k-colouring (m, n)-mixed graphs with switching

Richard C. Brewster, Arnott Kidner ${ }^{\dagger}$ Gary MacGillivray ${ }^{\ddagger}$

March 16, 2022

Abstract

A mixed graph is a set of vertices together with an edge set and an arc set. An (m, n)-mixed graph G is a mixed graph whose edges are each assigned one of m colours, and whose arcs are each assigned one of n colours. A switch at a vertex v of G permutes the edge colours, the arc colours, and the arc directions of edges and arcs incident with v. The group of all allowed switches is Γ.

Let $k \geq 1$ be a fixed integer and Γ a fixed permutation group. We consider the problem that takes as input an (m, n)-mixed graph G and asks if there a sequence of switches at vertices of G with respect to Γ so that the resulting (m, n)-mixed graph admits a homomorphism to an (m, n) mixed graph on k vertices. Our main result establishes this problem can be solved in polynomial time for $k \leq 2$, and is NP-hard for $k \geq 3$. This provides a step towards a general dichotomy theorem for the Γ-switchable homomorphism decision problem.

1 Introduction

Homomorphisms of graphs (and in general relational systems) are well studied generalizations of vertex colourings 10. Given a graph (or some generalization) G, the question of whether G admits a k-colouring, can be equivalently rephrased as "does G admit a homomorphism to a target on k vertices?".

In this paper we study homomorphisms of (m, n)-mixed graphs endowed with a switching operation under some fixed permutation group. (Formal definitions and precise statements of our results are given below.) Our main result is that the 2-colouring problem under these homomorphisms can be solved in polynomial time. As k-colouring for classical graphs can be encoded within our framework, k-colouring in our setting is NP-hard for fixed $k \geq 3$. That is, k-colouring for (m, n)-mixed graphs with a switching operation exhibits a dichotomy analogous to k-colouring of classical graphs [7]. Thus, our work maybe viewed as

[^0]a first step towards a dichotomy theorem for homomorphisms of (m, n)-mixed graphs with a switching operation. We remark that the k-colouring problem in our setting is not obviously a Constraint Satisfaction Problem [4, 6, 19] nor is membership in NP clear. These ideas are explored further in a companion paper 3 .

We begin with the key definitions to state our main result. In this paper, all graphs and all groups are finite.

A mixed graph is a triple $G=(V(G), E(G), A(G))$ consisting of a set of vertices $V(G)$, a set of edges $E(G)$ of unordered pairs of vertices, and a set of $\operatorname{arcs} A(G)$ of ordered pairs of vertices. Given pair of vertices u and v, there is at most one edge, or one arc, but not both, joining them. Further we assume G is loop-free. We will use $u v$ to denote an edge or an arc with end points u and v where in the latter case the arc is oriented from u to v.

Mixed graphs were introduced by Nešetřil and Raspaud 15 as an attempt to unify the theories of homomorphisms of 2-edge coloured graphs and of oriented graphs. Numerous similarities between the two settings have been observed (see for example, $[1,12,16]$), whereas, Sen 17 provides examples highlighting key differences.

In this work we study edge and arc coloured generalizations of mixed graphs. Thus, our work may be viewed as a unification of homomorphisms of edgecoloured graphs and of arc-coloured graphs. Let m and n be non-negative integers. Denote by $[m]$ the set $\{1,2, \ldots, m\}$. An (m, n)-mixed graph is a mixed graph $G=(V(G), E(G), A(G))$ together with functions $c: E(G) \rightarrow[m]$ and $d: A(G) \rightarrow[n]$ that assign to each edge one of m colours, and to each arc one of n colours respectively. (The colour sets for edges and arcs are disjoint.) The underlying mixed graph of G is $(V(G), E(G), A(G))$, i.e., the mixed graph obtained by ignoring edge and arc colours. The underlying graph of G is the graph obtained by ignoring edge and arc colours and arc directions. An (m, n)mixed graph is a cycle if its underlying graph is a cycle and similarly for other standard graph theoretic terms such as path, tree, bipartite, etc.

Fundamental to our work is the following definition. An (m, n)-mixed graph is monochromatic of colour i if either every edge is colour i and there are no arcs, or every arc is colour i and there are no edges. While a monochromatic mixed graph with only edges is naturally isomorphic to its underlying graph, we note that we still view the edges as having colour i.

Let G and H be (m, n)-mixed graphs. A homomorphism of G to H is a function $h: V(G) \rightarrow V(H)$ such that if $u v$ is an edge of colour i in G, then $h(u) h(v)$ is an edge of colour i of H, and if $u v$ is an arc of colour j in G, then $h(u) h(v)$ is an arc of colour j in H. We denote the existence of a homomorphism of G to H by $G \rightarrow H$ or $h: G \rightarrow H$ when the name of the function is required.

We now turn our attention to the concept of switching an (m, n)-mixed graph at a vertex v. This generalizes the concept of switching edge colours or signs [2, 18 (permuting the colour of edges incident at v) and pushing digraphs 11 (reversing the direction of arcs incident at v). Let $\Gamma \leq S_{m} \times S_{n} \times S_{2}^{n}$ be a permutation group. An element of Γ will act on edge colours, arc colours, and arc directions. Specifically, the element is an ordered $(n+2)$-tuple $\pi=$
$\left(\alpha, \beta, \gamma_{1}, \gamma_{2}, \ldots, \gamma_{n}\right)$ where α acts on the edge colours, β acts on the arc colours, and γ_{i} acts on the arc direction of arcs of colour i. For the remainder of the paper, Γ will be a permutation group as described here.

