
Available online at www.sciencedirect.com

ScienceDirect

AKCE International Journal of Graphs and Combinatorics 15 (2018) 115–154
www.elsevier.com/locate/akcej

Alliances in graphs: Parameters, properties and applications—A
survey

Kahina Ouazine, Hachem Slimani∗, Abdelkamel Tari

LIMED Laboratory, Computer Science Department, University of Bejaia, 06000 Bejaia, Algeria

Received 19 October 2016; received in revised form 15 May 2017; accepted 24 May 2017
Available online 9 June 2017

Abstract

In practice, an alliance can be a bond or connection between individuals, families, states, or entities, etc. Formally, a non-empty
set S of vertices of a graph G is a defensive k-alliance (resp. an offensive k-alliance) if every vertex of S (resp. the boundary of S) has
at least k more neighbors inside of S than it has outside of S. A powerful k-alliance is both defensive k-alliance and offensive (k+2)-
alliance. During the last decade there has been a remarkable development on these three kinds of alliances. Due to their variety
of applications, the alliances in its broad sense have received a special attention from many scientists and researchers. There have
been applications of alliances in several areas such as bioinformatics, distributed computing, web communities, social networks,
data clustering, business, etc. Several k-alliance numbers have been defined and a huge number of theoretical (algorithmic and
computational) results are obtained for various graph classes. In this paper, we present a survey which covers a number of practical
applications of alliances and the vast mathematical properties of the three types of k-alliances by giving a special attention to the
study of the associated k-alliance (partition) numbers for different graph classes.
c⃝ 2017 Kalasalingam University. Publishing Services by Elsevier B.V. This is an open access article under the CC BY-NC-ND
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1. Introduction

1.1. Historical view and applications of alliances

The word alliance can be defined as a union or association formed for mutual benefit, for example it can be: a formal
agreement or treaty between two or more nations to cooperate for specific purposes, a merging of efforts or interests by
persons, families, states, or organizations. The study of alliances in graphs is first investigated by Kristiansen et al. [1]
by defining different types of alliances that have been extensively studied in the last decade. These types of alliances
are called defensive alliances [2,3], offensive alliances [4,5] and dual or powerful alliances [6,7]. A generalization
of these alliances called k-alliances (or r -alliances) introduced by Shafique and Dutton [8,9] have received a special
attention in recent years. In this setting, there have been definitions of many and various parameters which have been
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studied widely in the case of defensive (offensive, powerful) k-alliances and for different graphs classes. The study of
the alliances (in its broad sense) is motivated by interesting applications in several areas.

The research work of Kristiansen et al. [1] is motivated by the alliance of nations in war for mutual support. They
considered two cases: the first which corresponds to a defensive alliance is realized when nations are obligated to
join forces if one or more of them are attacked and the second is an offensive alliance which is used as a mean of
keeping the peace; as an example of illustration, the action of NATO troops in a war-torn country is given. Thus in the
corresponding graph of this situation, the vertices represent the nations and the edges correspond to possible relations
(of either friendship or hostility) between them. Essentially, Kristiansen et al. [1] studied the mathematical properties
of defensive alliances in graphs.

Haynes et al. [10] studied structural characteristics of a class of biomolecules in the bioinformatics arena by
involving several graphical invariants based on domination numbers. In fact, they studied the applicability of graphs
in the analysis of secondary RNA structure. They used graph-theoretic trees as a modeling method to represent
secondary RNA motifs. Specifically, they utilized five domination parameters including the global defensive (−1)-
alliance number, that are highly sensitive to the structural changes of small ordered trees, to identify which trees of
orders seven and eight are RNA-like in structure. With this study, it is shown that graphical invariants, which aid
in the optimization of computer and electrical networks, are useful and serve as an interesting tool for genomic and
proteomic predictions.

In distributed computing, one of the central problems is how to deal with failures. Flocchini et al. [11], Peleg [12],
Srimani and Xu [13], and Xu and Srimani [14] studied the fault tolerance of distributed computing and communication
networks. Generally, a distributed system is represented by a graph where the vertices represent the processors and
the edges correspond to different communications between them. Thus by using the process of local majority voting
in graphs, processors are partitioned into two alliances. Furthermore, Srimani and Xu [13], and Xu and Srimani [14]
designed self-stabilizing fault tolerant distributed algorithms for the global defensive (offensive) alliances in a given
arbitrary graph.

Flake et al. [15] defined a community on the web as a set of web pages that link (in either direction) to more web
pages in the community than to pages outside of the community. With this definition, the defensive alliances represent
exactly the mathematical model of such web communities.

Szabö and Czárán [16] and Kim and Liu [17] have studied defensive alliances in cyclical interaction models of six
mutating species which represent generalizations of the Rock–Scissors–Paper game.

The alliances are also used in business and social networks in order to achieve common objectives by partners. In
this context, Dickson and Weaver [18] studied the interaction between the firm size and the level of national R&D
intensity to determine if it would be interesting for an SME (small and medium enterprise) to form a strategic alliance.
Furthermore, H. Chen and T.J. Chen [19] investigated the strategic alliances between organizations by providing
empirical evidence to show what kind of resources should be shared and how such resource sharing should be
organized between partners.

The partitioning of a set of objects is a process which partitions these objects into subsets, so that the objects of the
same group have similar characteristics, and two objects belonging to two distinct subsets are dissimilar. In fact, this
process is subjective because the same set of elements should often be divided differently for various applications. It
is known that the partitioning process is involved in many applications occurred in various areas such as: clustering
of data, load balancing in parallel machines, image segmentation, data mining, scientific computing, VLSI design,
task scheduling, parallel programming, geographical information systems, division of space air, classification of
documents, etc.

One of the approaches used to solve the partitioning problem is to reduce it to a problem of graphs where the
objects are represented by vertices and the edges correspond to possible relationships between the objects. Although
some problems try to partition the edges of a graph, we usually mean by the partition of a graph the partition of
the vertices of this graph. Once the graph is obtained, the problem is to find a partition of the graph into subgraphs
according to a certain criterion. However, the main question is which criterion to choose so that we obtain the “best
partition”?

For example, the partition of a graph into the least number of independent sets is used to solve the chromatic
number problem. On the other hand, there exist several studies on partitioning graphs into k-alliances and various
theoretical results are obtained for some graphs classes in the literature. In this framework, the partitioning of graphs
into defensive k-alliances is investigated by Eroh and Gera [20,21], Haynes and Lachniet [22], Yero et al. [23], the
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partitioning into offensive k-alliances is the subject matter of Sigarreta et al. [24], Yero [25], and the partitioning into
powerful k-alliances is discussed in Slimani and Kheddouci [26], Yero and Rodrı́guez-Velázquez [27]. In this context,
it would be interesting to see how such partitioning can be of interest to solve practical problems.

Shafique [28] studied the partitioning of data (objects) into clusters by involving the concept of defensive
0-alliance. In general, the clusters are defined by maximizing the similarities of objects belonging to each cluster
as well as the dissimilarities of objects between the clusters. Thus, there exist more bonds inside each cluster than
between the clusters. He represented this situation by a graph where the vertices correspond to data and the edges
symbolize the common property (similarity) that the data share. This implies that the vertices in every cluster have
at least as many edges adjacent to the vertices inside the cluster as to the vertices outside it. This corresponds to the
definition of defensive 0-alliance. On the basis of this, Shafique [28] established an approximate algorithm and applied
it for different clustering applications.

In mobile ad hoc networks (MANETs), ensure confidentiality and secure communications in groups is a critical
task. In this context, Seba et al. [29] proposed a fully distributed and self-stabilizing clustering algorithm for key
management in MANETs by using the concept of defensive (−1)-alliance as a clustering criterion. Thus, they
proposed a solution which meets the criteria of self-organization and mobility resilience. With experiments, they
showed that the concept of defensive (−1)-alliance is an efficient clustering criterion for group key management in
MANETs by comparing to other existing clustering schemes.

Recently, there have been two surveys in the literature on alliances: the first by Yero and Rodrı́guez-Velázquez [3]
presents essentially results on one type of k-alliances in graphs namely those are defensive, and in the second Fernau
and Rodrı́guez-Velázquez [30] have investigated the problem of several graph parameters which are known under
completely different names in different areas and they have proposed a new framework called (global) (D, O)-
alliances in order to unify their notations.

In this paper, we survey the vast mathematical properties of defensive, offensive and powerful k-alliances in graphs
by presenting a large number of theoretical results corresponding to bounds and/or exact values obtained for the
associated k-alliance (partition) numbers for various graph classes. There is an originality in our draft by surveying
the most important results by classifying them firstly according to the “type of k-alliance” then by the criterion
“graph class”. This allows us to see how the study of various k-alliance (partition) numbers varies according to the
two criteria “graph class” and “type of k-alliance”. In particular, it is deduced the most/least studied graph classes
(type of k-alliances) on which there are more/less results. The paper is partitioned into three principal parts: the first
part given in Section 2 is devoted to the study of defensive k-alliances, the second part given in Section 3 deals
with the offensive k-alliances, and the third part given in Section 4 discusses the powerful k-alliances. At the end of
each part, we establish a table that summarizes the principal results obtained for every k-alliance (partition) number
according to the different graph classes and we discuss some of their relationships and properties. Finally, in Section 5
we summarize and draw conclusions.

1.2. Terminology and definitions

In this part, we give some terminology and definitions which will be heavily used in the rest of this paper. Let
G = (V, E) be an undirected finite graph without loops and multiple edges where V denotes the vertex set and E
denotes the edge set with |V | = n and |E | = m. For a non-empty subset S ⊆ V , ⟨S⟩ denotes the subgraph of G
induced by S. For any vertex v ∈ V , N (v) is the open neighborhood of the vertex v, i.e. the set of vertices that are
adjacent to v in G, and the closed neighborhood of v is the set N [v] = N (v) ∪ {v}. The number degS(v) = |NS(v)| is
the degree of v in S with NS(v) = {u ∈ S : uv ∈ E} is the set of neighbors v has in S and NS[v] = NS(v) ∪ {v}. The
open neighborhood of S is N (S) =

⋃
v∈S N (v) and the closed neighborhood of S is N [S] = N (S) ∪ S. The boundary

of S is the set ∂S = N (S) − S and the complement of S in V is S̄ = V − S. We denote the degree sequence of G by
δ1 ≥ δ2 ≥ · · · ≥ δn . Other notations will be introduced when needed.

A set S is a dominating set if N [S] = V and it is a total dominating set or an open dominating set if N (S) = V .
The minimum cardinality of a dominating set (resp. total dominating set) of G is the domination number γ (G) (resp.
total domination number γt (G)).

A non-empty set of vertices S ⊆ V is called defensive alliance if for every vertex v ∈ S, |N [v] ∩ S| ≥ |N (v) ∩ S̄|

or equivalently degS(v) + 1 ≥ degS̄(v). In this case, we say that every vertex in S is defended from possible attack
by vertices in S̄. A defensive alliance S is called strong if for every vertex v ∈ S, degS(v) + 1 > degS̄(v). A
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set S ⊂ V is called offensive alliance, if for every vertex v ∈ ∂(S), |N (v) ∩ S| ≥ |N [v] ∩ S̄| or equivalently
degS(v) ≥ degS̄(v) + 1. In this case, we say that every vertex in ∂(S) is vulnerable to possible attack by vertices in S.
An offensive alliance S is called strong if for every vertex v ∈ ∂(S), degS(v) > degS̄(v) + 1. The alliances that are
both defensive and offensive are called powerful alliances. That is, S ⊂ V is a powerful alliance if for every vertex
v ∈ N [S], |N [v] ∩ S| ≥ |N [v] ∩ S̄|. An alliance S of any type (defensive, offensive or powerful) is called global if S
is a dominating set, and it is called critical or minimal if no proper subset of S is an alliance of the same type. See the
graphs given in Figs. 1(a)–1(c) of Appendix for illustration.

