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Abstract

A mixed graph is a set of vertices together with an edge set and an
arc set. An (m,n)-mixed graph G is a mixed graph whose edges are each
assigned one of m colours, and whose arcs are each assigned one of n
colours. A switch at a vertex v of G permutes the edge colours, the arc
colours, and the arc directions of edges and arcs incident with v. The
group of all allowed switches is Γ.

Let k ≥ 1 be a fixed integer and Γ a fixed permutation group. We con-
sider the problem that takes as input an (m,n)-mixed graph G and asks
if there a sequence of switches at vertices of G with respect to Γ so that
the resulting (m,n)-mixed graph admits a homomorphism to an (m,n)-
mixed graph on k vertices. Our main result establishes this problem can
be solved in polynomial time for k ≤ 2, and is NP-hard for k ≥ 3. This
provides a step towards a general dichotomy theorem for the Γ-switchable
homomorphism decision problem.

1 Introduction

Homomorphisms of graphs (and in general relational systems) are well studied
generalizations of vertex colourings [10]. Given a graph (or some generaliza-
tion) G, the question of whether G admits a k-colouring, can be equivalently
rephrased as “does G admit a homomorphism to a target on k vertices?”.

In this paper we study homomorphisms of (m,n)-mixed graphs endowed with
a switching operation under some fixed permutation group. (Formal definitions
and precise statements of our results are given below.) Our main result is that
the 2-colouring problem under these homomorphisms can be solved in polyno-
mial time. As k-colouring for classical graphs can be encoded within our frame-
work, k-colouring in our setting is NP-hard for fixed k ≥ 3. That is, k-colouring
for (m,n)-mixed graphs with a switching operation exhibits a dichotomy anal-
ogous to k-colouring of classical graphs [7]. Thus, our work maybe viewed as
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a first step towards a dichotomy theorem for homomorphisms of (m,n)-mixed
graphs with a switching operation. We remark that the k-colouring problem
in our setting is not obviously a Constraint Satisfaction Problem [4, 6, 19] nor
is membership in NP clear. These ideas are explored further in a companion
paper [3].

We begin with the key definitions to state our main result. In this paper,
all graphs and all groups are finite.

A mixed graph is a triple G = (V (G), E(G), A(G)) consisting of a set of
vertices V (G), a set of edges E(G) of unordered pairs of vertices, and a set of
arcs A(G) of ordered pairs of vertices. Given pair of vertices u and v, there is
at most one edge, or one arc, but not both, joining them. Further we assume G
is loop-free. We will use uv to denote an edge or an arc with end points u and
v where in the latter case the arc is oriented from u to v.

Mixed graphs were introduced by Nešetřil and Raspaud [15] as an attempt to
unify the theories of homomorphisms of 2-edge coloured graphs and of oriented
graphs. Numerous similarities between the two settings have been observed (see
for example, [1, 12, 16]), whereas, Sen [17] provides examples highlighting key
differences.

In this work we study edge and arc coloured generalizations of mixed graphs.
Thus, our work may be viewed as a unification of homomorphisms of edge-
coloured graphs and of arc-coloured graphs. Let m and n be non-negative
integers. Denote by [m] the set {1, 2, . . . ,m}. An (m,n)-mixed graph is a mixed
graph G = (V (G), E(G), A(G)) together with functions c : E(G) → [m] and
d : A(G) → [n] that assign to each edge one of m colours, and to each arc
one of n colours respectively. (The colour sets for edges and arcs are disjoint.)
The underlying mixed graph of G is (V (G), E(G), A(G)), i.e., the mixed graph
obtained by ignoring edge and arc colours. The underlying graph of G is the
graph obtained by ignoring edge and arc colours and arc directions. An (m,n)-
mixed graph is a cycle if its underlying graph is a cycle and similarly for other
standard graph theoretic terms such as path, tree, bipartite, etc.

Fundamental to our work is the following definition. An (m,n)-mixed graph
is monochromatic of colour i if either every edge is colour i and there are no
arcs, or every arc is colour i and there are no edges. While a monochromatic
mixed graph with only edges is naturally isomorphic to its underlying graph,
we note that we still view the edges as having colour i.