Let G be a (m, n)-mixed graph, and $\pi=\left(\alpha, \beta, \gamma_{1}, \gamma_{2}, \ldots, \gamma_{n}\right) \in \Gamma$. Define $G^{(v, \pi)}$ as the (m, n)-mixed graph arising from G by switching at vertex v with respect to π as follows. Replace each edge $v w$ of colour i by an edge $v w$ of colour $\alpha(i)$. Replace each arc a of colour i incident at v (i.e., $a=v x$ or $a=x v$) with an arc of colour $\beta(i)$ and orientation $\gamma_{i}(a)$. Note, $\gamma_{i}(a) \in\{v x, x v\}$.

Given a sequence of ordered pairs from $V(G) \times \Gamma$, say $\Sigma=\left(v_{1}, \pi_{1}\right)\left(v_{2}, \pi_{2}\right) \ldots$ $\left(v_{k}, \pi_{k}\right)$, we define switching G with respect to the sequence Σ as follows:

$$
G^{\Sigma}=(G)^{\left(v_{1}, \pi_{1}\right)\left(v_{2}, \pi_{2}\right) \ldots\left(v_{k}, \pi_{k}\right)}=\left(G^{\left(v_{1}, \pi_{1}\right)}\right)^{\left(v_{2}, \pi_{2}\right)\left(v_{3}, \pi_{3}\right) \ldots\left(v_{k}, \pi_{k}\right)}
$$

Note if we let $\Sigma^{-1}=\left(v_{k}, \pi_{k}^{-1}\right) \ldots\left(v_{1}, \pi_{1}^{-1}\right)$, then $G^{\Sigma \Sigma^{-1}}=G^{\Sigma^{-1} \Sigma}=G$.
Given a subset of vertices, $X \subseteq V(G)$, we can switch at each vertex of X with respect to a permutation $\pi \in \Gamma$, the result of which we denote by $G^{(X, \pi)}$. This operation is well defined independently of the order in which we switch. If $u v$ is an edge or arc with one end in X, say u, then we simply switch at u with respect to π. Suppose both ends of $u v$ are in X. If $u v$ is an edge of colour i, then after switching at each vertex of X, the edge will have colour $\alpha^{2}(i)$. If $u v$ is an arc, then after switching the colour will be $\beta^{2}(i)$ and the direction will be $\gamma_{\beta(i)} \gamma_{i}(u v)$.

Two (m, n)-mixed graphs G and G^{\prime} with the same underlying graph are Γ switch equivalent if there exists a sequence of switches Σ such that $G^{\Sigma}=G^{\prime}$. We may simply say switch equivalent when Γ is clear from context. Note since $V(G)=V\left(G^{\prime}\right)$, we are viewing both (m, n)-mixed graphs as labelled and thus are not considering equivalence under switching followed by an automorphism. Such an extension of equivalence is possible but unnecessary in this work. Since Γ is a group, the following proposition is immediate.

Proposition 1.1. Γ-switch equivalence is an equivalence relation on the set of (labelled) (m, n)-mixed graphs.

We are now ready to define switching homomorphisms. Our definition naturally builds on homomorphisms of signed graphs 8,14 and push homomorphisms of digraphs [11]. Let G and H be (m, n)-mixed graphs. A Γ-switchable homomorphism of G to H is a sequence of switches Σ together with a homomorphism $G^{\Sigma} \rightarrow H$. We denote the existence of such a homomorphism by $G \rightarrow_{\Gamma} H$, or $f: G \rightarrow_{\Gamma} H$ when we wish to name the mapping. Observe the notation $G \rightarrow H$ refers to a homomorphism of (m, n)-mixed graphs without switching, and $G \rightarrow_{\Gamma} H$ refers to switching G followed by a homomorphism of (the resulting) (m, n)-mixed graphs.

A useful fact is the following. If $G \rightarrow_{\Gamma} H$, then $G \rightarrow_{\Gamma} H^{(v, \pi)}$ for any $v \in V(H)$ and any $\pi \in \Gamma$. To see this let Σ be a sequence of switches such that $f: G^{\Sigma} \rightarrow H$. Let $X=f^{-1}(v) \subseteq V\left(G^{\Sigma}\right)$. It is easy to see the same vertex mapping $f: V(G) \rightarrow V(H)$ defines a homomorphism $\left(G^{\Sigma}\right)^{(X, \pi)} \rightarrow H^{(v, \pi)}$. As a result of this observation, we have two immediate corollaries. First, Γ-switchable
homomorphisms compose. Second, when studying the question "does G admit a Γ-switchable homomorphism to H ?" we are free to replace H with any H^{\prime} switch equivalent to H.

For (classical) graphs, G is k-colourable if and only if it admits a homomorphism to a graph H of order k. Analogously, we say an (m, n)-mixed graph G is Γ-switchable k-colourable, if there is an (m, n)-mixed graph H of order k such that $G \rightarrow_{\Gamma} H$. The corresponding decision problem is defined as follows. Let $k \geq 1$ be a fixed integer and $\Gamma \leq S_{m} \times S_{n} \times S_{2}^{n}$ be a fixed group. We define the following decision problem.
Γ-Switchable k-Col
Input: An (m, n)-mixed graph G.
Question: Is $G \Gamma$-switchable k-colourable?
Our main result is the following dichotomy result for Γ-SWitchable k-CoL.
Theorem 1.2. Let $k \geq 1$ be an integer and $\Gamma \leq S_{m} \times S_{n} \times S_{2}^{n}$ be a group. If $k \leq 2$, then Γ-Switchable k-CoL is solvable in polynomial time. If $k \geq 3$, then Γ-Switchable k-Col is NP-hard.