A subset S ⊆ V is a defensive k-alliance, with k ∈ {−δ1, . . . , δ1}, if for every v ∈ S, degS(v) ≥ degS̄(v) + k.
A set S ⊂ V is an offensive k-alliance, with k ∈ {2 − δ1, . . . , δ1} if for every v ∈ ∂(S), degS(v) ≥ degS̄(v) + k.
A set S ⊂ V is a powerful k-alliance if it is both a defensive k-alliance and an offensive (k + 2)-alliance. Yero and
Rodrı́guez-Velázquez [31,32] studied the limit case of defensive (resp. offensive and powerful) k-alliances and by
considering equalities in their associated definitions they defined the so-called boundary defensive (resp. offensive
and powerful) k-alliances. See the graphs given in Figs. 1(d)–1(f) of Appendix for illustration.

2. Defensive k-alliances in graphs

In this section, we study mathematical properties of defensive k-alliances by giving bounds and/or exact values of
several parameters studied for various graphs classes. A defensive k-alliance in a graph G = (V, E) is a set of vertices
S ⊆ V satisfying the condition that every vertex in S has at least k more neighbors in S than it has outside of S. The
case k = −1 (resp. k = 0) corresponds to the standard defensive alliances (resp. strong defensive alliances which is
also known as a cohesive set) defined in [1].

Several parameters have been defined and studied in the literature for defensive k-alliances, one can see [1,2,33–
36] and others. These parameters are defined as follows: The defensive (−1)-alliance number known as defensive
alliance number ad

−1(G) (resp. defensive 0-alliance number known as strong defensive alliance number ad
0 (G)) is the

minimum cardinality among all (critical) defensive (−1)-alliances (resp. defensive 0-alliances) of G [1]. The global
defensive (−1)-alliance number γ d

−1(G) (resp. global defensive 0-alliance number γ d
0 (G)) is the minimum cardinality

among all (critical) global defensive (−1)-alliances (resp. global defensive 0-alliances) of G [2]. The upper defensive
(−1)-alliance number Ad

−1(G) (resp. upper defensive 0-alliance number Ad
0 (G)) is the maximum cardinality among

all critical defensive (−1)-alliances (resp. defensive 0-alliances) of G [1,28]. The defensive k-alliance number ad
k (G)

is the minimum cardinality among all (critical) defensive k-alliances of G [9,28]. The global defensive k-alliance
number γ d

k (G) is the minimum cardinality among all (critical) global defensive k-alliances of G [37]. The upper
defensive k-alliance number Ad

k (G) is the maximum cardinality among all critical defensive k-alliances of G [28].
Now, we give some basic relations and observations which bind various parameters of defensive k-alliances. For

any graph G = (V, E), we have:

(1) ad
−1(G) ≤ ad

0 (G) ≤ Ad
0 (G) [1,28];

(2) ad
−1(G) ≤ Ad

−1(G) [1,28];
(3) ad

−1(G) ≤ γ d
−1(G) [2,38];

(4) ad
0 (G) ≤ γ d

0 (G) [28,38];
(5) ad

−1(G) = 1 ⇔ ∃ v ∈ V, deg(v) ≤ 1 [1];
(6) ad

0 (G) = 1 ⇔ G contains an isolated vertex [1];
(7) ad

−1(G) = 2 ⇔ δn ≥ 2 and G has two adjacent vertices of degree at most 3 [1];
(8) ad

0 (G) = 2 ⇔ δn ≥ 1 and G has two adjacent vertices of degree at most 2 [1];
(9) ad

−1(G) ≤ ad
0 (G) ≤ γ d

0 (G) [2,38];
(10) γ (G) ≤ γ d

−1(G) ≤ γ d
0 (G) [2,38,39];

(11) ad
k (G) ≤ ad

k+1(G) [23,34,37];
(12) ad

k (G) ≤ γ d
k (G) [23,37];

(13) γ (G) ≤ γ d
k (G) ≤ γ d

k+1(G) [23,37];
(14) Ad

k (G) ≤ Ad
k+1(G) [35].
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2.1. Study of defensive k-alliance numbers for various graphs classes

Defensive k-alliances are extensively studied in the literature for different graphs classes. In this subsection, we
present important theoretical results obtained for this type of alliance. Essentially, we give bounds or exact values
established for defensive k-alliance numbers studied for various graphs classes.

2.1.1. General graphs
We present essential results concerning defensive k-alliances in the case of general graphs. In particular, we give

bounds obtained for various defensive k-alliance numbers by using different graph parameters. Let G = (V, E) be a
general graph of order n.

The study of defensive k-alliances in graphs was introduced by Kristiansen et al. [1]. They proposed some sharp
bounds for the defensive (−1)-alliance number and the defensive 0-alliance number as follows: for any connected
graph G, ad

−1(G) ≤ min{n−
⌈
δn
2

⌉
,
⌈ n

2

⌉
} and ad

0 (G) ≤ min{n−
⌊
δn
2

⌋
,
⌊ n

2

⌋
+1} (note that these bounds are attained, for

example, for the complete graph G = Kn). Rodrı́guez-Velázquez and Sigarreta [40] studied the relationship between
the (global) defensive k-alliance numbers of a graph, its algebraic connectivity (the second smallest eigenvalue of
the Laplacian matrix of the graph G) and its spectral radius (the largest eigenvalue of the adjacency matrix of the
graph G). They obtained lower bounds for the parameters ad

−1(G) and ad
0 (G) by using the maximum degree δ1 and

the algebraic connectivity µ. Thus they showed that for a simple graph G, ad
−1(G) ≥

⌈
nµ

n+µ

⌉
, ad

0 (G) ≥

⌈
n(µ+1)

n+µ

⌉
and

for a simple connected graph G, ad
0 (G) ≥

⌈
n(µ−

⌊
δ1
2

⌋
)

µ

⌉
(note that this latter bound is reached, for example, in the

following cases given in [40]: the complete graph, the Petersen graph, and the 3-cube graph). Other bounds for the
same parameters are given by Araujo-Pardo and Barrière [41] by using the minimum degree of the graph and its girth.

Haynes et al. [2] investigated the global defensive (−1)-alliance number and the global defensive 0-alliance
number. They obtained sharp bounds and showed that: if G is a graph of order n, then γ d

−1(G) ≥

√
4n+1−1

2 and
γ d

0 (G) ≥
√

n; and for any graph G with no isolated vertices and minimum degree δn , γ d
−1(G) ≤ n −

⌈
δn
2

⌉
and

γ d
0 (G) ≤ n −

⌊
δn
2

⌋
. They also obtained that if G is a graph of order n, then γ d

−1(G) ≥
n

⌈ r
2⌉+1

. Moreover, Haynes
et al. [2] obtained other results for the same parameters by using the total domination number γt (G). Thus, for
the global defensive (−1)-alliance number they showed that for any graph G with δn ≥ 2, γ d

−1(G) ≥ γt (G), and
furthermore if δ1 ≤ 3 then γ d

−1(G) = γt (G). For the global defensive 0-alliance number they showed that for any
graph G with no isolated vertices, γ d

0 (G) ≥ γt (G). On the other hand, Rodrı́guez-Velázquez and Sigarreta [40] gave
lower bounds for these parameters in terms of the order of a simple graph G, its maximum degree δ1 and its spectral

radius λ. These results are: γ d
−1(G) ≥

⌈ n
λ+2

⌉
, γ d

−1(G) ≥

⌈
2n
δ1+3

⌉
, γ d

0 (G) ≥
⌈ n
λ+1

⌉
and γ d

0 (G) ≥

⌈
n⌊

δ1
2

⌋
+1

⌉
. For more

bounds on these parameters, one can see Favaron [39], Hsua et al. [42] and Sigarreta and Rodrı́guez-Velázquez [36],
where other concepts such as the minimum cardinality of an independent set, the dominating number, and the diameter
of graph G are used.

Yero et al. [23] presented some relations for the (global) defensive k-alliance number by considering the cases
where the degrees of vertices and k are even/odd. Thus, they obtained that if every vertex of G has even degree
and k is odd, k = 2l − 1, then every (global) defensive (2l − 1)-alliance in G is a (global) defensive (2l)-alliance
and vice versa. Hence, in such a case, ad

2l−1(G) = ad
2l(G) and γ d

2l−1(G) = γ d
2l(G). Analogously, if every vertex of

G has odd degree and k is even, k = 2l, then every defensive (2l)-alliance in G is a defensive (2l + 1)-alliance
and vice versa. Hence, in such a case, ad

2l(G) = ad
2l+1(G) and γ d

2l(G) = γ d
2l+1(G). Rodrı́guez-Velázquez et al. [34]

and Sigarreta in his thesis [43] studied the defensive k-alliances and showed that for every k ∈ {−δn, ..., δ1}, the
defensive k-alliance number satisfies

⌈
δn+k+2

2

⌉
≤ ad

k (G) ≤ n −
⌊
δn−k

2

⌋
, and if k ∈ {−δn, . . . , 0} one has the upper

bound ad
k (G) ≤

⌈ n+k+1
2

⌉
(note that these bounds are attained, for example, for the complete graph G = Kn for

every k ∈ {1 − n, . . . , n − 1}). Moreover, for every k, r ∈ Z such that −δn ≤ k ≤ δ1 and 0 ≤ r ≤
k+δn

2 , they
showed that ad

k−2r (G) + r ≤ ad
k (G). They also gave other bounds by involving the algebraic connectivity of G.

Thus, for any connected graph G and k ∈ {−δn, . . . , δ1}, ad
k (G) ≥ ⌈

n(µ+k+1)
n+µ

⌉ and ad
k (G) ≥

⌈
n(µ−

⌊
δ1−k

2

⌋
)

µ

⌉
. By

using the isoperimetric number I(G) and the algebraic connectivity µ, Yero [25] and Yero et al. [23] obtained other
bounds for the same parameter. They showed that for any graph G if it is partitionable into defensive k-alliances, then
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ad
k (G) ≥ I(G) + k + 1 and ad

k (G) ≥

⌈
µ+2(k+1)

2

⌉
. Note that this latter bound is reached for example for the graph

G = C3 × C3 for k = 0, given in [23,25], in this case µ = 3. We recall that the isoperimetric number of a graph
G = (V, E) is defined as I(G) = minS⊂V :|S|≤

n
2

{∑
v∈SdegS̄ (v)

|S|

}
or I(G) = min |E(X,Y )|

min{|X |,|Y |}
with X, Y ⊆ V .