Let G and H be (m,n)-mixed graphs. A homomorphism of G to H is a
function h : V (G) → V (H) such that if uv is an edge of colour i in G, then
h(u)h(v) is an edge of colour i of H, and if uv is an arc of colour j in G, then
h(u)h(v) is an arc of colour j in H. We denote the existence of a homomorphism
of G to H by G→ H or h : G→ H when the name of the function is required.

We now turn our attention to the concept of switching an (m,n)-mixed graph
at a vertex v. This generalizes the concept of switching edge colours or signs [2,
18] (permuting the colour of edges incident at v) and pushing digraphs [11]
(reversing the direction of arcs incident at v). Let Γ ≤ Sm × Sn × Sn2 be a
permutation group. An element of Γ will act on edge colours, arc colours,
and arc directions. Specifically, the element is an ordered (n + 2)-tuple π =
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(α, β, γ1, γ2, . . . , γn) where α acts on the edge colours, β acts on the arc colours,
and γi acts on the arc direction of arcs of colour i. For the remainder of the
paper, Γ will be a permutation group as described here.

Let G be a (m,n)-mixed graph, and π = (α, β, γ1, γ2, . . . , γn) ∈ Γ. Define
G(v,π) as the (m,n)-mixed graph arising from G by switching at vertex v with
respect to π as follows. Replace each edge vw of colour i by an edge vw of colour
α(i). Replace each arc a of colour i incident at v (i.e., a = vx or a = xv) with
an arc of colour β(i) and orientation γi(a). Note, γi(a) ∈ {vx, xv}.

Given a sequence of ordered pairs from V (G)×Γ, say Σ = (v1, π1)(v2, π2) . . .
(vk, πk), we define switching G with respect to the sequence Σ as follows:

GΣ = (G)(v1,π1)(v2,π2)...(vk,πk) = (G(v1,π1))(v2,π2)(v3,π3)...(vk,πk).

Note if we let Σ−1 = (vk, π
−1
k ) . . . (v1, π

−1
1 ), then GΣΣ−1

= GΣ−1Σ = G.
Given a subset of vertices, X ⊆ V (G), we can switch at each vertex of X

with respect to a permutation π ∈ Γ, the result of which we denote by G(X,π).
This operation is well defined independently of the order in which we switch. If
uv is an edge or arc with one end in X, say u, then we simply switch at u with
respect to π. Suppose both ends of uv are in X. If uv is an edge of colour i,
then after switching at each vertex of X, the edge will have colour α2(i). If uv
is an arc, then after switching the colour will be β2(i) and the direction will be
γβ(i)γi(uv).

Two (m,n)-mixed graphs G and G′ with the same underlying graph are Γ-
switch equivalent if there exists a sequence of switches Σ such that GΣ = G′.
We may simply say switch equivalent when Γ is clear from context. Note since
V (G) = V (G′), we are viewing both (m,n)-mixed graphs as labelled and thus
are not considering equivalence under switching followed by an automorphism.
Such an extension of equivalence is possible but unnecessary in this work. Since
Γ is a group, the following proposition is immediate.

Proposition 1.1. Γ-switch equivalence is an equivalence relation on the set of
(labelled) (m,n)-mixed graphs.

We are now ready to define switching homomorphisms. Our definition nat-
urally builds on homomorphisms of signed graphs [8, 14] and push homomor-
phisms of digraphs [11]. Let G and H be (m,n)-mixed graphs. A Γ-switchable
homomorphism of G to H is a sequence of switches Σ together with a homo-
morphism GΣ → H. We denote the existence of such a homomorphism by
G →Γ H, or f : G →Γ H when we wish to name the mapping. Observe the
notation G → H refers to a homomorphism of (m,n)-mixed graphs without
switching, and G →Γ H refers to switching G followed by a homomorphism of
(the resulting) (m,n)-mixed graphs.