The NP-hardness half of the dichotomy is immediate.
Proposition 1.3. For $k \geq 3$, Γ-Switchable k-Col is $N P$-hard.
Proof. Let G be an instance of k-colouring (for classical graphs). Let G^{\prime} be the (m, n)-mixed graph obtained from G by assigning each edge colour 1. If G is k-colourable, then clearly G^{\prime} is k-colourable. (Assign all edges in G^{\prime} and K_{k} the colour 1 and use the same mapping.) Conversely, if G^{\prime} is k-colourable, then the Γ-switchable homomorphism induces a homomorphism of the underlying graphs showing G is k-colourable.

For an Abelian group we remark that if G and G^{\prime} are switch equivalent, then there is a sequence of switches Σ of length at most $|V(G)|$ so that $G^{\Sigma}=G^{\prime}$. (This is discussed in more detail below.) Thus when Γ is Abelian, Γ-Switchable k CoL is in NP, and we can conclude for $k \geq 3$, the problem is NP-complete. The situation for non-Abelian groups is more complicated and is studied further in 3.

It is trivial to decide if an (m, n)-mixed graph is 1-colourable. Thus to complete the proof we settle the case $k=2$. Results are known when Γ belongs to certain families of groups [5, 13]. The remainder of the paper establishes the problem is polynomial time solvable for all groups Γ.

We conclude the introduction with a remark on the general homomorphism problem. Let H be a fixed (m, n)-mixed graph and Γ a fixed permutation group.
Γ-Hom- H
Input: An (m, n)-mixed graph G.
Question: Does G admit a Γ-switchable homomorphism to H ?
The complexity of Γ-Ном- H has been investigated for the same families
of groups as Γ-switchable k-colouring in 5,13 . The following theorem is an immediate corollary to our main result.

Theorem 1.4. Let H be a 2-colourable (m, n)-mixed graph, then Γ-Ном- H is polynomial time solvable.

2 Restriction to m-edge coloured graphs

If a non-trivial (m, n)-mixed graph G is 2-colourable, then the target of order 2 to which G maps must be a monochromatic K_{2} or a monochromatic tournament T_{2}. In the former case G must have only edges and in the latter only arcs. Moreover, the underlying graph of G must be bipartite as a 2-colouring of G induces a 2 -colouring of the underlying graph.

In this section we focus on the case where G has only edges and is bipartite. For ease of notation, and to align with the existing literature, we will refer to G as an m-edge coloured graph. Recall we use $[m]$ as the set of edge colours, and in this case we may restrict Γ to be a subgroup of S_{m}. We let H be the m-edge coloured K_{2} with its single edge of colour i, and denote H by K_{2}^{i}.

We begin with some key observations. Let G be an m-edge coloured graph. If $G \rightarrow_{\Gamma} K_{2}^{i}$, then every colour appearing on an edge of G must belong to the orbit of i under Γ; otherwise, G is a no instance. Therefore, we make the assumption that Γ acts transitively on $[m]$. Under this assumption K_{2}^{i} is switch equivalent to K_{2}^{j} for any $j \in[m]$. Thus we have the following proposition.

Proposition 2.1. Fix $i \in[m]$. Let G be a bipartite m-edge coloured graph. The following are equivalent.
(1) $G \rightarrow_{\Gamma} K_{2}^{i}$,
(2) $G \rightarrow_{\Gamma} K_{2}^{j}$ for any $j \in[m]$,
(3) G can be switched to be monochromatic of some colour j.

Proof. The implication (1) $\Rightarrow(2)$ follows from the fact that $K_{2}^{i} \rightarrow_{\Gamma} K_{2}^{j}$ for any $j \in[m]$ by the transitivity assumption. The implication $(2) \Rightarrow(3)$ is trivial. Suppose G can be switched to be monochromatic of some colour j. Let G have the bipartition $X \cup Y$. Since Γ is transitive, there is $\pi \in \Gamma$ such that $\pi(j)=i$. Then $G^{(X, \pi)}$ is monochromatic of colour i implying $G \rightarrow_{\Gamma} K_{2}^{i}$.

We have reduced the problem of determining whether an m-edge coloured graph G is 2-colourable to testing if G is bipartite and can be switched to be monochromatic of some colour j.

In the case of signed graphs (2-edge colours), G can be switched to be monochromatic of colour j if and only if each cycle of G can be switched to be a monochromatic cycle of colour j [18]. We shall show the same result holds for bipartite m-edge coloured graphs. However, for our setting the question of when a cycle can be switched to be monochromatic is more complicated. Hence, we begin by characterizing when an m-edge coloured even cycle can be made
monochromatic. To this end, let G be a m-edge coloured cycle of length $2 k$ on vertices $v_{0}, v_{1}, \ldots, v_{2 k-1}, v_{0}$. By switching at v_{1}, the edge $v_{0} v_{1}$ can be made colour i. Next by switching at v_{2}, the edge $v_{1} v_{2}$ can be made colour i. Continuing, we see that G can be switched so that all edges except $v_{2 k-1} v_{0}$ are colour i. For $i, j \in[m]$, we say the cycle G is nearly monochromatic of colours (i, j) if G has $2 k-1$ edges of colour i and 1 edge of colour j. Thus the problem of determining if an even cycle can be switched to be monochromatic is reduced to the problem of determining if a nearly monochromatic cycle of length $2 k$ can be switched to be monochromatic.

Let G be a cycle of length $2 k$ that is nearly monochromatic of colours (i, j). We define a relation on $[m]$ by $j \sim_{2 k} i$ if G is Γ-switchably equivalent to a monochromatic $C_{2 k}$ of colour i or equivalently $G \rightarrow_{\Gamma} K_{2}^{i}$.