Fernau et al. [44] studied the global defensive k-alliances and established bounds for the global defensive k-alliance

number. Thus they presented that for any graph G,
√

4n+k2+k
2 ≤ γ d

k (G) ≤ n − ⌈
δn−k

2 ⌉ and γ d
k (G) ≥

⌈
n⌊

δ1−k
2

⌋
+1

⌉
(note that these bounds are attained, for instance, for the graph given in Fig. 1(g) of Appendix where γ d

−4(G) = 1).
These results are also obtained by Rodrı́guez-Velázquez et al. [37] and Sigarreta [43] by showing that these bounds
are a generalization of those obtained by Haynes et al. [2] for γ d

−1(G) and γ d
0 (G) in the cases of general and

bipartite graphs. Furthermore, Rodrı́guez-Velázquez et al. [37] and Sigarreta [43] showed that for S a global defensive
k-alliance of minimum cardinality in G, if W ⊂ S is a dominating set in G then for every r ∈ Z such that
0 ≤ r ≤ γ d

k (G) − |W |, γ d
k−2r (G) + r ≤ γ d

k (G). By using the spectral radius λ, Sigarreta [43] also obtained that
for every graph G, γ d

k (G) ≥
⌈ n
λ−k+1

⌉
.

The upper defensive k-alliances have been studied by Sigarreta [35]. He established a bound for the upper defensive
k-alliance number in terms of the order of G and its minimum degree. Thus for every k ∈ {−δn, . . . , δ1} and for every
graph G, Ad

k (G) ≤
⌈ 2n−δn+k

2

⌉
; and if every S ⊂ V such that |S| ≥ r is a defensive k-alliance, then Ad

k (G) ≤ r .
He also gave an other upper bound by defining and using a new concept φd

k (G) which is the largest cardinality of
a maximal defensive k-alliance free set. A set X ⊂ V is defensive k-alliance free, if for all defensive k-alliance S,
S \ X ̸= ∅ (X does not contain any defensive k-alliance as a subset). A defensive k-alliance free set X is maximal if
for every v ̸∈ X , there exists S ⊆ X such that S ∪ {v} is a defensive k-alliance. Thus, for every k ∈ {−δ1, . . . , δ1} one
has Ad

k (G) ≤ φd
k (G) + 1.

By considering the limit case of k-alliances, Yero in his thesis [25] and Yero and Rodrı́guez-Velázquez [31] defined
a new variant of k-alliances called boundary k-alliances. They studied mathematical properties of such alliances
by obtaining in particular several bounds on the cardinality of every boundary defensive k-alliance. Thus, if S is
a boundary defensive k-alliance in a graph G, then

⌈
δn+k+2

2

⌉
≤ |S| ≤

⌊ 2n−δn+k
2

⌋
(note that these two bounds

are reached, for instance, for the complete graph G = Kn for every k ∈ {1 − n, . . . , n − 1}). Furthermore, for a

connected graph G, if S is a boundary defensive k-alliance in G then

⌈
n(µ−

⌊
δ1−k

2

⌋
)

µ

⌉
≤ |S| ≤

⌊
n(µ∗−

⌈
δn−k

2

⌉
)

µ∗

⌋
and⌈

n(µ+k+2)−µ
2n

⌉
≤ |S| ≤ n −

⌈
n(µ−k)−µ

2n

⌉
, where µ∗ is the Laplacian spectral radius (the largest Laplacian eigenvalue of

the graph G).

2.1.2. Tree graphs
By definition, a tree T = (V, E) of order n and size m is a connected graph with m = n − 1. The study of trees is

particularly interesting because various applications are modeled and solved by using their properties. Thus, the study
of alliances in general and defensive alliances in particular for this class of graph is important. In what follows, we
present some results concerning defensive k-alliance numbers in trees.

Kristiansen et al. [1] studied the defensive k-alliances and gave an exact value for the defensive (−1)-alliance
number and an upper bound for the defensive 0-alliance number. These results are: ad

−1(T ) = 1 and ad
0 (T ) ≤ n.

Haynes et al. [2] obtained upper bounds and sharp lower bounds for the global defensive (−1)-alliance number
and the global defensive 0-alliance number as follows: if T is a tree of order n, then γ d

−1(T ) ≥
n+2

4 , γ d
0 (T ) ≥

n+2
3 ,

γ d
−1(T ) ≤

3n
5 for n ≥ 4 (with equality for the latter bound if and only if T ∈ T1 with T1 is a special family of

trees [2]), and γ d
0 (T ) ≤

3n
4 for n ≥ 3 (with equality if and only if T belongs to a special family of trees T2 [2]).

Rodrı́guez-Velázquez and Sigarreta [45] gave more general lower bounds for the same parameters by imposing a
condition on the number of connected components of the subgraphs induced by the alliances. They showed that if S is
a global defensive (−1)-alliance (resp. 0-alliance) in a tree T such that the subgraph ⟨S⟩ has c connected components,
then |S| ≥ ⌈

n+2c
4 ⌉ (resp. |S| ≥ ⌈

n+2c
3 ⌉). As a particular case of these results, if ⟨S⟩ is connected, they obtained lower

bounds for γ d
−1(T ) and γ d

0 (T ) already proved by Haynes et al. in [2]. On the other hand, Chen and Chee [46] proved
that for a tree T of order n ≥ 3 having s support vertices, γ d

−1(T ) ≤
n+s

2 , with equality if and only if T belongs to
a special family of trees ξ [46] (we recall that a vertex of degree one is called a leaf and its neighbor is a support
vertex). Bouzefrane et al. [47] showed that if T is a tree of order n ≥ 2 with l leaves and s support vertices, then
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γ d
−1(T ) ≥

3n−l−s+4
8 (with equality if and only if T = P2 or T ∈ T with T is a special family of trees [47]) and

γ d
0 (T ) ≥

3n−l−s+4
6 (with equality if and only if T belongs to a special family of trees F [47]).

Harutyunyan [48] studied the global defensive (−1)-alliance number for the complete t-ary tree Tt,d and for its
particular case the complete binary tree Td = T2,d . A t-ary tree is a rooted tree where each vertex has at most t
children. A complete t-ary tree is a t-ary tree in which all the leaves have the same depth and all the vertices except
the leaves have t children; thus Tt,d is the complete t-ary tree with depth d. For a complete binary tree Td of order n,
Harutyunyan gave an exact value for the global defensive (−1)-alliance number: γ d

−1(Td ) = γ d
−1(T2,d ) =

⌈ 2n
5

⌉
for any

d. For complete t-ary tree Tt,d , he obtained lower and upper bounds for the same parameter by means of t and d. Thus,
for d ≥ 2 and t ≥ 2, we have td−1

⌊ t−1
2

⌋
+ td−1

+ td−2
≤ γ d

−1(Tt,d ) ≤ td−1
⌊ t−1

2

⌋
+ td−1

+ td−2
+ td−3. Moreover,

exact values for Tt,d , t = 3 and t = 4 are given in [48,49]. On the other hand, for any tree T of order n Harutyunyan
presented a bound for γ d

−1(T ) by using the global offensive (−1)-alliance number γ o
−1(T ) (that we will study in the

next section). This result is γ d
−1(T ) ≤ γ o

1 (T ) +
n
2 . By using the independence number β(T ) (the maximum cardinality

of an independent set in T ), Chellali and Haynes [50] gave sharp bounds for the global defensive (−1)-alliance number
and the global defensive 0-alliance number as follows: for any tree T , γ d

−1(T ) ≤ β(T ), furthermore they obtained that
for every nontrivial tree T with l leaves γ d

−1(T ) ≤
n+l−1

2 ; note that for l ≤
n
5 this latter bound is an improvement of

the one (γ d
−1(T ) ≤

3n
5 for n ≥ 4) given by Haynes et al. [2]. For the global defensive 0-alliance number they showed

that if T is a tree of order n ≥ 3 with s support vertices, then γ d
0 (T ) ≤

3β(T )−1
2 and γ d

0 (T ) ≤ β(T ) + s − 1.
Favaron [39] compared the global defensive (−1)-alliance number and the global defensive 0-alliance number to

the independent domination number i . He obtained bounds in the forms i(T ) ≤ f (γ d
−1(T )) and i(T ) ≤ g(γ d

0 (T )) for
special families of trees, where f and g are functions.

Rodrı́guez-Velázquez and Sigarreta [37] and Sigarreta [43] considered global defensive k-alliances and they
obtained a lower bound for the cardinality of every global defensive k-alliance in trees, by imposing a condition
on the number of connected components of the subgraphs induced by the k-alliances. Thus, if S is a global defensive
k-alliance in T such that the subgraph ⟨S⟩ has c connected components, then |S| ≥

⌈ n+2c
3−k

⌉
(note that the authors

gave two unusual graphs for which this bound is reached). As a particular case of this result, if ⟨S⟩ is connected,
Rodrı́guez-Velázquez and Sigarreta [37] and Sigarreta [43] obtained lower bounds for γ d

−1(T ) and γ d
0 (T ) already

proved by Haynes et al. in [2]. Furthermore, as a consequence of this same result, they obtained that for every tree T
of order n, γ d

k (T ) ≥
⌈ n+2

3−k

⌉
. This latter bound is attained for k ∈ {−4,−3,−2, 0, 1} in the case of G = K1,4 as given

in [37,43].

2.1.3. Planar graphs
We say that a graph is planar if one can draw it in the plan so that its edges do not cross. In this paragraph, we put

on view the essential results obtained on defensive k-alliance parameters for this type of graphs. Let P = (V, E) be a
planar graph of order n.

A global alliance S is said to be an empire if with respect to a planar embedding of G, each connected component
of ⟨S⟩ can be enclosed by a closed Jordan curve — a “wall” surrounding a fortress, where the region outside of each
Jordan curve contains all vertices of S̄. Enciso and Dutton [33] and Enciso [51] used this concept and showed that
for a planar graph P where S ⊆ V is a global defensive (−1)-alliance (resp. global defensive 0-alliance) of P , if S is
an empire then |S| ≥ ⌈

n+6
6 ⌉ (resp. |S| ≥ ⌈

n+6
5 ⌉). Rodrı́guez-Velázquez and Sigarreta [45] presented tight bounds in

planar graphs for the global defensive (−1)-alliance number and the global defensive 0-alliance number according to
the order n as follows:

(i) If n > 6, then γ d
−1(P) ≥

⌈ n+12
8

⌉
.

(ii) If n > 6 and P is a triangle-free graph, then γ d
−1(P) ≥

⌈ n+8
6

⌉
.

(iii) If n > 4, then γ d
0 (P) ≥

⌈ n+12
7

⌉
.

(iv) If n > 4 and P is a triangle-free graph, then γ d
0 (P) ≥

⌈ n+8
5

⌉
.

Furthermore, they proved that if S is a global defensive (−1)-alliance in a general graph G such that the subgraph ⟨S⟩

is planar connected with f faces, then |S| ≥ ⌈
n−2 f +4

4 ⌉ and in the case where S is a global defensive 0-alliance then
|S| ≥

⌈
n−2 f +4

3

⌉
. Rodrı́guez-Velázquez and Sigarreta [45] also showed that for a general graph G of order n where

S is a global defensive (−1)-alliance such that |S| ≥ 2, if ⟨S⟩ is planar and its minimum degree is at least σ , then
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|S| ≥

⌈
σ−7+

√
(σ−7)2+4(12+n)

2

⌉
; moreover, if ⟨S⟩ is also a triangle-free graph, then |S| ≥

⌈
σ−5+

√
(σ−5)2+4(8+n)

2

⌉
. Note

that, they presented several examples of graphs for which all the above bounds are reached.
On the other hand, Rodrı́guez-Velázquez and Sigarreta [37] and Sigarreta [43] presented tight lower bounds for the

global defensive k-alliance number. They showed that for any planar graph P of order n:

(i) If n > 2(2 − k), then γ d
k (P) ≥

⌈ n+12
7−k

⌉
.