A useful fact is the following. If G →Γ H, then G →Γ H(v,π) for any
v ∈ V (H) and any π ∈ Γ. To see this let Σ be a sequence of switches such that
f : GΣ → H. Let X = f−1(v) ⊆ V (GΣ). It is easy to see the same vertex
mapping f : V (G)→ V (H) defines a homomorphism (GΣ)(X,π) → H(v,π). As a
result of this observation, we have two immediate corollaries. First, Γ-switchable

3



homomorphisms compose. Second, when studying the question “does G admit
a Γ-switchable homomorphism to H?” we are free to replace H with any H ′

switch equivalent to H.
For (classical) graphs, G is k-colourable if and only if it admits a homomor-

phism to a graph H of order k. Analogously, we say an (m,n)-mixed graph G
is Γ-switchable k-colourable, if there is an (m,n)-mixed graph H of order k such
that G →Γ H. The corresponding decision problem is defined as follows. Let
k ≥ 1 be a fixed integer and Γ ≤ Sm×Sn×Sn2 be a fixed group. We define the
following decision problem.

Γ-Switchable k-Col

Input: An (m,n)-mixed graph G.

Question: Is G Γ-switchable k-colourable?

Our main result is the following dichotomy result for Γ-Switchable k-Col.

Theorem 1.2. Let k ≥ 1 be an integer and Γ ≤ Sm × Sn × Sn2 be a group. If
k ≤ 2, then Γ-Switchable k-Col is solvable in polynomial time. If k ≥ 3,
then Γ-Switchable k-Col is NP-hard.

The NP-hardness half of the dichotomy is immediate.

Proposition 1.3. For k ≥ 3, Γ-Switchable k-Col is NP-hard.

Proof. Let G be an instance of k-colouring (for classical graphs). Let G′ be the
(m,n)-mixed graph obtained from G by assigning each edge colour 1. If G is
k-colourable, then clearly G′ is k-colourable. (Assign all edges in G′ and Kk the
colour 1 and use the same mapping.) Conversely, if G′ is k-colourable, then the
Γ-switchable homomorphism induces a homomorphism of the underlying graphs
showing G is k-colourable.

For an Abelian group we remark that if G and G′ are switch equivalent, then
there is a sequence of switches Σ of length at most |V (G)| so thatGΣ = G′. (This
is discussed in more detail below.) Thus when Γ is Abelian, Γ-Switchable k-
Col is in NP, and we can conclude for k ≥ 3, the problem is NP-complete. The
situation for non-Abelian groups is more complicated and is studied further
in [3].

It is trivial to decide if an (m,n)-mixed graph is 1-colourable. Thus to
complete the proof we settle the case k = 2. Results are known when Γ belongs
to certain families of groups [5,13]. The remainder of the paper establishes the
problem is polynomial time solvable for all groups Γ.

We conclude the introduction with a remark on the general homomorphism
problem. Let H be a fixed (m,n)-mixed graph and Γ a fixed permutation group.

Γ-Hom-H

Input: An (m,n)-mixed graph G.

Question: Does G admit a Γ-switchable homomorphism to H?

The complexity of Γ-Hom-H has been investigated for the same families
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of groups as Γ-switchable k-colouring in [5, 13]. The following theorem is an
immediate corollary to our main result.

Theorem 1.4. Let H be a 2-colourable (m,n)-mixed graph, then Γ-Hom-H is
polynomial time solvable.

2 Restriction to m-edge coloured graphs

If a non-trivial (m,n)-mixed graph G is 2-colourable, then the target of order 2
to which G maps must be a monochromatic K2 or a monochromatic tournament
T2. In the former case G must have only edges and in the latter only arcs.
Moreover, the underlying graph of G must be bipartite as a 2-colouring of G
induces a 2-colouring of the underlying graph.

In this section we focus on the case where G has only edges and is bipartite.
For ease of notation, and to align with the existing literature, we will refer to G
as an m-edge coloured graph. Recall we use [m] as the set of edge colours, and
in this case we may restrict Γ to be a subgroup of Sm. We let H be the m-edge
coloured K2 with its single edge of colour i, and denote H by Ki

2.
We begin with some key observations. Let G be an m-edge coloured graph.

If G →Γ Ki
2, then every colour appearing on an edge of G must belong to

the orbit of i under Γ; otherwise, G is a no instance. Therefore, we make the
assumption that Γ acts transitively on [m]. Under this assumption Ki

2 is switch
equivalent to Kj

2 for any j ∈ [m]. Thus we have the following proposition.

Proposition 2.1. Fix i ∈ [m]. Let G be a bipartite m-edge coloured graph. The
following are equivalent.

