that Au and Av′ intersect.
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containing u is a dominating set of G′

u. We now construct Gu from G′

u. First remove the vertex u. Note that
after this deletion, no arc intersects the open interval (ℓ(u), r(u)) so the resulting graph is an interval graph.
We can unfold it in such a way the first vertex starts at position ℓ(u) and the last vertex ends at position r(u)
(see Figure 2). We add two new vertices, u′ and u′′, that correspond to each extremity of u. One has interval
(−∞, ℓ(u)] and the other has interval [r(u),+∞). Since no arc but u′ (resp. u′′) intersects (−∞, ℓ(u)] (resp.
[r(u),+∞)), we can create (n+2) new vertices only adjacent to u′ (resp. u′′). These 2n+4 vertices are called
the leaves of Gu.

u

− +

− +

u′ u′′

G Gu

Figure 2: The linear interval graph Gu obtained from the circular arc graph G.

Let us first prove a couple of simple facts about dominating sets of Gu.

Lemma 2. Let D be a dominating set of G such that u ∈ D, and let Du be the set D ∪ {u′, u′′} \ {u}. The set Du is
a dominating set of Gu.

Proof. Every vertex of N(u) in the original graph G is either not in Gu, or is dominated by u′ or u′′. The
neighborhood of all the other vertices have not been modified. Moreover, all the new vertices are dominated
since they are all adjacent to u′ or u′′.

Note that Du has size |D|+ 1.

Lemma 3. The following holds:

(i) All the dominating sets of Gu of size |D|+ 1 contain u′ and u′′.

(ii) For every dominating set X of Gu of size |D|+ 1, (X ∩ V ) ∪ {u} is a dominating set of G of size at most |D|.

(iii) Every reconfiguration sequence in Gu between two dominating sets Ds, Dt of Gu of size at most |D| + 1 that
does not contain any leaf can be adapted into a reconfiguration sequence in G between (Ds \ {u

′, u′′}) ∪ {u}
and (Dt \ {u′, u′′}) ∪ {u}.

Proof. Proof of (i). The point (i) holds since there are n + 2 leaves attached to each of u′ and u′′ and that
|D| ≤ n.

Proof of (ii). The vertices u′ and u′′ only dominate vertices of V dominated by u in G and u′ and u′′ are in
any dominating set of size at most |D|+1 of Gu by (i). Moreover no edge between two vertices x, y ∈ V (G)
was created in Gu. Thus (X ∩ V ) ∪ {u} is a dominating set of G since the only vertices of V (G) that are not
in V (Gu) are vertices whose arcs are strictly included in u and then are dominated by u.

Proof of (iii). By Lemma 1, we can assume that there is no token on u′ or u′′ at any point. We show that we
can adapt the transformation. If the move x  y satisfies that x, y /∈ {u′, u′′} then the same edge exists in
G and by (ii), the resulting set is dominating. So we can assume that x or y are u′ or u′′. We simply have to
slide from or to u since N(u′) and N(u′′) minus the leaves is equal to N(u). Since there is never a token on
the leaves, the conclusion follows.

By Lemma 3 and Theorem 3, we immediately obtain the following corollary:
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Corollary 1. Let G be a circular interval graph, u ∈ V (G), and k be an integer. All the k-dominating sets of G
containing u are in the same connected component of the reconfiguration graph.

We now have all the ingredients to prove Theorem 1.

Proof of Theorem 1. Let G = (V,E) be a circular arc graph, and let Ds and Dt be two dominating sets of G.
Free to slide tokens, we can assume that all the intervals of Ds and Dt are maximal by inclusion. Moreover,
by Lemma 1, we can assume that all the vertices of all the dominating sets we will consider are maximal
by inclusion. By abuse of notation, we say that in G, an arc v is the first arc on the left (resp. on the right) of
another arc u if the first left extremity of an inclusion-wise maximal arc (of G, or of the stated dominating
set) we encounter when browsing the circle counter clockwise (resp. clockwise) from the left extremity of
u is the one of v. In interval graphs, we say that an interval v is at the left (resp. at the right) of an interval
u if the left extremity of v is smaller (resp. larger) than the one of u. Note that since the intervals of the
dominating sets are maximal by inclusion, the left and right ordering of these vertices are the same. So we
can assume that we have a total ordering of the vertices of the dominating sets we are considering.

Let u1 be a vertex of Ds. Let v be the first vertex at the right of u1 in Dt. We perform the following
algorithm, called the Right Sliding Algorithm. By Lemma 3, all the dominating sets of size |Ds| + 1 in Gu1

contain u′

1 and u′′

1 . Let D′

2 be a dominating set of the interval graph Gu1
of size |Ds| + 1, such that the

first vertex at the right of u′

1 has the smallest left extremity (we can indeed find such a dominating set in
polynomial time). By Theorem 3, there exists a transformation from (Ds ∪ {u′

1, u
′′

1}) \ {u1} to D′

2 in Gu1
.

And thus by Lemma 3, there exists a transformation from Ds to D2 := (D′

2 ∪{u1})\ {u′

1, u
′′

1} in G. We apply
this transformation. Informally speaking, this transformation has permitted to move the token at the left of
u closest from u that will hopefully permit to push the token on u to the right.