(ii) If n > 2(2 − k) and P is a triangle-free graph, then γ d
k (P) ≥

⌈ n+8
5−k

⌉
.

They also obtained that if a simple general graph G has a global defensive k-alliance S such that the subgraph ⟨S⟩

is planar connected with f faces, then |S| ≥

⌈
n−2 f +4

3−k

⌉
. Note that, Rodrı́guez-Velázquez and Sigarreta [37] and

Sigarreta [43] presented examples of graphs where all these bounds are attained.
Yero [25] and Yero and Rodrı́guez-Velázquez [31] studied the boundary defensive k-alliances. They showed that

if S is a boundary defensive k-alliance in a general graph G such that ⟨S⟩ is planar connected with f faces then

|S| =
C+4−2 f

2−k for k ̸= 2, and |S| ≤

⌊√
16−8 f +(n+k−2)2+n+k−2

2

⌋
, where C is the number of edges of G with one

endpoint in S and the other endpoint outside of S. Note that this latter bound is tight and it is attained for example
for the complete graph G = K5 where any subset S of G of cardinality four is a boundary defensive 2-alliance and
⟨S⟩ ∼= K4 as given in [25,31]. Furthermore, they presented lower and upper bounds for |S| according to the value of
k. Thus, they proved that for a boundary defensive k-alliance S in a general graph G such that ⟨S⟩ is planar connected
with f > 2 faces, if k ∈ {5 − δ1, . . . , δ1} (resp. k ∈ {5 − δn, . . . , δ1}) then |S| ≥ ⌈

4 f −8
δ1+k−4⌉ (resp. |S| ≤ ⌊

4 f −8
δn+k−4⌋).

2.1.4. Complete graphs
Let Kn = (V, E) be a complete graph of order n. In this part, we exhibit some exact values obtained for defensive

k-alliance numbers in complete graphs.
Kristiansen et al. [1] investigated the defensive k-alliances and obtained exact values for the defensive (−1)-alliance

number and the defensive 0-alliance number as follows: ad
−1(Kn) =

⌈ n
2

⌉
and ad

0 (Kn) =
⌊ n

2

⌋
+ 1.

Haynes et al. [2] studied the global defensive k-alliances and established exact values for the global defensive
(−1)-alliance number and the global defensive 0-alliance number. These results are: γ d

−1(Kn) =
⌊ n+1

2

⌋
and

γ d
0 (Kn) =

⌈ n+1
2

⌉
.

Rodrı́guez-Velázquez and Sigarreta [37], Rodrı́guez-Velázquez et al. [34] and Sigarreta [43] considered the (global)
defensive k-alliances and obtained an exact value for the (global) defensive k-alliance number. Thus, they showed that
for every k ∈ {1 − n, . . . , n − 1}, ad

k (Kn) = γ d
k (Kn) =

⌈ n+k+1
2

⌉
. Sigarreta [35] studied the upper defensive k-alliance

number and obtained the same value for this parameter as well, i.e. Ad
k (Kn) =

⌈ n+k+1
2

⌉
.

Yero [25] and Yero and Rodrı́guez-Velázquez [31] studied the boundary defensive k-alliances and proved that the
cardinality of every boundary defensive k-alliance S in the complete graph is |S| =

n+k+1
2 .

2.1.5. Bipartite graphs and complete bipartite graphs
A graph is bipartite if its vertices can be divided into two sets X and Y so that every edge of the graph connects a

vertex in X to a vertex in Y . Let B = (X, Y, E) be a bipartite graph of order n. Kr,s is the complete bipartite graph
where r (resp. s) is the cardinality of the set X (resp. Y ).

Kristiansen et al. [1] studied the defensive k-alliances and established exact values for the defensive (−1)-alliance
number and the defensive 0-alliance number in complete bipartite graphs. So they obtained that for 2 ≤ r ≤ s,
ad

−1(Kr,s) =
⌊ r

2

⌋
+

⌊ s
2

⌋
and ad

0 (Kr,s) =
⌈ r

2

⌉
+

⌈ s
2

⌉
.

Haynes et al. [2] investigated the global defensive k-alliances and obtained sharp lower bounds for the global
defensive (−1)-alliance number and the global defensive 0-alliance number in bipartite graphs γ d

−1(B) ≥
2n
δ1+3 and

γ d
0 (B) ≥

2n
δ1+2 . Furthermore, they presented exact values for the same parameters in complete bipartite graphs as

follows: γ d
−1(K1,s) =

⌊ s
2

⌋
+1, γ d

−1(Kr,s) =
⌊ r

2

⌋
+

⌊ s
2

⌋
if r, s ≥ 2, and γ d

0 (Kr,s) =
⌈ r

2

⌉
+

⌈ s
2

⌉
. Favaron [39] compared

the global defensive (−1)-alliance number and the global defensive 0-alliance number to the independent domination
number i . He obtained bounds in the forms i(B) ≤ f (γ d

−1(B)) and i(B) ≤ g(γ d
0 (B)) for special families of bipartite

graphs, where f and g are functions.
Sigarreta [35] studied the mathematical properties of upper defensive k-alliances in graphs and presented some

results for the upper defensive k-alliance number in complete bipartite graph Kr,s where r ≥ s. Thus, he proved
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that: Ad
k (Kr,s) = 1, for k ∈ {−r, . . . ,−s}; Ad

k (Kr,s) =
⌈ r+k

2

⌉
+

⌈ s+k
2

⌉
, for k ∈ {−1, 0, . . . , s − 1}; and

Ad
k (Kr,s) = r + s −

⌊ r−k
2

⌋
, for k ∈ {s, . . . , r − 1}.

2.1.6. Regular graphs
A graph of which all the vertices have the same degree is known as regular and if the common degree is δ then

it is said that the graph is δ-regular. In this paragraph, we give some bounds or exact values obtained for defensive
k-alliance numbers concerning this class of graphs. For this, we denote by Rδ = (V, E) the δ-regular graph of
order n.

In the literature, the alliance numbers of δ-regular graphs are known only for small degrees. Kristiansen et al. [1]
and Araujo-Pardo and Barrière [41] presented some exact values for the defensive (−1)-alliance number, the defensive
0-alliance number, the upper defensive (−1)-alliance number and the upper defensive 0-alliance number in δ-regular
graphs. According to the value of δ and by using the concept of girth (the length of a smallest cycle in a graph) and
lc(Rδ) (the maximum length of an induced cycle in the graph), they obtained the results given as follows:

(i) ad
−1(R1) = Ad

−1(R1) = 1 and ad
0 (R1) = Ad

0 (R1) = 2.
(ii) ad

−1(R2) = Ad
−1(R2) = ad

0 (R2) = Ad
0 (R2) = 2.

(iii) ad
−1(R3) = Ad

−1(R3) = 2, ad
0 (R3) = gir th(R3) and Ad

0 (R3) = lc(R3).
(iv) ad

−1(R4) = ad
0 (R4) = gir th(R4) and Ad

−1(R4) = Ad
0 (R4) = lc(R4).

(v) ad
−1(R5) = gir th(R5) and Ad

−1(R5) = lc(R5).

Haynes et al. [2] studied the global defensive k-alliances and gave a lower bound for the global defensive (−1)-
alliance number in 4-regular graph that is γ d

−1(R4) ≥
n
3 . Note that this bound is also true for cubic graphs as mentioned

in [2].
Yero [25] and Yero and Rodrı́guez-Velázquez [31] studied the boundary defensive k-alliances. They showed that

for k ∈ {5 − δ, . . . , δ}, if S is a boundary defensive k-alliance in δ-regular graph such that ⟨S⟩ is planar connected
with f faces, then |S| =

4 f −8
δ+k−4 , and C =

2(δ−k)( f −2)
δ+k−4 , where C is the number of edges of the graph with one endpoint

in S and the other endpoint outside of S.

2.1.7. Cycle graphs
In this paragraph, we exhibit exact values obtained for defensive k-alliance numbers for this class of graphs. Let

Cn = (V, E) be a cycle graph of order n.
Kristiansen et al. [1] investigated the defensive k-alliances and showed that the different defensive k-alliance

numbers, the defensive (−1)-alliance number, the defensive 0-alliance number, the upper defensive (−1)-alliance
number and the upper defensive 0-alliance number, have the same exact value which is equal to 2. Thus, ad

−1(Cn) =

ad
0 (Cn) = Ad

−1(Cn) = Ad
0 (Cn) = 2.

Haynes et al. [2] studied the global defensive k-alliances and proved that in a cycle graph of order n ≥ 3 the global
defensive (−1)-alliance number and the global defensive 0-alliance number are equal to the total domination number.
Thus, γ d

−1(Cn) = γ d
0 (Cn) = γt (Cn).

2.1.8. Path graphs
Let Pn = (V, E) be a path graph of order n. Kristiansen et al. [1] showed that for any path graph Pn , the defensive

(−1)-alliance number satisfies ad
−1(Pn) = 1 and the defensive 0-alliance number verify ad

0 (Pn) = 2. They also proved
that for every path Pn with n ≥ 4 the upper defensive (−1)-alliance number and the upper defensive 0-alliance
number are equal to the same value. Thus, Ad

−1(Pn) = Ad
0 (Pn) = 2 for n ≥ 4.

Haynes et al. [2] studied the global defensive k-alliances in paths and obtained some results for the global defensive
(−1)-alliance number and the global defensive 0-alliance number. Thus, for any path Pn with n ≥ 3 they proved that
the global defensive 0-alliance number is equal to the total domination number, i.e. γ d

0 (Pn) = γt (Pn). Furthermore,
for the global defensive (−1)-alliance number, they showed that: for n ≥ 2, γ d

−1(Pn) = γt (Pn) unless n ≡ 2(mod 4),
in which case γ d

−1(Pn) = γt (Pn) − 1.
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2.1.9. Line graphs
A line graph L(G) of a graph G is obtained by associating a vertex with each edge of the graph and connecting

two vertices with an edge if and only if the corresponding edges in G meet at one or both endpoints. In this part, we
present theoretical results concerning defensive k-alliance parameters in line graphs. Let G = (V, E) be a graph of
size m and degree sequence δ1 ≥ δ2 ≥ · · · ≥ δn . Let L(G) be the line graph of G.

Sigarreta and Rodrı́guez-Velázquez [36] studied mathematical properties of the defensive (−1)-alliance number,
the defensive 0-alliance number, the global defensive (−1)-alliance number and the global defensive 0-alliance
number in line graphs. They obtained bounds for ad

−1(L(G)) and ad
0 (L(G)) in terms of the maximum degree of

G (δ1), its minimum degree (δn) and its second minimum degree (δn−1) as follows: ⌈
δn+δn−1

2 ⌉ ≤ ad
0 (L(G)) ≤ δ1,⌈

δn+δn−1−1
2

⌉
≤ ad

−1(L(G)) ≤ δ1 (note that all these bounds are reached, for instance, in the case of G = C4 with
ad

−1(L(C4)) = ad
0 (L(C4)) = 2). Moreover, if G has a unique vertex of maximum degree then the upper bound becomes

ad
−1(L(G)) ≤ δ1 − 1. They also showed that if G is a δ-regular graph with δ > 0 then ad

−1(L(G)) = ad
0 (L(G)) = δ.