As the definition suggests, the relation is an equivalence relation.
Lemma 2.2. The relation $\sim_{2 k}$ is an equivalence relation.
Proof. The relation is trivially reflexive.
To see $\sim_{2 k}$ is symmetric, assume $j \sim_{2 k} i$. Let G be a cycle of length $2 k$ that is nearly monochromatic of colour (j, i). Label the vertices of the cycle in the natural order as $v_{0}, v_{1}, \ldots, v_{2 k-1}, v_{0}$ where $v_{0} v_{2 k-1}$ is the unique edge of colour i. Suppose $\pi(j)=i$. Let $\Sigma=\left(v_{1}, \pi\right),\left(v_{3}, \pi\right), \ldots,\left(v_{2 k-3}, \pi\right)$. Then G^{Σ} is nearly monochromatic of colour (i, j), with edge $v_{2 k-2} v_{2 k-1}$ being the unique edge of colour j. By assumption there is a sequence of switches, say Σ^{\prime}, so that $G^{\Sigma \Sigma^{\prime}}$ is monochromatic of colour i, giving $G \rightarrow_{\Gamma} K_{2}^{i}$. Thus, $G \rightarrow_{\Gamma} K_{2}^{j}$ by Proposition 2.1. That is, G can be made monochromatic of colour j or $i \sim_{2 k} j$.

To prove $\sim_{2 k}$ is transitive, suppose $i \sim_{2 k} j$ and $j \sim_{2 k} l$. Let G, G^{\prime}, and $G^{\prime \prime}$ be m-edge coloured cycles of length $2 k$ each with the vertices $v_{0}, v_{1}, \ldots, v_{2 k-1}$. (Technically, we are considering three distinct edge colourings of the same underlying graph.) Suppose G, G^{\prime}, and $G^{\prime \prime}$ are nearly monochromatic of colours $(j, i),(l, j)$, and (l, i) respectively. There are $2 k-1$ edges of colour j in G with edge $v_{0} v_{2 k-1}$ of colour i in G. Similarly there are $2 k-1$ edges of colour l in G^{\prime} with edge $v_{0} v_{2 k-1}$ of colour j in G^{\prime} and $2 k-1$ edges of colour l with edge $v_{0} v_{2 k-1}$ of colour i in $G^{\prime \prime}$. We shall show $G^{\prime \prime}$ can be switched to be monochromatic of colour l.

By hypothesis, there is a sequence Σ^{\prime} such that $G^{\prime \Sigma^{\prime}}$ is monochromatic of colour l. In particular, under Σ^{\prime} all edges of colour l remain colour l, and the edge $v_{0} v_{2 k-1}$ changes from j to l. Thus, if we apply Σ^{\prime} to $G^{\prime \prime}$ the edges of colour l remain colour l and the product of those switches at v_{0} and $v_{2 k-1}$ changes $v_{0} v_{2 k-1}$ from colour i to colour $\sigma(i)$ for some $\sigma \in \Gamma$. We observe by the fact that $G^{\prime \Sigma^{\prime}}$ is monochromatic, $\sigma(j)=l$.

We now construct a modified inverse of Σ^{\prime}. Let $\Sigma^{\prime \prime}$ be the subsequence of Σ^{\prime} consisting of the switches only at v_{0} or $v_{2 k-1}$. That is, $\Sigma^{\prime \prime}$ is a subsequence $\left(v_{s_{0}}, \pi_{0}\right),\left(v_{s_{1}}, \pi_{1}\right), \ldots,\left(v_{s_{t}}, \pi_{t}\right)$ where each $v_{s_{r}} \in\left\{v_{0}, v_{2 k-1}\right\}$. Let X (respectively Y) be the vertices of $G^{\prime \prime}$ with even (respectively odd) subscripts. Starting with $G^{\prime \prime \Sigma^{\prime}}$ apply the following sequence of switches. For $r=t, t-1, \ldots, 0$, if $v_{s_{r}}=v_{0}$, then apply the switch $\left(X, \pi_{r}^{-1}\right)$; otherwise, $v_{s_{r}}=v_{2 k-1}$ and apply the switch $\left(Y, \pi_{r}^{-1}\right)$. The net effect is to apply σ^{-1} to each edge of $G^{\prime \prime \Sigma^{\prime}}$. Thus

Figure 1: Switching of the theta graph in Theorem 2.3. Solid blue edges are colour i and dashed red edges are colour j.
each edge of colour l switches to j and the edge $v_{0} v_{2 k-1}$ of colour $\sigma(i)$ becomes colour i. That is, we can switch $G^{\prime \prime}$ to be G. By hypothesis, G can be switched to be monochromatic of colour j. By Proposition 2.1, the resulting m-edge coloured graph can be switched to be monochromatic of colour l, i.e., $i \sim_{2 k} l$, as required.

We denote the equivalence classes with respect to $\sim_{2 k}$ by $[i]_{\Gamma}^{2 k}=\left\{j \mid j \sim_{2 k} i\right\}$. We now show that these classes are independent of cycle length (for even length cycles).

Theorem 2.3. Let $\Gamma \leq S_{m}$ and $i \in[m]$. Then $[i]_{\Gamma}^{2 l}=[i]_{\Gamma}^{2 k}$ for all $l, k \in$ $\{2,3, \ldots\}$.

Proof. Let $i \in[m]$ and let k be an integer $k \geq 2$. We show $[i]_{\Gamma}^{4}=[i]_{\Gamma}^{2 k}$ from which the result follows.