(1) G→Γ K
i
2,

(2) G→Γ K
j
2 for any j ∈ [m],

(3) G can be switched to be monochromatic of some colour j.

Proof. The implication (1)⇒ (2) follows from the fact that Ki
2 →Γ K

j
2 for any

j ∈ [m] by the transitivity assumption. The implication (2) ⇒ (3) is trivial.
Suppose G can be switched to be monochromatic of some colour j. Let G have
the bipartition X ∪ Y . Since Γ is transitive, there is π ∈ Γ such that π(j) = i.
Then G(X,π) is monochromatic of colour i implying G→Γ K

i
2.

We have reduced the problem of determining whether an m-edge coloured
graph G is 2-colourable to testing if G is bipartite and can be switched to be
monochromatic of some colour j.

In the case of signed graphs (2-edge colours), G can be switched to be
monochromatic of colour j if and only if each cycle of G can be switched to
be a monochromatic cycle of colour j [18]. We shall show the same result holds
for bipartite m-edge coloured graphs. However, for our setting the question of
when a cycle can be switched to be monochromatic is more complicated. Hence,
we begin by characterizing when an m-edge coloured even cycle can be made
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monochromatic. To this end, let G be a m-edge coloured cycle of length 2k
on vertices v0, v1, . . . , v2k−1, v0. By switching at v1, the edge v0v1 can be made
colour i. Next by switching at v2, the edge v1v2 can be made colour i. Contin-
uing, we see that G can be switched so that all edges except v2k−1v0 are colour
i. For i, j ∈ [m], we say the cycle G is nearly monochromatic of colours (i, j)
if G has 2k − 1 edges of colour i and 1 edge of colour j. Thus the problem of
determining if an even cycle can be switched to be monochromatic is reduced
to the problem of determining if a nearly monochromatic cycle of length 2k can
be switched to be monochromatic.

Let G be a cycle of length 2k that is nearly monochromatic of colours (i, j).
We define a relation on [m] by j ∼2k i if G is Γ-switchably equivalent to a
monochromatic C2k of colour i or equivalently G→Γ K

i
2.

As the definition suggests, the relation is an equivalence relation.

Lemma 2.2. The relation ∼2k is an equivalence relation.

Proof. The relation is trivially reflexive.
To see ∼2k is symmetric, assume j ∼2k i. Let G be a cycle of length 2k

that is nearly monochromatic of colour (j, i). Label the vertices of the cycle
in the natural order as v0, v1, . . . , v2k−1, v0 where v0v2k−1 is the unique edge of
colour i. Suppose π(j) = i. Let Σ = (v1, π), (v3, π), . . . , (v2k−3, π). Then GΣ is
nearly monochromatic of colour (i, j), with edge v2k−2v2k−1 being the unique
edge of colour j. By assumption there is a sequence of switches, say Σ′, so
that GΣΣ′ is monochromatic of colour i, giving G →Γ K

i
2. Thus, G →Γ K

j
2 by

Proposition 2.1. That is, G can be made monochromatic of colour j or i ∼2k j.
To prove ∼2k is transitive, suppose i ∼2k j and j ∼2k l. Let G,G′, and G′′

be m-edge coloured cycles of length 2k each with the vertices v0, v1, . . . , v2k−1.
(Technically, we are considering three distinct edge colourings of the same un-
derlying graph.) Suppose G,G′, and G′′ are nearly monochromatic of colours
(j, i), (l, j), and (l, i) respectively. There are 2k − 1 edges of colour j in G with
edge v0v2k−1 of colour i in G. Similarly there are 2k− 1 edges of colour l in G′

with edge v0v2k−1 of colour j in G′ and 2k−1 edges of colour l with edge v0v2k−1

of colour i in G′′. We shall show G′′ can be switched to be monochromatic of
colour l.

By hypothesis, there is a sequence Σ′ such that G′Σ
′

is monochromatic of
colour l. In particular, under Σ′ all edges of colour l remain colour l, and the
edge v0v2k−1 changes from j to l. Thus, if we apply Σ′ to G′′ the edges of
colour l remain colour l and the product of those switches at v0 and v2k−1

changes v0v2k−1 from colour i to colour σ(i) for some σ ∈ Γ. We observe by the
fact that G′Σ

′
is monochromatic, σ(j) = l.