Furthermore, for a simple graph G, Sigarreta and Rodrı́guez-Velázquez [36] gave bounds for γ d
−1(L(G)) and γ d

0 (L(G))
by means of the maximum degrees δ1 and δ2 of G and its size m. These bounds are: γ d

−1(L(G)) ≥

⌈
2m

δ1+δ2+1

⌉
,

γ d
0 (L(G)) ≥

⌈
2m
δ1+δ2

⌉
, and if m > 6 then γ d

−1(L(G)) ≥
⌈√

m + 4 − 1
⌉

.
Rodrı́guez-Velázquez et al. [34] and Sigarreta [43] studied the defensive k-alliances and obtained bounds for the

defensive k-alliance number in L(G). They showed that for every k ∈ {2 − δ1 − δ2, . . . , δ1 + δ2 − 2}, ad
k (L(G)) ≥⌈

δn+δn−1+k
2

⌉
(note that this bound is attained for instance for the graph L(K4) for every k ∈ {2 − δ1 − δ2, . . . , 0}, see

Fig. 1(h) of Appendix in which ad
0 (L(K4)) = 3). Moreover, they proved that for every k ∈ {2(1 − δ1), . . . , 0},

ad
k (L(G)) ≤ δ1 +

⌈ k
2

⌉
; note that this upper bound is attained if G is a δ-regular graph [34,43]. Furthermore,

Sigarreta [43] established an other lower bound by involving the algebraic connectivity µl of line graph L(G). He

proved that the defensive k-alliance number is bounded by ad
k (L(G)) ≥

⌈
m(µl−

⌊
δ1+δ2−2−k

2

⌋
)

µl

⌉
.

Fernau et al. [44], Rodrı́guez-Velázquez and Sigarreta [37] and Sigarreta in his thesis [43] presented a lower bound
for the global defensive k-alliance number in L(G) by using the maximum degrees δ1 and δ2 of G and its size

m. Thus they obtained that γ d
k (L(G)) ≥

⌈
m⌊

δ1+δ2−2−k
2

⌋
+1

⌉
. Moreover, Sigarreta [43] established two other lower

bounds for γ d
k (L(G)). In fact, he obtained that for all graph G of size m and degree sequence δ1 ≥ δ2 ≥ · · · ≥ δn ,

γ d
k (L(G)) ≥

⌈
m√

(δ1+δ2−2)(δ1+δ3−2)−k+1

⌉
; Furthermore, if there exist in G two non adjacent vertices whose degrees are

δ1 and δ2 then γ d
k (L(G)) ≥

⌈
m

δ1+δ2−k−1

⌉
.

2.1.10. Cartesian product graphs
Given two graphs G1 = (V1, E1) and G2 = (V2, E2) with the sets of vertices V1 = {v1, v2, . . . , vn1} and

V2 = {u1, u2, . . . , un2} respectively, the Cartesian product of G1 and G2 is the graph G1 × G2 = (V, E), where
V = V1 × V2 and two vertices (vi , u j ) and (vk, ul) are adjacent in G1 × G2 if and only if “vi = vk and (u j , ul) ∈ E2”
or “(vi , vk) ∈ E1 and u j = ul”. Let G i be a graph of order ni , minimum degree δ̄i and maximum degree ∆̄i , i ∈ {1, 2}.

Kristiansen et al. [1] studied the defensive k-alliances in Cartesian product graphs and obtained bounds
for the defensive (−1)-alliance number and the defensive 0-alliance number as follows: ad

−1(G1 × G2) ≤

min{ad
−1(G1)ad

0 (G2), ad
0 (G1)ad

−1(G2)} and ad
0 (G1 × G2) ≤ ad

0 (G1)ad
0 (G2).

Chang et al. [49] obtained a lower bound for the global defensive (−1)-alliance number of a general graph. They

showed that if G is a graph of order n and maximum degree δ1, then γ d
−1(G) ≥

⌈
2n⌊
δ1+3

2

⌋
⌉

. As a consequence they

established a lower bound for the global defensive (−1)-alliance number of the Cartesian product of paths and cycles.
Thus, if G i = Pni or Cni for i = 1, 2, then γ d

−1(G1 × G2) ≥
⌈ n1n2

3

⌉
.

Yero in his thesis [25] and Yero et al. [23] studied defensive k-alliances in Cartesian product graphs and gave some
results for the defensive k-alliance number in G1 × G2. They showed that if S1 is a defensive k1-alliance in G1 and
S2 is a defensive k2-alliance in G2, then S1 × S2 is a defensive (k1 + k2)-alliance in G1 × G2 and ad

k1+k2
(G1 × G2) ≤

ad
k1

(G1)ad
k2

(G2); note that this bound is a general case of the results obtained by Kristiansen et al. [1]. They also
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obtained that ad
k−s(G1 × G2) ≤ min{ad

k (G1), ad
k (G2)} where s ∈ Z such that max{∆̄1, ∆̄2} ≤ s ≤ ∆̄1 + ∆̄2 + k.

On the other hand, Yero [25] obtained that if G1 × G2 contains defensive k-alliances, then G i contains defensive
(k − ∆̄ j )-alliances, with i, j ∈ {1, 2}, i ̸= j , and as a consequence ad

k (G1 × G2) ≥ max{ad
k−∆̄2

(G1) , ad
k−∆̄1

(G2)}.
Yero [25] and Yero et al. [23] studied global defensive k-alliances in Cartesian product graphs and presented some

bounds for the global defensive k-alliance number in G1 × G2. Thus, they obtained that if G1 contains a global
defensive k1-alliance, then for every integer k2 ∈ {−∆̄2, . . . , δ̄2}, G1 × G2 contains a global defensive (k1 + k2)-
alliance and γ d

k1+k2
(G1 × G2) ≤ γ d

k1
(G1)n2. And if G2 contains a global defensive k2-alliance, then for every integer

k1 ∈ {−∆̄1, . . . , δ̄1}, G1 × G2 contains a global defensive (k1 + k2)-alliance and γ d
k1+k2

(G1 × G2) ≤ γ d
k2

(G2)n1.

Remark 1. Let us note that:

(i) The defensive k-alliances were studied in the literature for other graph classes such as star graphs, cubic graphs
and circulant graphs. For more details, the reader can refer to [2,37,41–44].

(ii) Some results for the defensive k-alliance number ad
k (G) in the case of complement graphs are given by Sigarreta

et al. [52].

Now, we summarize the results presented above by giving some bounds and exact values obtained for various
parameters of defensive k-alliances for different graph classes. These results are given in Tables 1 and 2.

Concluding remarks 1. As we can see from Tables 1 and 2, the defensive k-alliance numbers are studied for
various graph classes. From this, we note that the most studied parameter is the global defensive (−1)-alliance number
(γ d

−1(G)) and the least studied one is the upper defensive k-alliance number (Ad
k (G)). Furthermore, the general and

tree graph classes are the most studied ones and the cycle and path graph classes are the least studied ones. Moreover,
some parameters are not studied for certain graph classes. For example for the planar graphs class, several defensive
k-alliance numbers are not studied such as ad

−1(P), ad
k (P) and Ad

k (P). Besides, for the regular graphs class, all the
defensive k-alliance numbers with index k namely ad

k (Rδ), γ d
k (Rδ) and Ad

k (Rδ) are not studied. However, the upper
defensive k-alliance numbers are not studied for several graph classes. In particular, for Ad

k (G) just some results are
given in the case of general and complete (bipartite) graph classes.

Remark 2. The defensive (−1)-alliances as defined in the literature take into consideration the defense of a single
vertex. In order to forestall any attack on the entire alliance or any subset of the alliance, Brigham et al. [53] proposed
a model that take over this situation. Thus, they introduced the so-called secure sets as a generalization of the concept
of defensive (−1)-alliances. Security and secure sets are studied in the literature and for more details one can refer
to [53–55] and others.

Remark 3. Rad and Rezazadeh [56] studied (strong) open alliances in graphs. According to their definition, an
alliance is called open if it is defined completely in terms of open neighborhoods. They investigated the (strong) open
defensive (resp. offensive) alliances by defining parameters called (strong) open defensive (resp. offensive) alliance
number denoted by (ât (G)) at (G) (resp. (âot (G)) aot (G)). Since at (G) ∼= ad

0 (G) and âot (G) ∼= ao
1 (G), Rad and

Rezazadeh [56] established bounds only for ât (G) and aot (G).

2.2. Study of defensive k-alliance partition numbers for some graph classes

The partitioning of graphs into k-alliances is a process which partitions the set of vertices of a graph into subsets, so
that each subset constitutes a k-alliance. The problem of partitioning a graph into defensive 0-alliances is introduced
and studied by Gerber and Kobler [57] and Shafique and Dutton [58], and is referred to as “Satisfactory Graph
Partitioning Problem (SGP)”. Thereafter, Shafique [28] investigated this partitioning problem and its application to
data clustering. Moreover, Seba et al. [29] studied the partitioning of graphs into defensive (−1)-alliances and its
application in mobile ad hoc networks (MANETs).

Some parameters have been defined and studied in the literature for the partitioning into defensive k-alliances,
these parameters are defined as follows: For any graph G = (V, E), the (global) defensive (−1)-alliance partition
number of G, (ψ gd

−1(G)) ψd
−1(G), is defined to be the maximum number of sets in a partition of V such that each set
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Table 1
Previous results on defensive k-alliance numbers for various graph classes, with k ∈ {−1, 0}.

Graph
classes

Defensive alliance numbers

ad
−1(G) ad

0 (G) γ d
−1(G) γ d

0 (G) Ad
−1(G) Ad

0 (G)

G • ad
−1(G) ≤

min{n −

⌈
δn
2

⌉
,
⌈ n

2

⌉
}[1]

• ad
−1(G) ≥

⌈
nµ

n+µ

⌉
[40]

• ad
0 (G) ≤ min{n −⌊

δn
2

⌋
,
⌊ n

2

⌋
+ 1} [1]

• ad
0 (G) ≥⌈

n(µ+1)
n+µ

⌉
[40]

• ad
0 (G) ≥⌈

n(µ−

⌊
δ1
2

⌋
)

µ

⌉
[40]

• γ d
−1(G) ≥

√
4n+1−1

2 [2]

• γ d
−1(G) ≤ n −

⌈
δn
2

⌉
[2]

• γ d
−1(G) ≥

n⌈ r
2
⌉
+1

[2]

• γ d
−1(G) ≥ γt (G) [2]

• γ d
−1(G) ≥

⌈
n
λ+2

⌉
[40]

• γ d
−1(G) ≥

⌈
2n
δ1+3

⌉
[40]

• γ d
0 (G) ≥

√
n [2]

• γ d
0 (G) ≤ n −

⌊
δn
2

⌋
[2]

• γ d
0 (G) ≥ γt (G) [2]

• γ d
0 (G) ≥

⌈
n
λ+1

⌉
[40]

• γ d
0 (G) ≥

⌈
n⌊

δ1
2

⌋
+1

⌉
[40]

T • ad
−1(T ) = 1 [1] • ad

0 (T ) ≤ n [1] • γ d
−1(T ) ≥

n+2
4 [2]

• γ d
−1(T ) ≤

3n
5 [2]

• |S| ≥ ⌈
n+2c

4 ⌉ [45]
• γ d

−1(T ) ≤
n+s

2 [46]
• γ d

−1(T ) ≥
3n−l−s+4

8 [47]
• γ d

−1(Td ) = γ d
−1(T2,d ) =⌈ 2n

5

⌉
[48]