Now, we fix all the vertices of D2 but u1, and we try to slide the token on u1 to its right. If we can push
it on a vertex at the right of v, we can in particular push it on v (since v is maximal by inclusion) and keep a
dominating set. So we set u2 = v if we can reach v or the rightmost possible vertex maximal by inclusion we
can reach otherwise. We now repeat these operations with u2 instead of u1, i.e. we apply a reconfiguration
sequence towards a dominating set of G in which the first vertex on the left of u2 is the closest to u2, then
try to slide u2 to the right, onto u3. We repeat these operations until ui = ui+1 (i.e. we cannot move to the
right anymore) or until ui = v. Let u1, . . . , uℓ be the resulting sequence of vertices. Note that this algorithm
is indeed polynomial since after at most n steps we have reached v or reached a fixed point.

We can similarly define the Left Sliding Algorithm by replacing the leftmost dominating set of Gui
by

the rightmost, and then slide ui to the left for any i. We stop when we cannot slide to the left anymore, or
when ui = v′, where v′ is the first vertex at the left of u1 in Dt. Let u′

ℓ be the last vertex of the sequence of
vertices given by the Left Sliding Algorithm.

To conclude the proof we simply have to show the following claim:

Claim 1. There exists a transformation from Ds to Dt if and only if uℓ = v or u′

ℓ = v′.

Proof. Firstly, if uℓ = v, then Corollary 1 ensures that there exists a transformation from Dℓ to Dt and thus
from Ds to Dt, and similarly if u′

ℓ = v′.
Let us now prove the converse direction. If uℓ 6= v and u′

ℓ 6= v′, assume for contradiction that there
exists a transformation sequence S from Ds to Dt. By Lemma 1 we can assume that all the vertices in any
dominating set of S are maximal by inclusion.

Let us consider the first dominating set C of S where the token initially on u1 is at the right of uℓ in G, or
at the left of u′

ℓ in G. Such a dominating set exists no token of Dt is between u′

ℓ′ and uℓ. Let us denote by C′

the dominating before C in the sequence and x  y the move from C to C′. By symmetry, we can assume
that y is at the right of uℓ. Note that x is at the left of uℓ. Note that C′′ = C \ {x} ∪ {uℓ} is a dominating set
of G since C and C′ = C \ {x} ∪ {y} are dominating sets and uℓ is between x and y.

So C \ {x} ∪ {uℓ, u
′

ℓ} is a dominating set of Guℓ
and then for C′′ it was possible to move the token on uℓ

to the right, a contradiction with the fact that uℓ was a fixed point. ♦

6



4 PSPACE-hardness for Circle Graphs

A circle graph G = (V,E) is an intersection graph of chords of a circle (i.e. segments between two points
of a circle). Let C be a circle. Equivalently, we can associate to each vertex of a circle graph two points of
C. And there is an edge between two vertices if the chords between their pair of points intersect. Again
equivalently, a circle graph can be represented on the real line. We associate to each vertex an interval of
the real line; and there is an edge between two vertices if their intervals intersect but do not overlap. In this
section, we will use the last representation of circle graphs. For every interval I , ℓ(I) will denote the left
extremity of I , and r(I) the right extremity of I .

The goal of this section is to show that DSRTS is PSPACE-complete in circle graphs. We provide a
polynomial time reduction from SATR to DSRTS. This reduction is inspired from one used in [12] to show
that the minimum dominating set problem is NP-complete on circle graphs but has to be adapted in the
reconfiguration framework. The SATR problem is defined as follows:

SATISFIABILITY RECONFIGURATION (SATR )
Input: A Boolean formula F in conjunctive normal form (conjunction of clauses), two variable assignments
As and At that satisfy F .
Output: Does there exist a reconfiguration sequence from As to At that keeps F satisfied, where the opera-
tion consists in a variable flip, i.e. the change of the assignment of exactly one variable from x = 0 to x = 1,
or conversely ?

Let (F,As, At) be an instance of the SATR problem. Let x1 . . . , xn be the variables of the boolean formula
F . Since F is in conjunctive normal form, it is a conjunction of clauses c1, . . . , cm which are disjunctions of
literals. A literal is a variable or the negation of a variable, and we denote by xi ∈ cj (resp. xi ∈ cj) the fact
that xi (resp. the negation of xi) is a literal of cj . Since duplicating clauses does not modify the satisfiability
of a formula, we can assume without loss of generality that m is a multiple of 4. We can also assume that for
every i ≤ n and j ≤ m, and that, for every i, j, xi or xi are not in cj (since otherwise the clause is satisfied
for any possible assignment and can be removed from the boolean formula).

4.1 The reduction.

Let us construct an instance (GF , DF (As), DF (At)) of the DSRTS problem from (F,As, At). We start by
constructing the circle graph GF from F . All along this construction, we repeatedly refer to real number as
points. We say that a point p is at the left of a point q (or q is at the right of p) if p < q. We say that p is just at
the left of q, (or q is just at the right of p) if p is at the left of q, and no interval defined so far has an extremity
in [p, q]. Finally, we say that an interval I frames a set of points P if ℓ(I) is just at the left of the minimum of
P and r(I) is just at the right of the maximum of P .

One can easily check that by adding an interval that frames one extremity of the interval of a vertex u of
a graph H , we add one vertex to H which is only connected to u. So:

Remark 1. If H is a circle graph and u is a vertex of H , then the graph H plus a new vertex only connected to u is
circle graph.