Suppose $j \in[i]_{\Gamma}^{4}$. Let G be a cycle of length $2 k$ and H a cycle of length 4 where both are nearly monochromatic of colours (i, j). Since $G \rightarrow H$ and by hypothesis, $H \rightarrow_{\Gamma} K_{2}^{i}$, we have $G \rightarrow_{\Gamma} K_{2}^{i}$ and thus $j \in[i]_{\Gamma}^{2 k}$.

Conversely, suppose $j \in[i]_{\Gamma}^{2 k+2}$. We will show $j \in[i]_{\Gamma}^{2 k}$ from which we can conclude by induction that $j \in[i]_{\Gamma}^{4}$. Let G be the m-edge coloured graph constructed as follows. Let $v_{1}, v_{2}, \ldots, v_{k} ; u_{1}, u_{2}, \ldots, u_{k}$; and $w_{1}, w_{2}, \ldots, w_{k}$ be three disjoint paths of length $k-1$. Join v_{1} to both u_{1} and w_{1}, and v_{k} to both u_{k} and w_{k}. Each edge is colour i with the exception of $v_{1} u_{1}$ which is colour j. (Thus, G is the θ-graph with path lengths $k+1, k-1, k+1$.) Denoted the cycles $u_{1}, \ldots, u_{k}, v_{k}, \ldots, v_{1}, u_{1}$ and $w_{1}, \ldots, w_{k}, v_{k}, \ldots, v_{1}, w_{1}$ by C_{1} and C_{2} respectively. Observe both have length $2 k, C_{1}$ is nearly monochromatic of colours (i, j) and C_{2} is monochromatic of colour i. Finally, let C_{3} be the cycle $u_{1}, \ldots, u_{k}, v_{k}, w_{k}, \ldots, w_{1}, v_{1}, u_{1}$. The cycle C_{3} has length $2 k+2$ and is nearly monochromatic of colours (i, j). See Figure 1 .

By assumption there exists a sequence of switches Σ (acting on the vertices of C_{3}) such that in G^{Σ} the cycle C_{3} is monochromatic of colour i. We note that
$v_{1} v_{2}$ and $v_{k-1} v_{k}$ might not be of colour i in G^{Σ}.
There is an automorphism φ of the underlying graph G that fixes each v_{l}, $l=1,2, \ldots, k$, and interchanges each u_{l} with w_{l}. We apply Σ^{-1} to $\varphi\left(G^{\Sigma}\right)$ as follows. Let Σ^{\prime} be the sequence obtained from Σ by reversing the order of the sequence, replacing each permutation with its inverse permutation and replacing all switches on vertices u_{l} with switches on w_{l} and vice versa. (Switches on v_{1} and v_{k} are applied to v_{1} and v_{k} respectively.) Then in $G^{\Sigma \Sigma^{\prime}}$ we see that C_{1} is monochromatic of colour i. Therefore $[i]_{\Gamma}^{2 k} \supseteq[i]_{\Gamma}^{2 k+2}$ for all $k \geq 2$. We conclude $[i]_{\Gamma}^{4}=[i]_{\Gamma}^{2 k}$ for all $k \geq 2$.

As the equivalence classes depends only on the group and not the length of the cycle, we henceforth denote these classes as $[i]_{\Gamma}$. If $j \in[i]_{\Gamma}$, we say i can be Γ-substituted for j; that is, the single edge of colour j in the cycle can be switched to colour i. We call $[i]_{\Gamma}$ the Γ-substitution class for i.

For a fixed m and $\Gamma,[i]_{\Gamma}$ can be computed in constant time as there is a constant number of m-edge coloured 4 -cycles, and a constant number of (single) switches that can be applied to these cycles, from which the equivalence classes can be computed using the transitive closure.

Theorem 2.4. Let G be an m-edge coloured $C_{2 k}$. It can be determined in polynomial time whether there is a Γ-switchable homomorphism of G to K_{2}^{i}.

Proof. As described above, we can switch G to be nearly monochromatic of colours (i, j), for some j. Then $G \rightarrow_{\Gamma} K_{2}^{i}$ if and only if $j \in[i]_{\Gamma}$. Testing this condition can be done in constant time.

We now show the Γ-Ном- K_{2}^{i} problem is polynomial time solvable. This is accomplished by showing the problem of determining whether a given m-edge coloured bipartite graph can be made monochromatic of colour i is polynomial time solvable.

We begin with the following observation that trees can always be made monochromatic.

Lemma 2.5. Let T be a m-edge coloured tree, then for any $\Gamma, T \rightarrow_{\Gamma} K_{2}^{i}$.
Proof. Let T be a m-edge coloured tree. Let $v_{1}, v_{2}, \ldots, v_{|T|}$ be a depth first search ordering of T rooted at v_{1}. For each $k \in 2, \ldots,|T|$, switch at v_{k} so that the edge from v_{k} to its parent in the depth first search ordering has colour i. We observe that if the subtree $T\left[v_{1}, \ldots, v_{k-1}\right]$ is monochromatic of colour i, then after switching at v_{k}, so is the subtree $T\left[v_{1}, \ldots, v_{k}\right]$.

Let G and H be m-edge coloured graphs such that H is a subgraph of G. A retraction from G to H, is a homomorphism $r: G \rightarrow H$ such that $r(x)=x$ for all $x \in V(H)$. We shall use the following result of Hell 9 .

Theorem 2.6. Let G be a bipartite graph. Suppose P is a shortest path from u to v in G. Then G admits a retraction to P.