• td−1 ⌊ t−1
2

⌋
+ td−1

+

td−2
≤ γ d

−1(Tt,d ) ≤

td−1 ⌊ t−1
2

⌋
+ td−1

+

td−2
+ td−3 [48]

• γ d
−1(T ) ≤ β(T ) [50]

• γ d
−1(T ) ≤

n+l−1
2 [50]

• γ d
0 (T ) ≥

n+2
3 [2]

• γ d
0 (T ) ≤

3n
4 [2]

• |S| ≥ ⌈
n+2c

3 ⌉ [45]
• γ d

0 (T ) ≥
3n−l−s+4

6 [47]
• γ d

0 (T ) ≤
3β(T )−1

2 [50]
• γ d

0 (T ) ≤ β(T )+s−1 [50]

P • |S| ≥
⌈ n+6

6

⌉
[33,51]

• γ d
−1(P) ≥

⌈ n+12
8

⌉
[45]

• |S| ≥

⌈
n−2 f +4

4

⌉
[45]

• |S| ≥⌈
σ−7+

√
(σ−7)2+4(12+n)

2

⌉
[45]

• |S| ≥
⌈ n+6

5

⌉
[33,51]

• γ d
0 (P) ≥

⌈ n+12
7

⌉
[45]

• |S| ≥

⌈
n−2 f +4

3

⌉
[45]

Kn • ad
−1(Kn) =

⌈ n
2

⌉
[1] • ad

0 (Kn) =
⌊ n

2

⌋
+ 1 [1] • γ d

−1(Kn) =
⌊ n+1

2

⌋
[2] • γ d

0 (Kn) =
⌈ n+1

2

⌉
[2]

• B
• Kr,s

• ad
−1(Kr,s ) =⌊ r

2

⌋
+

⌊ s
2

⌋
[1]

• ad
0 (Kr,s ) =⌈ r

2

⌉
+

⌈ s
2

⌉
[1]

• γ d
−1(B) ≥

2n
δ1+3 [2]

• γ d
−1(K1,s ) =

⌊ s
2

⌋
+ 1 [2]

• γ d
−1(Kr,s ) =⌊ r

2

⌋
+

⌊ s
2

⌋
[2]

• γ d
0 (B) ≥

2n
δ1+2 [2]

• γ d
0 (Kr,s ) =

⌈ r
2

⌉
+

⌈ s
2

⌉
[2]

(continued on next page)
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Table 1 (continued)
Graph
classes

Defensive alliance numbers

ad
−1(G) ad

0 (G) γ d
−1(G) γ d

0 (G) Ad
−1(G) Ad

0 (G)

Rδ • ad
−1(Rδ) = δ, δ = 1 or

2 [1,41]
• ad

−1(R3) = 2 [1,41]
• ad

−1(Rδ) = gir th(Rδ),
δ = 4 or 5 [1,41]

• ad
0 (Rδ) = 2, δ = 1 or

2 [1,41]
• ad

0 (Rδ) = gir th(Rδ),
δ = 3 or 4 [1,41]

• γ d
−1(R4) ≥ ⌈

n
3 ⌉ [2] • Ad

−1(Rδ) = δ,
δ = 1 or 2 [41]
• Ad

−1(R3) = 2 [1,41]
• Ad

−1(Rδ) = lc(Rδ),
δ = 4 or 5 [1,41]

• Ad
0 (Rδ) = 2, δ = 1

or 2 [41]
• Ad

0 (Rδ) = lc(Rδ),
δ = 3 or 4 [1,41]

Cn • ad
−1(Cn) = 2 [1] • ad

0 (Cn) = 2 [1] • γ d
−1(Cn) = γt (Cn) [2] • γ d

0 (Cn) = γt (Cn) [2] • Ad
−1(Cn) = 2 [1] • Ad

0 (Cn) = 2 [1]

Pn • ad
−1(Pn) = 1 [1] • ad

0 (Pn) = 2 [1] • γ d
−1(Pn) = γt (Pn) [2] • γ d

0 (Pn) = γt (Pn) [2] • Ad
−1(Pn) = 2 [1] • Ad

0 (Pn) = 2 [1]

L(G) •

⌈
δn+δn−1−1

2

⌉
≤

ad
−1(L(G)) ≤ δ1 [36]

•

⌈
δn+δn−1

2

⌉
≤

ad
0 (L(G)) ≤ δ1 [36]

• γ d
−1(L(G)) ≥⌈

2m
δ1+δ2+1

⌉
[36]

• γ d
−1(L(G)) ≥⌈√
m + 4 − 1

⌉
[36]

• γ d
0 (L(G)) ≥⌈
2m
δ1+δ2

⌉
[36]

G1×

G2

• ad
−1(G1 × G2) ≤

min{ad
−1(G1)ad

0 (G2),
ad

0 (G1)ad
−1(G2)} [1]

• ad
0 (G1 × G2) ≤

ad
0 (G1)ad

0 (G2) [1]
• γ d

−1(G1 × G2) ≥
⌈ n1n2

3

⌉
with Gi = Pni or Cni for
i = 1, 2, [49]



K. Ouazine et al. / AKCE International Journal of Graphs and Combinatorics 15 (2018) 115–154 129

Table 2
Previous results on defensive k-alliance numbers for various graph classes.

Graph
classes

Defensive k-alliance numbers

ad
k (G) γ d

k (G) Ad
k (G)

G •

⌈
δn+k+2

2

⌉
≤ ad

k (G) ≤

n −

⌊
δn−k

2

⌋
[34,43]

• ad
k (G) ≤

⌈ n+k+1
2

⌉
[34,43]

• ad
k−2r (G) + r ≤ ad

k (G) [34,43]

• ad
k (G) ≥

⌈
n(µ+k+1)

n+µ

⌉
[34,43]

• ad
k (G) ≥

⌈
n(µ−

⌊
δ1−k

2

⌋
)

µ

⌉
[34,43]

• ad
k (G) ≥ I(G) + k + 1 [23,25]

• ad
k (G) ≥

⌈
µ+2(k+1)

2

⌉
[23,25]

•

√
4n+k2+k

2 ≤ γ d
k (G) ≤

n −

⌈
δn−k

2

⌉
[37,43,44]

• γ d
k (G) ≥

⌈
n⌊

δ1−k
2

⌋
+1

⌉
[37,43,44]

• γ d
k−2r (G) + r ≤ γ d

k (G) [37,43]

• γ d
k (G) ≥

⌈
n

λ−k+1

⌉
[43]

• Ad
k (G) ≤

⌈
2n−δn+k

2

⌉
[35]

• Ad
k (G) ≤ r [35]

• Ad
k (G) ≤ φd

k (G) + 1 [35]

T • |S| ≥

⌈
n+2c
3−k

⌉
[37,43]

• γ d
k (T ) ≥

⌈
n+2
3−k

⌉
[37,43]

P • γ d
k (P) ≥

⌈
n+12
7−k

⌉
[37,43]

• |S| ≥

⌈
n−2 f +4

3−k

⌉
[37,43]

Kn • ad
k (Kn) =

⌈ n+k+1
2

⌉
[34,43] • γ d

k (Kn) =
⌈ n+k+1

2

⌉
[37,43] • Ad

k (Kn) =
⌈ n+k+1

2

⌉
[35]

• B
• Kr,s

• Ad
k (Kr,s ) = 1 [35]

• Ad
k (Kr,s ) =

⌈ r+k
2

⌉
+

⌈ s+k
2

⌉
[35]

• Ad
k (Kr,s ) = r + s −

⌊ r−k
2

⌋
[35]

Rδ

Cn

Pn

L(G) • ad
k (L(G)) ≥

⌈
δn+δn−1+k

2

⌉
[34,43]

• ad
k (L(G)) ≤ δ1 +

⌈ k
2

⌉
[34,43]

• ad
k (L(G)) ≥⌈

m(µl −
⌊
δ1+δ2−2−k

2

⌋
)

µl

⌉
[43]

• γ d
k (L(G)) ≥⌈

m⌊
δ1+δ2−2−k

2

⌋
+1

⌉
[37,43,44]

• γ d
k (L(G)) ≥⌈

m
√

(δ1+δ2−2)(δ1+δ3−2)−k+1

⌉
[43]

• γ d
k (L(G)) ≥

⌈
m

δ1+δ2−k−1

⌉
[43]

G1 ×

G2

• ad
k1+k2

(G1 × G2) ≤

ad
k1

(G1)ad
k2

(G2) [23,25]
• ad

k−s (G1 × G2) ≤

min{ad
k (G1), ad

k (G2)} [23,25]
• ad

k (G1 × G2) ≥

max{ad
k−∆̄2

(G1), ad
k−∆̄1

(G2)} [25]

• γ d
k1+k2

(G1 × G2) ≤ γ d
k1

(G1)n2 [23,25]
• γ d

k1+k2
(G1 × G2) ≤ γ d

k2
(G2)n1 [23,25]

of the partition is a (global) defensive (−1)-alliance [21,22]. The (global) defensive k-alliance partition number of
G, (ψ gd

k (G)) ψd
k (G), k ∈ {−δ1, . . . , δn} is defined to be the maximum number of sets in a partition of V such that

each set of the partition is a (global) defensive k-alliance [25]. We say that G is partitionable into (global) defensive
k-alliances if (ψ gd

k (G) ≥ 2) ψd
k (G) ≥ 2. Concerning the defensive k-alliance partition number, Yero et al. [23] have

given examples of extreme cases as follows: ψd
−δ1

(G) = n where each set composed of one vertex is a defensive
(−δ1)-alliance, and ψd

δ (G) = 1 for the case of a connected δ-regular graph where V is the only defensive δ-alliance.
In this subsection, we study mathematical properties of the (global) defensive (−1)-alliance partition number

and the (global) defensive k-alliance partition number by presenting important theoretical results obtained for these
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parameters. Essentially, we give bounds or exact values for defensive k-alliance partition numbers studied for some
graph classes.

2.2.1. General graphs
Eroh and Gera [20] studied the basic properties of the defensive (−1)-alliance partition number by presenting

general bounds by means of the minimum degree, the order and the girth of graph G. For a connected graph G of
order n ≥ 3, they obtained sharp bounds given as follows: 1 ≤ ψd

−1(G) ≤

⌊
n +

3
2 −

√
1+4n
2

⌋
. Furthermore, they gave

upper bounds by involving the minimum degree and the girth of G. Thus for a graph G having minimum degree δn ,

then ψd
−1(G) ≤

⌊
n⌈

δn+1
2

⌉⌋
, and if G is a graph with gir th(G) ≥ 3 and δn ≥ 4, then ψd

−1(G) ≤ ⌊
n

gir th(G)⌋.

On the other hand, Eroh and Gera [21] established an upper sharp bound for the global defensive (−1)-alliance
partition number in a connected graph G having minimum degree δn . Thus, they proved that ψ gd

−1(G) ≤ 1 +
⌈
δn
2

⌉
.