We now construct a modified inverse of Σ′. Let Σ′′ be the subsequence of
Σ′ consisting of the switches only at v0 or v2k−1. That is, Σ′′ is a subsequence
(vs0 , π0), (vs1 , π1), . . . , (vst , πt) where each vsr ∈ {v0, v2k−1}. Let X (respec-
tively Y ) be the vertices of G′′ with even (respectively odd) subscripts. Starting
with G′′Σ

′
apply the following sequence of switches. For r = t, t − 1, . . . , 0, if

vsr = v0, then apply the switch (X,π−1
r ); otherwise, vsr = v2k−1 and apply

the switch (Y, π−1
r ). The net effect is to apply σ−1 to each edge of G′′Σ

′
. Thus
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G GΣ GΣΣ′

Figure 1: Switching of the theta graph in Theorem 2.3. Solid blue edges are
colour i and dashed red edges are colour j.

each edge of colour l switches to j and the edge v0v2k−1 of colour σ(i) becomes
colour i. That is, we can switch G′′ to be G. By hypothesis, G can be switched
to be monochromatic of colour j. By Proposition 2.1, the resulting m-edge
coloured graph can be switched to be monochromatic of colour l, i.e., i ∼2k l,
as required.

We denote the equivalence classes with respect to ∼2k by [i]
2k
Γ = {j|j ∼2k i}.

We now show that these classes are independent of cycle length (for even length
cycles).

Theorem 2.3. Let Γ ≤ Sm and i ∈ [m]. Then [i]
2l
Γ = [i]

2k
Γ for all l, k ∈

{2, 3, . . . }.

Proof. Let i ∈ [m] and let k be an integer k ≥ 2. We show [i]
4
Γ = [i]

2k
Γ from

which the result follows.
Suppose j ∈ [i]

4
Γ. Let G be a cycle of length 2k and H a cycle of length 4

where both are nearly monochromatic of colours (i, j). Since G → H and by

hypothesis, H →Γ K
i
2, we have G→Γ K

i
2 and thus j ∈ [i]

2k
Γ .

Conversely, suppose j ∈ [i]
2k+2
Γ . We will show j ∈ [i]

2k
Γ from which we

can conclude by induction that j ∈ [i]
4
Γ. Let G be the m-edge coloured graph

constructed as follows. Let v1, v2, . . . , vk; u1, u2, . . . , uk; and w1, w2, . . . , wk be
three disjoint paths of length k − 1. Join v1 to both u1 and w1, and vk to
both uk and wk. Each edge is colour i with the exception of v1u1 which is
colour j. (Thus, G is the θ-graph with path lengths k + 1, k − 1, k + 1.) De-
noted the cycles u1, . . . , uk, vk, . . . , v1, u1 and w1, . . . , wk, vk, . . . , v1, w1 by C1

and C2 respectively. Observe both have length 2k, C1 is nearly monochromatic
of colours (i, j) and C2 is monochromatic of colour i. Finally, let C3 be the cycle
u1, . . . , uk, vk, wk, . . . , w1, v1, u1. The cycle C3 has length 2k + 2 and is nearly
monochromatic of colours (i, j). See Figure 1.

By assumption there exists a sequence of switches Σ (acting on the vertices
of C3) such that in GΣ the cycle C3 is monochromatic of colour i. We note that
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v1v2 and vk−1vk might not be of colour i in GΣ.
There is an automorphism ϕ of the underlying graph G that fixes each vl,

l = 1, 2, . . . , k, and interchanges each ul with wl. We apply Σ−1 to ϕ(GΣ) as
follows. Let Σ′ be the sequence obtained from Σ by reversing the order of the
sequence, replacing each permutation with its inverse permutation and replacing
all switches on vertices ul with switches on wl and vice versa. (Switches on v1

and vk are applied to v1 and vk respectively.) Then in GΣΣ′ we see that C1 is

monochromatic of colour i. Therefore [i]
2k
Γ ⊇ [i]

2k+2
Γ for all k ≥ 2. We conclude

[i]
4
Γ = [i]

2k
Γ for all k ≥ 2.