We construct GF step by step. The construction of GF is quite technical and will be performed step by
step. The construction is inspired from [12]. In [12], the authors have decided to give the coordinates of the
endpoints of all the intervals. For the sake of readability, we think that it is easier to only give the relative
positions of the intervals between them.

Each step consists in creating new intervals, and in giving their relative positions regarding to the pre-
viously constructed intervals. We also outline some of the edges and non edges in GF that have an impact
on the upcoming proofs2. Figures 3, 4 and 5 will illustrate the positions of the intervals of GF .

For each variable xi, we create m base intervals Bi
j where 1 ≤ j ≤ m. The base intervals Bi

j are pairwise
disjoint for any i and j, and are ordered by increasing i, then increasing j for a same i.

2Some adjacencies between intervals that will be anyway dominated for some reasons that will become clear later on will not be
discussed.
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For each variable xi, we then create m
2

intervals X i
j called the positive bridge intervals of xi, and m

2
inter-

vals X
i

j called the negative bridge intervals of xi, where 1 ≤ j ≤ m
2

. A bridge interval is a positive or a negative
bridge interval. Let us give the positions of these intervals. They are illustrated in Figure 3.

B1
1 B1

2 B1
3 B1

4 B1
5 B1

6 B1
7 B1

8 B2
1 B2

2 B2
3 B2

4 B2
5 B2

6 B2
7 B2

8

X
1

1 X
1

3 X
2

1 X
2

3

X
1

2 X
1

4 X
2

2 X
2

4

X1
1 X1

4 X2
1 X2

4X1
2 X2

2

X1
3 X2

3

Figure 3: The base, positive and negative bridge intervals obtained with n = 2 and m = 8.

Let q be such that m = 4q. For every i and every 0 ≤ r < q, the interval X
i

2r+1 starts just at the right of

ℓ(Bi
4r+1) and ends just at the right of ℓ(Bi

4r+3), and X
i

2r+2 starts just at the right of ℓ(Bi
4r+2) and ends just

at the right of ℓ(Bi
4r+4). The interval X i

1 starts just at the left of r(Bi
1) and ends just at the left of r(Bi

2). For
every 1 ≤ r < q, the interval X i

2r starts just at the left of r(Bi
4r−1) and ends just at the left of r(Bi

4r+1), and
X i

2r+1 starts just at the left of r(Bi
4r) and ends just at the left of r(Bi

4r+2). Finally, X i
m

2

starts just at the left

of r(Bi
m−1) and ends just at the left of r(Bi

m).
Let us outline some of the edges induced by these intervals. Base intervals are pairwise non adjacent.

Moreover, every positive (resp. negative) bridge interval is incident to exactly two base intervals; And all
the positive (resp. negative) bridge intervals of xi are incident to pairwise distinct base intervals. In partic-
ular, the positive (resp. negative) bridge intervals dominate the base intervals; And every base interval is
adjacent to exactly one positive and one negative bridge interval. All the positive (resp. negative) bridge
intervals but X i

1 and X i
m

2

have exactly one other positive (resp. negative) bridge interval neighbor. Finally,

for every i, every negative bridge interval X
i

j has exactly two positive bridge interval neighbors which are

X i
j−1 and X i

j except for X
i

1 which does not have any for any i. Note that a bridge interval of xi is not
adjacent to a bridge interval or a base interval of xj for j 6= i.

Now for any clause cj , we create two identical clause intervals Cj and C′

j . In this paper, we consider
that two identical intervals do overlap, so that Cj and C′

j are not adjacent. The clause intervals Cj are
pairwise disjoint and ordered by increasing j, and we have ℓ(C1) > r(Bn

m). Thus, they are not adjacent to
any interval constructed so far.

For every j such that xi is in the clause cj , we create four intervals T i
j , U i

j , V i
j and W i

j , called the positive

path intervals of xi; and for every j such that xi is in the clause cj , we create four intervals T
i

j , U
i

j , V
i

j and W
i

j ,
called the negative path intervals of xi. These intervals are represented in Figure 4. In order to give a better
representation of the relative position of the extremities, a zoom on that part of the graph is proposed in
Figure 5. The interval T i

j frames the right extremity of Bi
j and the extremity of the positive bridge interval

that belongs to Bi
j . The interval T

i

j frames the left extremity of Bi
j and the extremity of the negative bridge

interval that belongs to Bi
j . The interval U i

j starts just at the left of r(T i
j ), the interval U

i

j starts just at the

right of l(T
i

j), and they both end between the right of the last base interval of the variable xi and the left

of the next base or clause interval. We moreover construct the intervals U i
j (resp. U

i

j) in such a way r(U i
j)

(resp. r(U
i

j)) is increasing when j is increasing. In other words, the U i
j (resp. U

i

j) are pairwise adjacent. The

interval V i
j (resp. V i

j ) frames the right extremity of U i
j (resp. U i

j ). And the interval W i
j (resp. W i

j ) starts just

at the left of r(V i
j ) (resp. r(V i

j )) and ends in an arbitrary point of Cj . Moreover, for any i 6= i′, W i
j (resp.

8



W i
j ) and W i′

j (resp. W i′

j ) end on the same point of Cj . This ensures that they overlap and are therefore not
adjacent.