We now show, for general m-edge coloured graphs G, testing if $G \rightarrow_{\Gamma} K_{2}^{i}$ comes down to testing if each cycle admits a Γ-switchable homomorphism to K_{2}^{i}. To this end define $\mathcal{C}(G)$ to be the set of cycles in an m-edge coloured graphs G, and \mathcal{F}_{Γ} to be the collection of cycles C such that $C \not \nrightarrow \Gamma_{\Gamma} K_{2}^{i}$.

Theorem 2.7. Let G be a connected m-edge coloured graph and Γ a transitive group acting on $[m]$. Suppose $i \in[m]$. The following are equivalent.
(1) $G \rightarrow_{\Gamma} K_{2}^{i}$.
(2) For all cycles $C \in \mathcal{C}(G), C \rightarrow_{\Gamma} K_{2}^{i}$.
(3) G is bipartite and for any spanning T of G, there is a switching sequence Σ such that in G^{Σ}, T is monochromatic of colour i and for each cotree edge the colour i can be Γ-substituted for the colour of the cotree edge.
(4) For all cycles $C \in \mathcal{F}_{\Gamma}, C \nrightarrow{ }_{\Gamma} G$

Proof. We first prove the equivalence of statements (1), (2), and (3).
$(1) \Rightarrow(2)$ is trivially true.
$(2) \Rightarrow(3)$. We first observe that G must be bipartite as all cycles in the underlying graph map to K_{2}. Let T be a spanning tree in G and let Σ be the switching sequence constructed as in the proof of Lemma 2.5. Then T is monochromatic of colour i in G^{Σ}. Let e be a cotree edge of colour j. The fundamental cycle C_{e} in $T+e$ is nearly monochromatic of colours (i, j). By hypothesis $C \rightarrow_{\Gamma} K_{2}^{i}$. Hence, $i \Gamma$-substitutes for j.
$(3) \Rightarrow(1)$. As above, let T be a spanning tree that is monochromatic of colour i in G^{Σ}. Let $e_{1}, e_{2}, \ldots, e_{k}$ be an enumeration of the cotree edges of T. By hypothesis for each cotree edge e_{t}, its colour, say j (in G^{Σ}), belongs to $[i]_{\Gamma}$.

Let $T+\left\{e_{1}, \ldots, e_{t}\right\}$ be the subgraph of G^{Σ} induced by the edges $E(T) \cup$ $\left\{e_{1}, \ldots, e_{t}\right\}$. Clearly $T \rightarrow_{\Gamma} K_{2}^{i}$. Suppose $T+\left\{e_{1}, \ldots, e_{t-1}\right\} \rightarrow_{\Gamma} K_{2}^{i}$. Let $e_{t}=u v$ have colour j. Let P be a shortest path from u to v in $T+\left\{e_{1}, \ldots, e_{t-1}\right\}$. By 9 , there is a retraction $r: T+\left\{e_{1}, \ldots, e_{t-1}\right\} \rightarrow P$ with $r(u)=u$ and $r(v)=v$. Adding the edge e_{t} shows $T+\left\{e_{1}, \ldots, e_{t}\right\} \rightarrow_{\Gamma} P+e_{t}$ where $P+e_{t}$ is a nearly monochromatic cycle of colours (i, j). By assumption $i \Gamma$-substitutes for j, so $P+e_{t} \rightarrow_{\Gamma} K_{2}^{i}$ and by composition $T+\left\{e_{1}, \ldots, e_{t}\right\} \rightarrow_{\Gamma} K_{2}^{i}$. By induction, $G \rightarrow_{\Gamma} K_{2}^{i}$.

Finally, we show (1) and (4) are equivalent. If there is $C \in \mathcal{F}_{\Gamma}$ such that $C \rightarrow_{\Gamma} G$, then $G \nrightarrow_{\Gamma} K_{2}^{i}$. Conversely, if $G \not \nrightarrow \Gamma_{\Gamma} K_{2}^{i}$, then by (2), there is a cycle C in G such that $C \not \overbrace{\Gamma} K_{2}^{i}$. In particular, $C \in \mathcal{F}_{\Gamma}$ and the inclusion map gives $C \rightarrow_{\Gamma} G$.

Given an m-edge coloured graph G, it is easy to test condition (3) for each component. Checking G is bipartite and the switching of a spanning forest can be done in linear time in $|E(G)|$. The look up for each cotree edge requires constant time.

However, the theorem actually gives us a certifying algorithm which we now outline (under the assumption G is connected). First test if G is bipartite. If it is
not, then we discover an odd cycle certifying a no instance. Otherwise construct a spanning tree, and switch so that the tree is monochromatic of colour i. Either the colour of each cotree edge belongs to $[i]_{\Gamma}$ or we discover a cotree edge that does not. In the latter case we have a cycle of $C \in \mathcal{F}_{\Gamma}$ that certifies G is a no instance.

Thus assume all cotree edges have colours in $[i]_{\Gamma}$. The proof of Theorem 2.7 provides an algorithm for switching G to be monochromatic of colour i through lifting the switching of the retract $P+e_{t}$ to all of G. We show how using a similar idea with C_{4} also works and gives a clearer bound on the running time. Let j be the colour of a cotree edge, say $u v$. Recall $j \in[i]_{\Gamma}^{4}$. Let H be a C_{4} with vertices labelled as $v_{0}, v_{1}, v_{2}, v_{3}$ and edges coloured as $v_{0} v_{3}$ is colour j and all other edges are colour i. Let Σ be a switching sequence so that H^{Σ} is monochromatic of colour i. Let X (respectively Y) be the vertices of G in the same part of the bipartition as u (respectively v). For each $\left(v_{i}, \pi_{i}\right)$ in Σ we apply the same switch π_{i} in G at u if $v_{i}=v_{0}$; at $X \backslash\{u\}$ if $v_{i}=v_{2}$; at v if $v_{i}=v_{3}$; and at $Y \backslash\{v\}$ if $v_{i}=v_{1}$. At the end of applying all switches in Σ, edges in G that were of colour i remain colour i, and the cotree edge $u v$ switches from j to i. As $|\Sigma|$ is constant (in $|\Gamma|$), this switching sequence for $u v$ requires $O(|V(G)|)$ switches. In this manner the concatenation of $|E(G)|-|V(G)|+1$ such switching sequences (together with the switches required to make T monochromatic) switch G to be monochromatic of colour i. This sequence together with the bipartition of G certifies that $G \rightarrow_{\Gamma} K_{2}^{i}$. We have the following.