As the equivalence classes depends only on the group and not the length of
the cycle, we henceforth denote these classes as [i]Γ. If j ∈ [i]Γ, we say i can
be Γ-substituted for j; that is, the single edge of colour j in the cycle can be
switched to colour i. We call [i]Γ the Γ-substitution class for i.

For a fixed m and Γ, [i]Γ can be computed in constant time as there is a
constant number of m-edge coloured 4-cycles, and a constant number of (single)
switches that can be applied to these cycles, from which the equivalence classes
can be computed using the transitive closure.

Theorem 2.4. Let G be an m-edge coloured C2k. It can be determined in
polynomial time whether there is a Γ-switchable homomorphism of G to Ki

2.

Proof. As described above, we can switch G to be nearly monochromatic of
colours (i, j), for some j. Then G →Γ Ki

2 if and only if j ∈ [i]Γ. Testing this
condition can be done in constant time.

We now show the Γ-Hom-Ki
2 problem is polynomial time solvable. This is

accomplished by showing the problem of determining whether a given m-edge
coloured bipartite graph can be made monochromatic of colour i is polynomial
time solvable.

We begin with the following observation that trees can always be made
monochromatic.

Lemma 2.5. Let T be a m-edge coloured tree, then for any Γ, T →Γ K
i
2.

Proof. Let T be a m-edge coloured tree. Let v1, v2, . . . , v|T | be a depth first
search ordering of T rooted at v1. For each k ∈ 2, . . . , |T |, switch at vk so that
the edge from vk to its parent in the depth first search ordering has colour i. We
observe that if the subtree T [v1, . . . , vk−1] is monochromatic of colour i, then
after switching at vk, so is the subtree T [v1, . . . , vk].

Let G and H be m-edge coloured graphs such that H is a subgraph of G. A
retraction from G to H, is a homomorphism r : G→ H such that r(x) = x for
all x ∈ V (H). We shall use the following result of Hell [9].

Theorem 2.6. Let G be a bipartite graph. Suppose P is a shortest path from
u to v in G. Then G admits a retraction to P .
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We now show, for general m-edge coloured graphs G, testing if G →Γ Ki
2

comes down to testing if each cycle admits a Γ-switchable homomorphism to
Ki

2. To this end define C(G) to be the set of cycles in an m-edge coloured graphs
G, and FΓ to be the collection of cycles C such that C 6→ ΓK

i
2.

Theorem 2.7. Let G be a connected m-edge coloured graph and Γ a transitive
group acting on [m]. Suppose i ∈ [m]. The following are equivalent.

(1) G→Γ K
i
2.

(2) For all cycles C ∈ C(G), C →Γ K
i
2.

(3) G is bipartite and for any spanning T of G, there is a switching sequence
Σ such that in GΣ, T is monochromatic of colour i and for each cotree
edge the colour i can be Γ-substituted for the colour of the cotree edge.

(4) For all cycles C ∈ FΓ, C 6→ ΓG

Proof. We first prove the equivalence of statements (1), (2), and (3).
(1) ⇒ (2) is trivially true.
(2) ⇒ (3). We first observe that G must be bipartite as all cycles in the

underlying graph map to K2. Let T be a spanning tree in G and let Σ be
the switching sequence constructed as in the proof of Lemma 2.5. Then T is
monochromatic of colour i in GΣ. Let e be a cotree edge of colour j. The
fundamental cycle Ce in T + e is nearly monochromatic of colours (i, j). By
hypothesis C →Γ K

i
2. Hence, i Γ-substitutes for j.

(3) ⇒ (1). As above, let T be a spanning tree that is monochromatic of
colour i in GΣ. Let e1, e2, . . . , ek be an enumeration of the cotree edges of T .
By hypothesis for each cotree edge et, its colour, say j (in GΣ), belongs to [i]Γ.