B1
1 B1

2 B1
3 B1

4 B2
1 B2

2 B2
3 B2

4
C1 C2 C3 C4

JX
1

1 X
2

1

X
1

2 X
2

2

X1
1 X1

2 X2
1 X2

2

T 1
1 T 1

3 T 1
4 T 2

1

T
1

2 T
2

2 T
2

4

U1
1

U1
3

U1
4

U2
1

U
1

2 U
2

2 U
2

4

V 1
1 V 1

3 V 1
4 V 2

1

V
1

2 V
2

2 V
2

4

W 1
1

W 1
3

W 1
4

W 2
1

W
1

2
W

2

2

W
2

4

Figure 4: The intervals obtained for the formula F = (x1 ∨ x2) ∧ (x1 ∨ x2) ∧ (x1) ∧ (x2 ∨ x1) with m = 4
clauses and n = 2 variables. The dead-end intervals and the pending intervals are not represented here.

B1
1 B1

2

X
1

2

X1
1

T 1
1

T
1

2

U1
1

U
1

2

V 1
1

V
1

2

W 1
1

. . .

W
1

2

. . .

Figure 5: A zoom on some intervals of the variable x1.

A path interval is a positive or a negative path interval. The intervals of xi are the base, bridge and path
intervals of xi. The T intervals of xi refers to the intervals T i

j for any j. The T , U , U , V , V , W and W
intervals of xi are defined similarly.

Let us outline some neighbors of the path intervals. The neighborhood of every clause interval Cj is the

set of intervals W i
j with xi ∈ cj and intervals W

i

j with xi ∈ cj . Since V i
j spans the left extremity of W i

j and

the right extremity of U i
j and since no interval starts or ends between these two points, the interval V i

j is

only adjacent to U i
j and W i

j . Similarly V
i

j is only adjacent to U
i

j and W
i

j . Moreover, T i
j is only adjacent to Bi

j ,

U i
j and one positive bridge interval (the same one that is adjacent to Bi

j), and T
i

j is only adjacent to Bi
j , U

i

j

and one negative bridge interval (the same one that is adjacent to Bi
j). Moreover, since U i

j and W i
j are not

9



adjacent, Bi
j , T i

j , U i
j , V i

j , W i
j and Cj induce a path, and since U

i

j and W
i

j are not adjacent, Bi
j , T

i

j , U
i

j , V
i

j , W
i

j

and Cj induce a path. Finally, for any two variables xi and x′

i such that xi 6= x′

i, the only path intervals of
respectively xi and x′

i that can be adjacent are the W and W intervals adjacent to different clause intervals.
Now, for every bridge interval and every U , U , W and W interval, we create a dead-end interval, that is

only adjacent to it. Remark 1 ensures that it can be done while keeping a circle graph. Then, for any dead-
end interval, we create 6mn pending intervals that are each only adjacent to it. Again, Remark 1 ensures that
the resulting graph is a circle graph. Informally speaking, since the dead-end intervals have a lot of pending
intervals, they will be forced to be in any dominating set of size at most 6mn. Thus, in any dominating set,
we will know that bridge, U , U , W and W intervals (as well as dead-end an pending vertices) are already
dominated. So the other vertices in the dominating set will only be there to dominate the other vertices of
the graph, which are called the important vertices.

Finally, we create a junction interval J , that frames ℓ(C1) and r(Cm). By construction, it is adjacent to
every W or W interval, and to no other interval. This completes the construction of the graph GF .

4.2 Basic properties of GF

Let us first give a couple of properties satisfied by GF . The following lemma will be used to guarantee that
any token can be moved to any vertex of the graph as long as the rest of the tokens form a dominating set.

Lemma 4. The graph GF is connected.

Proof. Let xi be a variable. Let us first prove that the intervals of xi are in the same connected component of
GF . (Recall that they are the base, bridge and path intervals of xi). Firstly, for any j such that xi ∈ Cj (resp.

xi ∈ Cj), Bi
jT

i
jU

i
jV

i
j W

i
j (resp. Bi

jT
i

jU
i

jV
i

jW
i

j) is a path of GF . Since every base interval of xi is adjacent to
a positive and a negative bridge interval of xi, it is enough to show that all the bridge intervals of xi are

in the same connected component. Since for every j ≥ 2, X
i

j is adjacent to X i
j−1 and X i

j , we know that

X i
1X

i

2, X
i
2 . . . X

i
m

2

X i
m

2

is a path of GF . Moreover, X
i

1 is adjacent to X
i

2. So all the intervals of xi are in the

same connected component of GF ..
Now, since the junction interval J is adjacent to every W and W interval (and that each variable appears

in at least one clause), J is in the connected component of all the path variables, so the intervals of xi and xi′

are in the same connected component for every i 6= i′. Since each clause contains at least one variable, Cj

is adjacent to at least one interval W i
j or W

i

j . Finally, each dead-end interval is adjacent to a bridge interval

or a U , U , W or W interval, and each pendant interval is adjacent to a dead-end interval. Therefore, GF is
connected.

For any variable assignment A of F , let DF (A) be the set of intervals of GF defined as follows. The
junction interval J belongs to DF (A) and all the dead-end intervals belong to DF (A). For any variable xi

such that xi = 1 in A, the positive bridge, W and U intervals of xi belong to DF (A). Finally, for any variable
xi such that xi = 0 in A, the negative bridge, W and U intervals of xi belong to DF (A). The multiplicity
of each of these intervals in DF (A) is one. Thus, we have |DF (A)| =

3mn
2

+ 3
∑n

i=1
ℓi + 1 where for any

variable xi, ℓi is the number of clauses that contain xi or xi.