Corollary 2.8. The problem Γ - $\mathrm{HOM}-K_{2}^{i}$ is polynomial time solvable by a certifying algorithm.

3 General (m, n)-coloured graphs

In this section we show the Γ-2-Col problem is polynomial time solvable. As noted above, a general (m, n)-mixed graph G is 2-colourable if it only has edges and for some edge colour $i, G \rightarrow_{\Gamma} K_{2}^{i}$ or it only has arcs and for some arc colour $i, G \rightarrow_{\Gamma} T_{2}^{i}$. Having established the Γ - $\mathrm{Hom}-K_{2}^{i}$ problem is polynomial time solvable, we now show Γ-Hom- T_{2}^{i} polynomially reduces to Γ-Ном- K_{2}^{i}. This establishes the polynomial time result of Theorem 1.2 which we restate.

Theorem 3.1. The Γ-Switchable 2-Col problem is polynomial time solvable.
Proof. Let G be an instance of Γ-Switchable 2-Col, i.e., an (m, n)-mixed graph. If G is not bipartite, we can answer No. If G has both edges and arcs, then we can answer No. If G only has edges, then by Corollary 2.8 we can choose any edge colour i (we still assume Γ is transitive) and test $G \rightarrow_{\Gamma} K_{2}^{i}$ in polynomial time.

Thus assume G is bipartite with bipartition (A, B) and has only arcs. Analogous to Section 2, we can view Γ as acting transitively on the n-arc colours. If Γ does not allow any arc colours to switch direction, i.e., for all $\pi \in \Gamma, \gamma_{i}(u v)=u v$ for all i, then G must have all its arcs from say A to B; otherwise, we can say

No. At this point G may be viewed as an n-edge coloured graph. (We can ignore the fixed arc directions.) We apply the results of Section 2 ,

Finally, we may assume G is bipartite, with only arcs, and Γ acts transitively on arc colours and directions. That is, for any arc colours i and j, Γ contains a permutation π_{1} (respectively π_{2}) that takes an arc $u v$ of colour i to an arc $u v$ (respectively $v u$) of colour j.

We now construct a $(2 n)$-edge coloured graph G^{\prime} as follows. Let $V\left(G^{\prime}\right)=$ $V(G)$. If there is an arc of colour i from $u \in A$ to $v \in B$, we put an edge $u v$ of colour i^{+}in G^{\prime}, and if there is an arc of colour i from $v \in B$ to $u \in A$, we put an edge $u v$ of colour i^{-}in G^{\prime}.

From Γ we construct a new group $\Gamma^{\prime} \leq S_{2 n}$. Note that Γ as described above acts on (m, n)-mixed graphs and Γ^{\prime} will be naturally restricted to acting on (2n)-edge coloured graphs. Let $\pi=\left(\alpha, \beta, \gamma_{1}, \ldots, \gamma_{n}\right) \in \Gamma$. Define $\pi^{\prime} \in \Gamma^{\prime}$ as follows. For each arc colour i,

$$
\pi^{\prime}\left(i^{+}\right)=\left\{\begin{array}{ll}
\beta(i)^{+} & \text {if } \gamma_{i}(u v)=u v \\
\beta(i)^{-} & \text {if } \gamma_{i}(u v)=v u
\end{array} \quad \text { and } \quad \pi^{\prime}\left(i^{-}\right)= \begin{cases}\beta(i)^{-} & \text {if } \gamma_{i}(u v)=u v \\
\beta(i)^{+} & \text {if } \gamma_{i}(u v)=v u\end{cases}\right.
$$

It can be verified that the mapping $\pi \rightarrow \pi^{\prime}$ is a group isomorphism.
The translation of G to G^{\prime} can be expressed as a function $F(G)=G^{\prime}$. It is straightforward to verify F is a bijection from n-arc coloured graphs to $2 n$-edge coloured graphs provided we fix the bipartition $V(G)=A \cup B$. Moreover, if $\pi \in \Gamma$ and π^{\prime} is the resulting permutation in Γ^{\prime}, then again it is easy to verify that $F\left(G^{(v, \pi)}\right)=\left(G^{\prime}\right)^{\left(v, \pi^{\prime}\right)}$ for any v in $V(G)=V\left(G^{\prime}\right)$.

Suppose $G \rightarrow_{\Gamma} T_{2}^{i}$. By the transitivity of Γ, we may assume that T_{2}^{i} has its tail in A, and thus all arcs in G can be switched to be colour i with their tail in A. The corresponding switches on G^{\prime} switch all edges to colour i^{+}. That is, $G^{\prime} \rightarrow_{\Gamma^{\prime}} K_{2}^{i^{+}}$. On the other hand, if $G^{\prime} \rightarrow_{\Gamma^{\prime}} K_{2}^{i^{+}}$, then the corresponding switches on G show that $G \rightarrow_{\Gamma} T_{2}^{i}$ (with the vertices of A mapping to the tail of T_{2}^{i}).