Yero [25] and Yero et al. [23] presented some relations for the (global) defensive k-alliance partition number by
considering the cases where the degrees of vertices and k are even/odd. Thus, they obtained that if every vertex of G
has even degree and k is odd, k = 2l − 1, then every (global) defensive (2l − 1)-alliance in G is a (global) defensive
(2l)-alliance and vice versa. Hence, in such a case, ψd

2l−1(G) = ψd
2l(G) and ψ gd

2l−1(G) = ψ
gd
2l (G). Analogously,

if every vertex of G has odd degree and k is even, k = 2l, then every defensive (2l)-alliance in G is a defensive
(2l + 1)-alliance and vice versa. Hence, in such a case, ψd

2l(G) = ψd
2l+1(G) and ψ gd

2l (G) = ψ
gd
2l+1(G). Furthermore,

they established a relation between the defensive k-alliance numbers ad
k (G) and ψd

k (G) by showing that their product
is bounded by the order of graph, that is ad

k (G)ψd
k (G) ≤ n. From this relation, they deduced that the lower bounds on

ad
k (G) lead to upper bounds on ψd

k (G). For example, from the lower bound given for ad
k (G) by Rodrı́guez-Velázquez

et al. [34], ad
k (G) ≥

⌈
δn+k+2

2

⌉
, they concluded that the defensive k-alliance partition number is bounded upperly by

ψd
k (G) ≤

{
⌊

2n
δn + k + 2

⌋, δn + k even,

⌊
2n

δn + k + 3
⌋, δn + k odd.

Note that this latter bound for the even case is attained, for example, for the complete

graph K6 where ψd
−3(G) = 3 with the cardinality of each defensive (−3)-alliance is equal to 2. Furthermore, the

corresponding bound for the odd case is reached, for instance, for the graph given in Fig. 1(i) of Appendix where
ψd

−1(G) = 2.
Like the defensive k-alliance partition number, the global defensive k-alliance partition number is obtained from

the relation between γ d
k (G) and ψ gd

k (G), and lower bounds of γ d
k (G). The relation between γ d

k (G) and ψ gd
k (G) given

by Yero [25] and Yero et al. [23] is γ d
k (G)ψ gd

k (G) ≤ n. By combining this relation and the lower bound obtained

by Rodrı́guez-Velázquez and Sigarreta [37], γ d
k (G) ≥

⌈
n⌊

δ1−k
2

⌋
+1

⌉
, Yero [25] and Yero et al. [23] obtained that the

global defensive k-alliance partition number is bounded upperly by ψ gd
k (G) ≤

⌊
δ1−k

2

⌋
+ 1. They established other

bounds for the global defensive k-alliance partition number. Thus, they showed that for every graph G partitionable

into global defensive k-alliances, ψ gd
k (G) ≤

⌊√
k2+4n−k

2

⌋
and ψ gd

k (G) ≤
⌊
δn−k+2

2

⌋
. These latter bounds are attained,

for instance, in the following cases given in [23,25]: ψ gd
−1(K4 × C4) = 4, ψ gd

0 (K3 × C4) = 3, ψ gd
1 (K2 × C4) = 2

and ψ gd
1 (Ptr ) = 2, where Ptr denotes the Petersen graph. They also proved that for every k ∈ {1 − δn, . . . , δn} if

ψ
gd
k (G) ≥ 2, then γ d

k (G) + ψ
gd
k (G) ≤

n+4
2 . By involving the algebraic connectivity µ, Yero [25] and Yero et al. [23]

showed that if any graph G is partitionable into global defensive k-alliances, then ψ gd
k (G) ≤

⌊
δ1 + 1 −

µ

2 − k
⌋

. The
authors in [23,25] gave an example of equality for this latter bound when the graph G = C3 × C3 for k = 0, in
this case µ = 3. They obtained an other bound for the same invariant by using an other parameter of the graph G
which is the isoperimetric number I(G) = minS⊂V :|S|≤

n
2

{∑
v∈SdegS̄ (v)

|S|

}
. Thus, they proved that for any graph G, if G

is partitionable into global defensive k-alliances, then ψ gd
k (G) ≤ δ1 + 1 − I(G) − k.

2.2.2. Tree graphs
Eroh and Gera [20] obtained upper and lower sharp bounds for the defensive (−1)-alliance partition number in

trees. Thus, they showed that for a tree T of order n ≥ 3, ψd
−1(T ) ≤ ⌊

3n
4 +

1
2⌋. Moreover, if T is a tree of order n ≥ 3

and diameter D ≥ 2 then ψd
−1(T ) ≥ ⌈

D
2 ⌉ + 1. Furthermore, they proved that if T is a binary tree with a maximum

matching M (a matching is a subset M ⊂ E such that: u ∩ v = ∅ for each u, v ∈ M), then ψd
−1(T ) ≥ n − |M |.
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On the other hand, Eroh and Gera [21] showed that in a tree T of order n ≥ 3, the global defensive (−1)-alliance
partition number is bounded by 1 ≤ ψ

gd
−1(T ) ≤ 2.

2.2.3. Regular graphs
Eroh and Gera [20] studied the defensive (−1)-alliance partition number in regular graphs and obtained some

upper bounds and an exact value for this parameter. Thus, for a δ-regular graph Rδ of order n, ψd
−1(Rδ) ≤

⌊
n⌈
δ+1

2

⌉⌋
,

if furthermore δ ≥ 3 and gir th(Rδ) ≥ 5, then ψd
−1(Rδ) ≤

n
1+(gir th(Rδ )−2)

⌈
δ−3

2

⌉ . As particular case, for a connected

3-regular graph having a maximum matching M , ψd
−1(R3) = |M |.

2.2.4. Cartesian product graphs
Haynes and Lachniet [22] studied the defensive (−1)-alliance partition number of grid graphs Pr × Pc and showed

that if 4 ≤ r ≤ c, then ψd
−1(Pr × Pc) =

⌊ r−2
2

⌋ ⌊ c−2
2

⌋
+ r + c − 2.

Yero [25] and Yero et al. [23] studied the defensive k-alliance partition number in Cartesian product graphs and
they proved that for any graphs G1 and G2, if there exists a partition of G i into defensive ki -alliances, i ∈ {1, 2},
then there exists a partition of G1 × G2 into defensive (k1 + k2)-alliances and ψd

k1+k2
(G1 × G2) ≥ ψd

k1
(G1)ψd

k2
(G2).

Moreover, for any graphs G i of order ni and maximum degree ∆̄i , i ∈ {1, 2}, they also showed that if s ∈ Z such that
max{∆̄1, ∆̄2} ≤ s ≤ ∆̄1 + ∆̄2 + k, then ψd

k−s(G1 × G2) ≥ max{n2ψ
d
k (G1), n1ψ

d
k (G2)}.

Furthermore, Yero [25] and Yero et al. [23] proved that if G i is partitioned into global defensive ki -alliances,
i ∈ {1, 2}, then the global defensive k-alliance partition number of G1 × G2 is bounded by ψ gd

k1+k2
(G1 × G2) ≥

max{ψ
gd
k1

(G1), ψ gd
k2

(G2)}. Moreover, they presented a relation between the global defensive (k1 + k2)-alliance number
of G1 × G2 and the global defensive ki -alliance partition number of G i , i ∈ {1, 2}. Thus, they obtained that for a
graph G i of order ni , i ∈ {1, 2}, if ψ gd

ki
(G) ≥ 1 then γ d

k1+k2
(G1 × G2) ≤

n1n2

maxi∈{1,2}{ψ
gd
ki

(Gi )}
.

2.2.5. Partitioning a graph into boundary defensive k-alliances
Yero [25] supposed G = (V, E) a graph and Π d

r (G) = {S1, S2, . . . , Sr } a partition of V into r boundary defensive
k-alliances and obtained tight bounds for r . Thus, he showed that if G can be partitioned into r boundary defensive
k-alliances, then 2n

2n−δn+k ≤ r ≤
2n

δn+k+2 (note that the complete graph Kn can be partitioned into r =
2n

n+k+1
boundary defensive k-alliances [25]). He also presented other tight bounds for r by using the algebraic connectivity
µ and the Laplacian spectral radius µ∗, these bounds are: 2µ∗

2µ∗−δn+k ≤ r ≤
2µ

2µ−δ1+k . An example where these
bounds are reached is the complete graph G = Kn as mentioned in [25]. Furthermore, he proved that for a graph
G = (V, E) and C ⊂ E a cut set partitioning V into two boundary defensive k-alliances S and S̄, where k ̸= δ1

and k ̸= δn , then
⌈

2m−kn
2(δ1−k)

⌉
≤ |S| ≤

⌊
2m−kn
2(δn−k)

⌋
and |C| =

2m−kn
4 (note that for a δ-regular graph |S| =

n
2 and

|C| =
n(δ−k)

4 as given in [25]). On the other hand, Yero [25] showed that if {X, Y } is a partition of V into two boundary

defensive k-alliances in G, then without loss of generality,
⌈√

n(kn−2m+nµ)
4µ +

n
2

⌉
≤ |X | ≤

⌊√
n(kn−2m+nµ∗)

4µ∗
+

n
2

⌋
and⌈

n
2 −

√
n(kn−2m+nµ∗)

4µ∗

⌉
≤ |Y | ≤

⌊
n
2 −

√
n(kn−2m+nµ)

4µ

⌋
.

Now, we summarize the results presented above by giving some bounds and exact values obtained for defensive
k-alliance partition numbers for some graph classes. These results are given in Table 3.

Concluding remarks 2. As we can see from Table 3, and comparing with Tables 1 and 2, we deduce that the defensive
k-alliance partition numbers are studied on much less graph classes contrary to the defensive k-alliance numbers. For
the studied graph classes (general, tree, regular, and Cartesian product graphs) the most studied parameter is the
defensive (−1)-alliance partition number (ψd

−1(G)) and the least studied one is the global defensive (−1)-alliance
partition number (ψ gd

−1(G)). Furthermore, the general graph class is the most studied one and the regular graph class is
the least studied one. Moreover, for the tree and regular graphs classes all the defensive k-alliance partition numbers
with index k namely ψd

k (G) and ψ gd
k (G) are not studied.
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Table 3
Previous results on defensive k-alliance partition numbers for some graph classes.

Graph
classes

Defensive k-alliance partition numbers

ψd
−1(G) ψ

gd
−1(G) ψd

k (G) ψ
gd
k (G)

G • 1 ≤ ψd
−1(G) ≤⌊

n +
3
2 −

√
1+4n
2

⌋
[20]

• ψd
−1(G) ≤

⌊
n⌈

δn+1
2

⌉
⌋

[20]

• ψd
−1(G) ≤

⌊
n

gir th(G)

⌋
[20]

• ψ
gd
−1(G) ≤ 1 +

⌈
δn
2

⌉
[21] • ad

k (G)ψd
k (G) ≤ n [23,25]

• ψd
k (G) ≤⎧⎨⎩⌊

2n
δn + k + 2

⌋, δn + k even,

⌊
2n

δn + k + 3
⌋, δn + k odd.