Lemma 5. If A satisfies F , then DF (A) \ J is a dominating set of GF .

Proof. Since every dead-end interval belongs to DF (A) \ J , every pending and dead-end interval is dom-
inated, as well as every bridge, U , U , W and W interval. Since for each variable xi, the positive (resp.
negative) bridge intervals of xi dominate the base intervals of xi, the base intervals are dominated. More-
over, the positive (resp. negative) bridge intervals of xi and the U (resp. U ) intervals of xi both dominate
the T (resp. T ) intervals of xi. Thus, the T and T intervals are all dominated. Moreover, for any variable
xi, the U and W (resp. U and W ) intervals of xi both dominate the V (resp. V ) intervals of xi. Thus, the V
and V intervals are all dominated. Finally, since A satisfies F , each clause has at least one of its literal in A.

Thus, each Cj and C′

j has at least one adjacent interval W i
j or W

i

j in DF (A) \J and are therefore dominated
by it, as well as the junction interval.
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Before continuing further, let us prove a few results that are of importance in our proof. Let K :=
3mn
2

+ 3
∑n

i=1
ℓi + 1. Since the number 6mn of leaves attached on each dead-end interval is strictly more

than K (as ℓi ≤ m), the following holds.

Remark 2. Any dominating set of size at most K contains all the (mn+ 2
∑n

i=1
ℓi) dead-end intervals.

Any dominating set of size K contains all the dead-end vertices. And then all the pending, dead-end,
bridge, U , U , W and W intervals are dominated. So we will simply have to focus on the domination of base,
T , T , V , V and junction intervals (i.e. the so-called important intervals).

Lemma 6. If D is a dominating set of G, then for any variable xi, D contains at least ℓi intervals that dominate the
V and V intervals of xi, and at least m

2
intervals that dominate the base intervals of xi. Moreover, these two sets of

intervals are disjoint, and they are intervals of xi.

Proof. For any variable xi, each interval V i
j (resp. V

i

j) can only be dominated by U i
j , V i

j or W i
j (resp. U

i

j ,

V
i

j or W
i

j). Indeed V i
j spans the left extremity of W i

j and the right extremity of U i
j and since no interval

starts or ends between these two points, the interval V i
j is only adjacent to U i

j and W i
j . And similarly V

i

j is

only adjacent to U
i

j and W
i

j . Thus, at least ℓi intervals dominate the V and V intervals of xi, and they are

intervals of xi. Moreover, only the base, bridge, T and T intervals of xi are adjacent to the base intervals.
Since each bridge interval is adjacent to two base intervals, and each T and T interval of xi is adjacent to
one base interval of xi, D must contain at least m

2
of such intervals to dominate the m base intervals.

Remark 2 and Lemma 6 imply that any dominating set D of size K contains (mn+ 2
∑n

i=1
ℓi) dead-end

intervals, as well as (ℓi +
m
2
) intervals of xi for any variable xi. Since K = 3mn

2
+ 3

∑n

i=1
ℓi + 1, this leaves

only one remaining token in D. Thus, for any variable xi but at most one, there are exactly (ℓi+
m
2
) intervals

of xi in D. If there exists a variable xk such that there are more (ℓi +
m
2
) intervals of xk in D, then there

are exactly (ℓk + m
2
+ 1) intervals of xk in D, and we call this variable the moving variable of D, denoted by

mv(D).
For any variable xi, we denote by Xi the set of positive bridge variables of xi and by Xi the set of

negative bridge variables of xi. Similarly, we denote by Wi the set of W variables of xi and by Wi the set of
W variables of xi. Let us now give some precision about the intervals of xi that belong to D.

Lemma 7. If D is a dominating set of size K , then for any variable xi 6= mv(D), either Xi ⊆ D and Xi ∩D = ∅,
or Xi ⊆ D and Xi ∩D = ∅.

Proof. Since xi 6= mv(D), there are exactly ℓi+
m
2

variables of xi in D. Thus, by Lemma 6, exactly m
2

intervals

of xi in D dominate the bridge intervals of xi. Only the bridge, T and T intervals of xi are adjacent to
the base intervals. Moreover, bridge intervals are adjacent to two base intervals and T or T intervals are
adjacent to only one. Since there are m base intervals of xi, each interval of D must dominate a pair of base
intervals (or none of them). So these intervals of D should be some bridge intervals of xi.

Note that, by cardinality, each pair of bridge intervals of D must dominate pairwise disjoint base inter-
vals. Let us now show by induction that these bridge intervals are either all the positive bridge intervals, or
all the negative bridge intervals. We study two cases: either X i

1 ∈ D, or X i
1 6∈ D.

Assume that X i
1 ∈ D. In D, X i

1 dominates Bi
1 and Bi

2. Thus, since X
i

1 dominates Bi
1 and X

i

2 dominates

Bi
2, none of X

i

1, X
i

2 are in D (since their neighborhood in the set of base intervals is not disjoint with X i
1).