Let T + {e1, . . . , et} be the subgraph of GΣ induced by the edges E(T ) ∪
{e1, . . . , et}. Clearly T →Γ K

i
2. Suppose T +{e1, . . . , et−1} →Γ K

i
2. Let et = uv

have colour j. Let P be a shortest path from u to v in T+{e1, . . . , et−1}. By [9],
there is a retraction r : T + {e1, . . . , et−1} → P with r(u) = u and r(v) = v.
Adding the edge et shows T + {e1, . . . , et} →Γ P + et where P + et is a nearly
monochromatic cycle of colours (i, j). By assumption i Γ-substitutes for j, so
P + et →Γ Ki

2 and by composition T + {e1, . . . , et} →Γ Ki
2. By induction,

G→Γ K
i
2.

Finally, we show (1) and (4) are equivalent. If there is C ∈ FΓ such that
C →Γ G, then G 6→ ΓK

i
2. Conversely, if G 6→ ΓK

i
2, then by (2), there is a cycle

C in G such that C 6→ ΓK
i
2. In particular, C ∈ FΓ and the inclusion map gives

C →Γ G.

Given an m-edge coloured graph G, it is easy to test condition (3) for each
component. Checking G is bipartite and the switching of a spanning forest can
be done in linear time in |E(G)|. The look up for each cotree edge requires
constant time.

However, the theorem actually gives us a certifying algorithm which we now
outline (under the assumption G is connected). First test if G is bipartite. If it is
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not, then we discover an odd cycle certifying a no instance. Otherwise construct
a spanning tree, and switch so that the tree is monochromatic of colour i. Either
the colour of each cotree edge belongs to [i]Γ or we discover a cotree edge that
does not. In the latter case we have a cycle of C ∈ FΓ that certifies G is a no
instance.

Thus assume all cotree edges have colours in [i]Γ. The proof of Theorem 2.7
provides an algorithm for switching G to be monochromatic of colour i through
lifting the switching of the retract P+et to all of G. We show how using a similar
idea with C4 also works and gives a clearer bound on the running time. Let j be
the colour of a cotree edge, say uv. Recall j ∈ [i]

4
Γ. Let H be a C4 with vertices

labelled as v0, v1, v2, v3 and edges coloured as v0v3 is colour j and all other edges
are colour i. Let Σ be a switching sequence so that HΣ is monochromatic of
colour i. Let X (respectively Y ) be the vertices of G in the same part of the
bipartition as u (respectively v). For each (vi, πi) in Σ we apply the same switch
πi in G at u if vi = v0; at X\{u} if vi = v2; at v if vi = v3; and at Y \{v} if
vi = v1. At the end of applying all switches in Σ, edges in G that were of
colour i remain colour i, and the cotree edge uv switches from j to i. As |Σ| is
constant (in |Γ|), this switching sequence for uv requires O(|V (G)|) switches. In
this manner the concatenation of |E(G)| − |V (G)|+ 1 such switching sequences
(together with the switches required to make T monochromatic) switch G to be
monochromatic of colour i. This sequence together with the bipartition of G
certifies that G→Γ K

i
2. We have the following.

Corollary 2.8. The problem Γ-Hom-Ki
2 is polynomial time solvable by a cer-

tifying algorithm.

3 General (m,n)-coloured graphs

In this section we show the Γ-2-Col problem is polynomial time solvable. As
noted above, a general (m,n)-mixed graph G is 2-colourable if it only has edges
and for some edge colour i, G→Γ K

i
2 or it only has arcs and for some arc colour

i, G →Γ T i2. Having established the Γ-Hom-Ki
2 problem is polynomial time

solvable, we now show Γ-Hom-T i2 polynomially reduces to Γ-Hom-Ki
2. This

establishes the polynomial time result of Theorem 1.2 which we restate.

Theorem 3.1. The Γ-Switchable 2-Col problem is polynomial time solvable.

Proof. Let G be an instance of Γ-Switchable 2-Col, i.e., an (m,n)-mixed
graph. If G is not bipartite, we can answer No. If G has both edges and arcs,
then we can answer No. If G only has edges, then by Corollary 2.8 we can
choose any edge colour i (we still assume Γ is transitive) and test G→Γ K

i
2 in

polynomial time.
Thus assume G is bipartite with bipartition (A,B) and has only arcs. Analo-

gous to Section 2, we can view Γ as acting transitively on the n-arc colours. If Γ
does not allow any arc colours to switch direction, i.e., for all π ∈ Γ, γi(uv) = uv
for all i, then G must have all its arcs from say A to B; otherwise, we can say
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No. At this point G may be viewed as an n-edge coloured graph. (We can
ignore the fixed arc directions.) We apply the results of Section 2.