We conclude this section with a remark on the number of switches required to change the input G to be monochromatic. There are $|V(G)|-1$ switches required to change a spanning tree of G to be monochromatic of colour i. To change the cotree edges to colour i (assuming each is of a colour in $[i]_{\Gamma}$), we claim at most $c_{\Gamma}|V(G)|$ switches are required where c_{Γ} is a constant depending on Γ and the number of colours (m and n). We argue only for m-edge coloured graphs, given the reduction above. For (a labelled) C_{4}, there are m^{4} edge colourings. For each vertex there are $|\Gamma|$ switches. The reconfiguration graph \mathcal{C} has a vertex for each edge-colouring of C_{4} and an edge joining two vertices is there is a single switch that changes one into the other. (The existence of inverses ensures this is an undirected graph.) Thus, \mathcal{C} has order m^{4} and is regular of degree $|\Gamma|$. Given $j \in[i]_{\Gamma}$, there is a path in \mathcal{C} from a nearly monochromatic C_{4} of colours (i, j) to a monochromatic C_{4} of colour i. The switches on this path can be lifted to G so that the spanning tree remains of colour i and the cotree edge switches to
colour i. The total number of switches is at most $\max \left\{\operatorname{diam}\left(\mathcal{C}^{\prime}\right)\right\} \cdot|V(G)|$ where \mathcal{C}^{\prime} runs over all components of \mathcal{C}. Thus we have the following.

Proposition 3.2. Let G be a m-edge coloured bipartite graph. Let Γ be a group acting transitively on $[m]$. If G is Γ-switch equivalent to a monochromatic graph, then the sequence Σ of switches which transforms G to be monochromatic satisfies,

$$
|\Sigma| \leq|V(G)|-1+c_{\Gamma}|V(G)|(|E(G)|-|V(G)|+1)
$$

where c_{Γ} depends only on Γ and m.
In the case that Γ is abelian, the switches in Σ can be reordered, then combined, so that each vertex is switched only once.

4 Conclusion

We have established a dichotomy for the Γ-Switchable k-Col problem. This is a step in obtaining a dichotomy theorem for Γ-HOM- H for all (m, n)-mixed graphs H and all transitive permutation groups Γ. Work towards a general dichotomy is the focus of our companion paper [3].

References

[1] N. Alon and T. H. Marshall. Homomorphisms of edge-colored graphs and Coxeter groups. J. Algebraic Combin., 8(1):5-13, 1998.
[2] R. C. Brewster and T. Graves. Edge-switching homomorphisms of edgecoloured graphs. Discrete Mathematics, 309(18):5540-5546, 2009.
[3] R. C. Brewster, A. Kidner, and G. MacGillivray. A dichotomy theorem for Γ-switchable homomorphisms of (m, n)-mixed graphs. Manuscript, 2022.
[4] A. A. Bulatov. A dichotomy theorem for nonuniform CSPs. In 2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS), pages 319-330, 2017.
[5] C. Duffy, G. MacGillivray, and B. Tremblay. Switching m-edge-coloured graphs with non-Abelian groups, Manuscript, 2021.
[6] T. Feder and M. Y. Vardi. Monotone monadic SNP and constraint satisfaction. In Proceedings of the Twenty-Fifth Annual ACM Symposium on Theory of Computing, STOC '93, page 612-622, New York, NY, USA, 1993. Association for Computing Machinery.
[7] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of NP-Completeness (Series of Books in the Mathematical Sciences). W. H. Freeman, 1979.
[8] B. Guenin. Packing odd circuit covers: A conjecture. Manuscript, 2005.
[9] P. Hell. Rétractions de Graphes. PhD thesis, Université de Montréal, Montreal, Canada, 1972.
[10] P. Hell and J. Nešetřil. Graphs and Homomorphisms. Oxford Univ. Press, 2008.
[11] W. F. Klostermeyer and G. MacGillivray. Homomorphisms and oriented colorings of equivalence classes of oriented graphs. Discrete Mathematics, 274(1):161-172, 2004.
[12] A. Kostochka, E. Sopena, and X. Zhu. Acyclic and oriented chromatic numbers of graphs. Journal of Graph Theory, 24(4):331-340, Apr. 1997.
[13] E. Leclerc, G. MacGillivray, and J. M. Warren. Switching (m, n)-mixed graphs with respect to Abelian groups, Manuscript, 2021.
[14] R. Naserasr, E. Rollová, and E. Sopena. Homomorphisms of signed graphs. J. Graph Theory, 79(3):178-212, 2015.
[15] J. Nešetřil and A. Raspaud. Colored homomorphisms of colored mixed graphs. Journal of Combinatorial Theory, Series B, 80(1):147-155, 2000.
[16] A. Raspaud and E. Sopena. Good and semi-strong colorings of oriented planar graphs. Information Processing Letters, 51:171-174, 081994.
[17] S. Sen. A contribution to the theory of graph homomorphisms and colorings. PhD thesis, Bordeaux University, Bordeux, France, 2014.
[18] T. Zaslavsky. Signed graphs. Discrete Applied Mathematics, 4(1):47-74, 1982.
[19] D. Zhuk. A proof of the CSP dichotomy conjecture. J. ACM, 67(5), Aug. 2020.

[^0]: *Department of Mathematics and Statistics, Thompson Rivers University, Kamloops, B.C., Canada
 ${ }^{\dagger}$ Department of Mathematics and Statistics, University of Victoria, Victoria, B.C., Canada
 ${ }^{\ddagger}$ Department of Mathematics and Statistics, University of Victoria, Victoria, B.C., Canada