But Bi
3 (resp Bi

4) is only adjacent to X
i

1 and X i
2 (resp. X

i

2 and X i
3). Thus both X i

2, X
i
3 are in D. Suppose

now that for a given j such that j is even and j ≤ m
2
− 2, we have X i

j , X
i
j+1 ∈ D. Then, since a base interval

dominated by X i
j (resp. X i

j+1) also is dominated by X
i

j+1 (resp. X
i

j+2), the intervals X
i

j+1, X
i

j+2 are not in

D. But there is a base interval adjacent only to X
i

j+1 and X i
j+2 (resp. X

i

j+2 and X i
j+3 if j 6= m

2
− 2, or X

i

j+2

and X i
j+2 if j = m

2
− 2). Therefore, if j + 2 < m

2
we have X i

j+2, X
i
j+3 ∈ D, and X i

m

2

∈ D. By induction,

if X i
1 ∈ D then each of the m

2
positive bridge intervals belong to D and thus none of the negative bridge

intervals do.
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Assume now that X i
1 6∈ D. Then, to dominate Bi

1 and Bi
2, we must have X

i

1, X
i

2 ∈ D. Let us show that

if for a given odd j such that j ≤ m
2
− 3 we have X

i

j, X
i

j+1 ∈ D, then X
i

j+2, X
i

j+3 ∈ D. Since X
i

j (resp.

X
i

j+1) dominates base intervals also dominated by X i
j+1 (resp. X i

j+2), we have X i
j+1, X

i
j+2 6∈ D. But there

exists a base interval only adjacent to X i
j+1 and X

i

j+2 (resp. X i
j+2 and X

i

j+3). Thus, X
i

j+2, X
i

j+3 ∈ D. By

induction, if X i
1 6∈ D then each of the m

2
negative bridge intervals belong to D. Thus, none of the positive

bridge intervals belong to D.

Lemma 8. If D is a dominating set of size K , then for any variable xi 6= mv(D), if Xi ⊆ D then Wi ∩ D = ∅,
otherwise Wi ∩D = ∅.

Proof. By Lemma 7, D either contains Xi or contains Xi.

If Xi ⊂ D, Lemma 7 ensures that Xi ∩ D = ∅. So the intervals T
i

j have to be dominated by other
intervals.

By Lemma 6, ℓi intervals must dominate the V and V intervals of xi. Since no interval dominates two

of them, each T
i

j has to be dominated by an interval that is also dominating a V or V interval. The only

interval that dominates both T
i

j and a V or V interval is U
i

j . So all the U intervals are in D and W ∩D = ∅

(since the only V or V interval dominated by a W interval is a V interval, which is already dominated).
Similarly if Xi ⊂ D, Lemma 7 ensures that Xi ∩ D = ∅. So the intervals T i

j have to be dominated by
other intervals. And one can prove similarly that these intervals should be the U intervals and then the W
intervals are not in D.

4.3 Safeness of the reduction.

Let (F,As, At) be an instance of SATR, and let Ds = DF (As) and Dt = DF (At). By Lemma 5, (GF , Ds, Dt)
is an instance of DSRTS. We can now show the first direction of our reduction.

Lemma 9. If (F,As, At) is a yes-instance of SATR, then (GF , Ds, Dt) is a yes-instance of DSRTS .

Proof. Let (F,As, At) be a yes-instance of SATR, and let S =< A1 := As, . . . , Aℓ := At > be the reconfig-
uration sequence from As to At. We construct a reconfiguration sequence S′ from Ds to Dt by replacing
any flip of variable xi  xi of S from Ar to Ar+1 by the following sequence of token slides from DF (Ar) to
DF (Ar+1)

3.

• We perform a sequence of slides that moves the token on J to X
i

1. By Lemma 4, GF is connected, and

by Lemma 5, DF (Ar) \ J is a dominating set. So any sequence of moves along a path from J to X
i

1

keeps a dominating set.

• For any j such that xi ∈ Cj , we first move the token from W i
j to V i

j then from V i
j to U i

j . Let us show

that this keeps GF dominated. The important intervals that can be dominated by W i
j are V i

j , Cj , and

J . The vertex V i
j is dominated anyway during the sequence since it is also dominated by V i

j and U i
j .

Moreover, since xi  xi keeps F satisfied, each clause containing xi has a literal different from xi that

also satisfies the clause. Thus, for each Cj such that xi ∈ Cj , there exists an interval W i′

j or W
i′

j , with
i′ 6= i, that belongs to DF (Ar), and then dominates both Cj and J during these two moves.

• For j from 1 to m
2
− 1, we apply the move X i

j  X
i

j+1. This move is possible since X i
j and X

i

j+1

are neighbors in GF . Let us show that this move keeps a dominating set. For j = 1, the important
intervals that are dominated by X i

1 are Bi
1, Bi

2, and T i
1. Since U i

1 is in the current dominating set (by

the second point), T i
1 is dominated. Moreover Bi

1 is dominated by X
i

1, and Bi
2 is a neighbor of X

i

2.

3A xi  xi consists in applying the converse of this sequence.
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Thus, X i
1  X

i

2 maintains a dominating set. For 2 ≤ j ≤ m
2
− 1, the important intervals that are

dominated by X i
j are Bi

k, Bi
k−2 and T i

j where k = 2j +1 if j is even and k = 2j otherwise. Again T i
j is

dominated by the U intervals. Moreover Bi
k−2

is dominated by X
i

j−1 (on which there is a token since

we perform this sequence for increasing j), and Bi
k is also dominated by X

i

j+1.