Finally, we may assume G is bipartite, with only arcs, and Γ acts transitively
on arc colours and directions. That is, for any arc colours i and j, Γ contains a
permutation π1 (respectively π2) that takes an arc uv of colour i to an arc uv
(respectively vu) of colour j.

We now construct a (2n)-edge coloured graph G′ as follows. Let V (G′) =
V (G). If there is an arc of colour i from u ∈ A to v ∈ B, we put an edge uv of
colour i+ in G′, and if there is an arc of colour i from v ∈ B to u ∈ A, we put
an edge uv of colour i− in G′.

From Γ we construct a new group Γ′ ≤ S2n. Note that Γ as described above
acts on (m,n)-mixed graphs and Γ′ will be naturally restricted to acting on
(2n)-edge coloured graphs. Let π = (α, β, γ1, . . . , γn) ∈ Γ. Define π′ ∈ Γ′ as
follows. For each arc colour i,

π′(i+) =

{
β(i)+ if γi(uv) = uv
β(i)− if γi(uv) = vu

and π′(i−) =

{
β(i)− if γi(uv) = uv
β(i)+ if γi(uv) = vu

It can be verified that the mapping π → π′ is a group isomorphism.
The translation of G to G′ can be expressed as a function F (G) = G′. It is

straightforward to verify F is a bijection from n-arc coloured graphs to 2n-edge
coloured graphs provided we fix the bipartition V (G) = A ∪ B. Moreover, if
π ∈ Γ and π′ is the resulting permutation in Γ′, then again it is easy to verify
that F (G(v,π)) = (G′)(v,π′) for any v in V (G) = V (G′).

Suppose G→Γ T
i
2. By the transitivity of Γ, we may assume that T i2 has its

tail in A, and thus all arcs in G can be switched to be colour i with their tail
in A. The corresponding switches on G′ switch all edges to colour i+. That
is, G′ →Γ′ K

i+

2 . On the other hand, if G′ →Γ′ K
i+

2 , then the corresponding
switches on G show that G →Γ T

i
2 (with the vertices of A mapping to the tail

of T i2).

We conclude this section with a remark on the number of switches required to
change the input G to be monochromatic. There are |V (G)|−1 switches required
to change a spanning tree of G to be monochromatic of colour i. To change the
cotree edges to colour i (assuming each is of a colour in [i]Γ), we claim at most
cΓ|V (G)| switches are required where cΓ is a constant depending on Γ and the
number of colours (m and n). We argue only for m-edge coloured graphs, given
the reduction above. For (a labelled) C4, there are m4 edge colourings. For each
vertex there are |Γ| switches. The reconfiguration graph C has a vertex for each
edge-colouring of C4 and an edge joining two vertices is there is a single switch
that changes one into the other. (The existence of inverses ensures this is an
undirected graph.) Thus, C has order m4 and is regular of degree |Γ|. Given
j ∈ [i]Γ, there is a path in C from a nearly monochromatic C4 of colours (i, j)
to a monochromatic C4 of colour i. The switches on this path can be lifted to
G so that the spanning tree remains of colour i and the cotree edge switches to
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colour i. The total number of switches is at most max{diam(C′)} · |V (G)| where
C′ runs over all components of C. Thus we have the following.

Proposition 3.2. Let G be a m-edge coloured bipartite graph. Let Γ be a
group acting transitively on [m]. If G is Γ-switch equivalent to a monochromatic
graph, then the sequence Σ of switches which transforms G to be monochromatic
satisfies,

|Σ| ≤ |V (G)| − 1 + cΓ|V (G)|(|E(G)| − |V (G)|+ 1)

where cΓ depends only on Γ and m.

In the case that Γ is abelian, the switches in Σ can be reordered, then
combined, so that each vertex is switched only once.

4 Conclusion

We have established a dichotomy for the Γ-Switchable k-Col problem. This
is a step in obtaining a dichotomy theorem for Γ-Hom-H for all (m,n)-mixed
graphs H and all transitive permutation groups Γ. Work towards a general
dichotomy is the focus of our companion paper [3].
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