• For any j such that xi ∈ Cj , we move the token from U
i

j to V
i

j and then from V
i

j to W
i

j . The important

intervals dominated by U
i

j are the intervals T
i

j , V
i

j . But T
i

j is dominated by a negative bridge interval,

and V
i

j stays dominated by V
i

j then W
i

j .

• The previous moves lead to the dominating set (DF (Ar+1) \ J) ∪X i
m

2

. We finally perform a sequence

of moves that slide the token on X i
m

2

to J . It can be done since Lemma 4 ensures that GF is connected.

And all along the transformation, we keep a dominating set by Lemma 5. As wanted, it leads to the
dominating set DF (Ar+1).

We now prove the other direction of the reduction. Let us prove the following lemma.

Lemma 10. If there exists a reconfiguration sequence S from Ds to Dt, then there exists a reconfiguration sequence
S′ from Ds to Dt such that for any two adjacent dominating sets Dr and Dr+1 of S′, if both Dr and Dr+1 have a
moving variable, then it is the same one.

Proof. Assume that, in S, there exist two adjacent dominating sets Dr and Dr+1 such that both Dr and Dr+1

have a moving variable, and mv(Dr) 6= mv(Dr+1). Let us modify slightly the sequence in order to avoid
this move.

Since Dr and Dr+1 are adjacent in S, we have Dr+1 = Dr ∪ v \ u, where uv is an edge of GF . Since
mv(Dr) 6= mv(Dr+1), u is an interval of mv(Dr), and v an interval of mv(Dr+1). By construction, the only
edges of GF between intervals of different variables are between their {W,W} intervals. Thus, both u and
v are W or W intervals and, in particular they are adjacent to the junction interval J . Moreover, the only
important intervals that are adjacent to u (resp. v) are the V or V intervals of the same variable as u, W
or W intervals, clause intervals, or the junction interval J . Since u and v are adjacent, and since they are
both W or W intervals, they cannot be adjacent to the same clause interval. But the only intervals that
are potentially not dominated by Dr \ u = Dr+1 \ v should be dominated both by u in Dr and by v in
Dr+1. So these intervals are included in the set of W or W intervals and the junction interval, which are all
dominated by J . Thus, Dr ∪ J \ u is a dominating set of GF . Therefore, we can add in S the dominating set
Dr ∪ J \ u between Dr and Dr+1. This intermediate dominating set has no moving variable. By repeating
this procedure while there are adjacent dominating sets in S with different moving variables, we obtain the
desired reconfiguration sequence S′.

Lemma 11. If (GF , Ds, Dt) is a yes-instance of DSRTS , then (F,As, At) is a yes-instance of SATR.

Proof. Let (GF , Ds, Dt) be a yes-instance of DSRTS. There exists a reconfiguration sequence S′ from Ds to
Dt. Moreover, by Lemma 10, we can assume that for any two adjacent dominating sets Dr and Dr+1 of S′,
if both Dr and Dr+1 have a moving variable, then it is the same one.

Let us construct a reconfiguration sequence S from As to At. To any dominating set D of GF , we
associate a variable assignment A(D) of F defined as follows. For any variable xi 6= mv(D), either Xi ⊂ D
or Xi ⊂ D by Lemma 7. If Xi ⊂ D then we set xi = 1. Otherwise, we set xi = 0. Let xk be such that
mv(D) = xk if it exists. If there exists a clause interval Cj such that W k

j ∈ D, and if for any xi 6= xk with

xi ∈ cj , we have Xi ⊂ D, and for any xi 6= xk with xi ∈ cj , we have Xi ⊂ D, then we set xk = 1. Otherwise
xk = 0.

Let S be the sequence of assignments obtained by replacing in S′ any dominating set D by the assign-
ment A(D). In order to conclude, we must show that the assignments associated to Ds and Dt are precisely
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As and At. Moreover, for every dominating set D, the assignment associated to D has to satisfy F . Finally,
for every move in GF , we must be able to associate a (possibly empty) variable flip. Let us first show a
useful claim, then proceed with the end of the proof.

Claim 2. For any consecutive dominating sets Dr and Dr+1 and any variable xi that is not the moving variable of
Dr nor Dr+1, the value of xi is identical in A(Dr) and A(Dr+1).

Proof. Lemma 7 ensures that for any xi such that xi 6= mv(Dr) and xi 6= mv(Dr+1), either Xi ⊂ Dr and
Xi ∩Dr = ∅ or Xi ⊂ Dr and Xi ∩ Dr = ∅, and the same holds in Dr+1. Since the number of positive and
negative bridge intervals is at least 2 (since by assumption m is a multiple of 4), and Dr+1 is reachable from
Dr in a single step, either both Dr and Dr+1 contain Xi, or both contain Xi. Thus, by definition of A(D), for
any variable xi such that xi 6= mv(Dr) and xi 6= mv(Dr+1), xi has the same value in A(Dr) and A(Dr+1). ♦

Claim 3. We have A(Ds) = As and A(Dt) = At.

Proof. By definition, Ds = DF (As) and thus Ds contains the junction interval, which means that it does not
have any moving variable. Moreover, Ds contains Xi for any variable xi such that xi = 1 in As and Xi for
any variable xi such that xi = 0 in As. Therefore, for any variable xi, xi = 1 in As if and only if xi = 1 in
A(Ds). Similarly, A(Dt) = At. ♦

Claim 4. For any dominating set D of S′, A(D) satisfies F .

Proof. Since the clause intervals are only adjacent to W and W intervals, they are dominated by them, or by
themselves in D. But only one clause interval can belong to D. Thus, for any clause interval Cj , if Cj ∈ D,
then C′

j must be dominated by a W or a W interval, that also dominates Cj . So in any case, Cj is dominated

by a W or a W interval. We study four possible cases and show that in each case, cj is satisfied by A(D).
If Cj is dominated in D by an interval W i

j , where xi 6= mv(D), then by Lemmas 7 and 8, Xi ⊂ D and by

definition of A(D), xi = 1. Since W i
j exists, it means that xi ∈ cj , thus cj is satisfied by A(D).

Similarly, if Cj is dominated in D by an interval W
i

j , where xi 6= mv(D), then by Lemmas 7 and 8,

Xi ⊂ D. So xi = 0. Since W
i

j exists, xi ∈ cj , and therefore cj is satisfied by A(D).

If Cj is only dominated by W k
j in D, where xk = mv(D). Then, if there exists xi 6= xk with xi ∈ cj and

Xi ⊂ D (resp. xi ∈ cj and Xi ⊂ D), then xi = 1 (resp. xi = 0) and cj is satisfied by A(D). So we can assume
that, for any xi 6= xk with xi ∈ cj we have Xi 6⊂ D. By Lemma 7, Xi ⊂ D. And for any xi 6= xk such that
xi ∈ cj we have Xi 6⊂ D, and thus Xi ⊂ D. So, by definition of A(D), we have xk = 1. Since xk ∈ cj (since
W k

j exists), cj is satisfied by A(D).

Finally, assume that Cj is only dominated by W
k

j in D, where xk = mv(D). If there exists xi 6= xk such

that xi ∈ cj and Xi ⊂ D (resp. xi ∈ cj and Xi ⊂ D), then xi = 1 (respectively xi = 0) so cj is satisfied by
A(D). Thus, by Lemma 7, we can assume that for any xi 6= xk such that xi ∈ cj (resp. xi ∈ cj), we have
Xi ⊂ D (resp. Xi ⊂ D). Let us show that there is no clause interval Cj′ dominated by a W k

i interval of xk

in D and that satisfies, for any xi 6= xk, if xi ∈ cj′ then Xi ⊂ D, and if xi ∈ cj′ then Xi ⊂ D. This will imply
xk = 0 by construction and then the fact that cj is satisfied.

Since Ds has no moving variable, there exists a dominating set before D in S′ with no moving variable.
Let Dr be the the latest in S′ amongst such dominating sets. By assumption, mv(Dq) = xk for any set Dq

that comes earlier than D but later than Dr. Thus, by Claim 2, for any variable xi 6= xk , xi has the same
value in A(Dr) and A(D).

Now, by assumption, for any xi 6= xk with xi ∈ cj (resp. xi ∈ cj) we have Xi ⊂ D (resp. Xi ⊂ D). Thus,
since xi has the same value in D and Dr, if xi ∈ cj (resp. xi ∈ cj) then Xi ⊂ Dr (resp. Xi ⊂ Dr) and then,

by Lemma 8, W i
j 6∈ Dr (resp. W

i

j 6∈ Dr). Therefore, Cj is only dominated by W
k

j in Dr. But since Dr has

no moving variable, Xk ⊂ Dr by Lemma 7 and Lemma 8. Thus, by Lemma 8, for any j′ 6= j, W k
j′ 6∈ Dr. So

for any j′ 6= j such that xk ∈ cj′ , Cj′ is dominated by at least one interval W i
j′ or W

i

j′ in Dr, where xi 6= xk .
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Lemma 8 ensures that if Cj′ is dominated by W i
j′ (resp. W

i

j′ ) in Dr then Xi ⊂ Dr (resp. Xi ⊂ Dr), and since

xi has the same value in D and Dr, it gives Xi ⊂ D (resp. Xi ⊂ D). Therefore, by Lemma 7, if a clause
interval Cj′ is dominated by a W interval of xk in D, then either there exists xi 6= xk such that xi ∈ cj′ and
D(xi) 6⊂ D, or there exists xi 6= xk such that xi ∈ c′j and D(xi) 6⊂ D. By definition of A(D), this implies that

xk = 0 in A(D). Since W
k

j exists, xk ∈ cj thus cj is satisfied by A(D).
Therefore, every clause of F is satisfied by A(D), which concludes the proof. ♦

Claim 5. For any two dominating sets Dr and Dr+1 of S′, either A(Dr+1) = A(Dr), or A(Dr+1) is reachable from
A(Dr) with a variable flip move.

Proof. By Claim 2, for any variable xi such that xi 6= mv(Dr) and xi 6= mv(Dr+1), xi has the same value
in A(Dr) and A(Dr+1). Moreover, by definition of S′, if both Dr and Dr+1 have a moving variable then
mv(Dr) = mv(Dr+1). Therefore, at most one variable change its value between A(Dr) and A(Dr+1), which
concludes the proof. ♦

We now have all the ingredients to prove our main result:

of Theorem 2. Let Ds = DF (As) and Dt = DF (At). Lemma 9 and 11 ensure that (GF , Ds, Dt) is a yes-
instance of DSRTSif and only if (F,As, At) is a yes-instance of SATR. Since SATR is PSPACE-complete [7],
it gives the result.
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