[23,25]

• γ d
k (G)ψgd

k (G) ≤ n [23,25]

• ψ
gd
k (G) ≤

⌊
δ1−k

2

⌋
+ 1 [23,25]

• ψ
gd
k (G) ≤

⌊√
k2+4n−k

2

⌋
[23,25]

• ψ
gd
k (G) ≤

⌊
δn−k+2

2

⌋
[23,25]

• γ d
k (G) + ψ

gd
k (G) ≤

n+4
2 [23,25]

• ψ
gd
k (G) ≤

⌊
δ1 + 1 −

µ
2 − k

⌋
[23,25]

• ψ
gd
k (G) ≤ δ1 + 1 − I(G) − k [23,25]

T • ψd
−1(T ) ≤

⌊ 3n
4 +

1
2

⌋
[20]

• ψd
−1(T ) ≥

⌈D
2

⌉
+ 1 [20]

• ψd
−1(T ) ≥ n − |M | [20]

• 1 ≤ ψ
gd
−1(T ) ≤ 2 [21]

Rδ • ψd
−1(Rδ) ≤

⌊
n⌈
δ+1

2

⌉
⌋

[20]

• ψd
−1(Rδ) ≤

n
1+(gir th(Rδ )−2)

⌈
δ−3

2

⌉ [20]

• ψd
−1(R3) = |M | [20]

G1×

G2

• ψd
−1(Pr × Pc) =⌊ r−2

2

⌋ ⌊ c−2
2

⌋
+ r + c − 2 [22]

• ψd
k1+k2

(G1 × G2) ≥

ψd
k1

(G1)ψd
k2

(G2) [23,25]
• ψd

k−s (G1 × G2) ≥

max{n2ψ
d
k (G1), n1ψ

d
k (G2)} [23,25]

• ψ
gd
k1+k2

(G1 × G2) ≥

max{ψ
gd
k1

(G1), ψgd
k2

(G2)} [23,25]
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3. Offensive k-alliances in graphs

In this section, we study mathematical properties of offensive k-alliances by giving bounds and/or exact values of
several parameters studied for various graph classes. An offensive k-alliance in a graph G = (V, E) is a set of vertices
S ⊂ V with the property that every vertex in the boundary of S has at least k more neighbors in S than it has outside
of S. The case k = 1 (resp. k = 2) corresponds to the standard offensive alliances (resp. strong offensive alliances)
defined in [1,4].

Several parameters have been defined and studied in the literature for offensive k-alliances, one can see
[4,39,45,59–61] and others. These parameters are defined as follows: The offensive 1-alliance number known as
offensive alliance number ao

1 (G) (resp. offensive 2-alliance number known as strong offensive alliance number ao
2 (G))

is the minimum cardinality among all (critical) offensive 1-alliances (resp. offensive 2-alliances) of G [1,4]. The global
offensive 1-alliance number γ o

1 (G) (resp. global offensive 2-alliance number γ o
2 (G)) is the minimum cardinality

among all (critical) global offensive 1-alliances (resp. global offensive 2-alliances) of G [5]. The upper offensive
1-alliance number Ao

1(G) (resp. upper offensive 2-alliance number Ao
2(G)) is the maximum cardinality among all

critical offensive 1-alliances (resp. offensive 2-alliances) of G [1]. The offensive k-alliance number ao
k (G) is the

minimum cardinality among all (critical) offensive k-alliances of G [8,9]. The global offensive k-alliance number
γ o

k (G) is the minimum cardinality among all (critical) global offensive k-alliances of G [44,59].
Now, we give some basic relations and observations which bind various invariants of offensive k-alliances for any

graph G.

(1) ao
1 (G) ≤ ao

2 (G) ≤ Ao
2(G) [1,28];

(2) ao
1 (G) ≤ Ao

1(G) [1,28];
(3) ao

1 (G) ≤ γ o
1 (G) [5];

(4) ao
2 (G) ≤ γ o

2 (G) [5];
(5) γ (G) ≤ γ o

1 (G) ≤ γ o
2 (G) [39];

(6) ao
k (G) ≤ ao

k+1(G) [59];
(7) ao

k (G) ≤ γ o
k (G) [25,43,59];

(8) γ (G) ≤ γ o
k (G) ≤ γ o

k+1(G) [25,43,59].

3.1. Study of offensive k-alliance numbers for various graph classes

Like defensive k-alliances the offensive k-alliances are studied in the literature for different graph classes. In this
subsection, we present important theoretical results obtained for this type of alliance. We give bounds or exact values
established for offensive k-alliance numbers studied for various graph classes.

3.1.1. General graphs
In what follows, we present some theoretical results which exhibit various bounds for offensive k-alliance numbers

in the case of general graphs. Let G = (V, E) be a general graph of order n and size m.
Favaron et al. [4] explored the elementary properties of the offensive k-alliance numbers and they obtained bounds

for the offensive 1-alliance number and the offensive 2-alliance number in general graphs. Thus they showed that:
δn+1

2 ≤ ao
1 (G) ≤

γ (G)+n
2 and ao

2 (G) > δn+1
2 ; if every vertex of G has odd degree then ao

1 (G) ≤
n
2 ; if n ≥ 2 then

ao
1 (G) ≤

2n
3 , and if n ≥ 3 then ao

2 (G) ≤
5n
6 . Moreover, they established that if δn ≥ 2 then this latter bound becomes

ao
2 (G) ≤

3n
4 .

Rodrı́guez-Velázquez and Sigarreta [5] studied the global offensive k-alliances and presented several tight bounds
for the global offensive 1-alliance number and the global offensive 2-alliance number in terms of several parameters
of graph G. They showed that for all connected graph G of order n ≥ 2, the global offensive 1-alliance number
is bounded upperly by: γ o

1 (G) ≤
⌊ 2n

3

⌋
, γ o

1 (G) ≤

⌊
γ (G)+n

2

⌋
, γ o

1 (G) ≤

⌊
n(2µ∗−δn )

2µ∗

⌋
and γ o

1 (G) ≤ min{n −

β(G),
⌊

n+β(G)
2

⌋
}, where γ (G) (resp. µ∗ and β(G)) denotes the domination number (resp. Laplacian spectral radius

and independence number) of G. Note that, these bounds are attained, for instance, for the cocktail-party graph
G = K6 − F ∼= K2,2,2 where n = µ∗ = 6, δn = 4, β(G) = γ (G) = 2 and γ o

1 (G) = 4 [5]. Moreover, they presented
an other upper bound for γ o

1 (G) in the case of any connected graph G by means of its order and its maximum degree δ1,
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that is γ o
1 (G) ≤

⌊
2n−δ1

2

⌋
. On the other hand, Rodrı́guez-Velázquez and Sigarreta [5] obtained tight upper bounds for

the global offensive 2-alliance number by proving that for all connected graph G of order n: γ o
2 (G) ≤

⌊
n+γ2(G)

2

⌋
, and

in addition if δn ≥ 2 then γ o
2 (G) ≤ n −β(G) and γ o

2 (G) ≤
⌊ 5n

6

⌋
(γ2(G) denotes the 2-domination number of G which

is the minimum cardinality of a two dominating set; this latter is a dominating set where every vertex in S̄ is adjacent
to at least two vertices in S). These previous results on global offensive k-alliances are also given by Sigarreta and
Rodrı́guez-Velázquez [60]. Note that to prove some of these results Rodrı́guez-Velázquez and Sigarreta [5,60] used a
new technique with respect to the one used by Favaron et al. [4] in their proof.

Furthermore, Rodrı́guez-Velázquez and Sigarreta [5,60] obtained tight lower bounds for γ o
1 (G) and γ o

2 (G) in terms

of the order and the size of graph G, as follows: γ o
1 (G) ≥ ⌈

3n−

√
9n2−8n−16m

4 ⌉ and γ o
2 (G) ≥

⌈
3n+1−

√
9n2−10n−16m+1

4

⌉
.

By involving the maximum degree of G, these bounds are improved by the same authors to obtain: γ o
1 (G) ≥

⌈
2m+n
3δ1+1

⌉
and γ o

2 (G) ≥

⌈
2(m+n)
3δ1+2

⌉
(note that these two latter bounds are reached, for instance, in the case of the 3-cube graph

G = K2 × K2 × K2, where γ o
1 (G) = γ o

2 (G) = 4 as given in [5,60]). Moreover, by using the Laplacian spectral radius
µ∗ and the minimum degree of G, Rodrı́guez-Velázquez and Sigarreta [5,40,60] presented other tight lower bounds
for the same parameters: γ o

1 (G) ≥

⌈
n
µ∗

⌈
δn+1

2

⌉⌉
and γ o

2 (G) ≥

⌈
n
µ∗

(
⌈
δn
2

⌉
+ 1)

⌉
. For these two latter bounds, if G is

the Petersen graph, then µ∗ = 5, γ o
1 (G) ≥ 4 and γ o

2 (G) ≥ 6 [5,40,60].
On the other hand, Rodrı́guez-Velázquez and Sigarreta [40] gave other lower bounds for the same parameters.

They showed that for a simple graph of order n, size m and maximum degree δ1, the global offensive 1-alliance

number (resp. global offensive 2-alliance number) of G is bounded by γ o
1 (G) ≥

⌈
(2n+δ1+1)−

√
(2n+δ1+1)2−8(2m+n)

4

⌉
(resp. γ o

2 (G) ≥

⌈
(2n+δ1+2)−

√
(2n+δ1+2)2−16(m+n)

4

⌉
). Note that, this bound on γ o

1 (G) (resp. on γ o
2 (G)) is tight in the case

of the complete graph Kn and the complete bipartite graph K3,6 (resp. the complete bipartite graph K3,3) [40].
In [60], Sigarreta and Rodrı́guez-Velázquez studied the offensive k-alliances with connected subgraphs and showed

that for all minimal global offensive 1-alliance (resp. 2-alliance) S of G such that ⟨S̄⟩ is connected, |S| ≥

⌈
3n−2
δ1+3

⌉
(resp. |S| ≥

⌈
4n−2
δ1+4

⌉
) (note that these bounds are attained, for example, for the cycle graph G = C3, with

γ o
1 (C3) = γ o

2 (C3) = 2). Other upper bounds for the global offensive 1-alliance number and the global offensive
2-alliance number are given by Harutyunyan [62].

Fernau et al. [59] and Sigarreta [43] studied the (global) offensive k-alliance number and they showed that for
any simple graph G and for all k ∈ {1, . . . , δn} one has γ o

k (G) ≤

⌊
n(2k+1)

2k+2

⌋
, and for any graph G and for every

k ∈ {2 − δn, . . . , δn} one has
⌈
δn+k

2

⌉
≤ ao

k (G) ≤ γ o
k (G) ≤ n − ⌈

δn−k+2
2 ⌉ (note that these latter bounds are attained for

every k in the case of the complete graph Kn as mentioned in [43,59]). Furthermore, Fernau et al. [44,59] obtained
lower and upper bounds for γ o

k (G) by using the k-domination number γk(G) of a simple graph G and its Laplacian
spectral radius µ∗, that are

⌈
n
µ∗

⌈
δn+k

2

⌉⌉
≤ γ o

k (G) ≤

⌊
γk (G)+n

2

⌋
. On the other hand, Sigarreta [43] presented two

lower bounds on γ o
k (G) by means of the order of graph G, its size and its maximum degree. These bounds are:

γ o
k (G) ≥

⌈
2m+kn
3δ1+k

⌉
and γ o

k (G) ≥

⌈
(2n+δ1+k)−

√
(2n+δ1+k)2−8(2m+kn)

4

⌉
(note that these two bounds are attained, for

example, for the complete graph Kn where γ o
k (G) = 1 and k = 3−n). Moreover, Chellali et al. [63] obtained different

bounds for γ o
k (G) in terms of order, maximum degree, independence number, chromatic number and minimum degree.

For instance, they proved that if G is a graph of order n with minimum degree δn ≥ k ≥ 1 (resp. δn ≥ k + 2 ≥ 4),
then γ o

k (G) ≤
k+1
k+2 n, and this bound is best possible, (resp. γ o

k (G) ≤
k

k+1 n). Also they showed that if G is a graph of
order n, minimum degree δn and maximum degree δ1, then γ o

k (G) ≥
n(δn+k)

2δ1+δn+k . Besides, Volkmann [64] investigated
the connected global offensive k-alliance number γ o

k,c(G) which is the minimum cardinality of a connected global
offensive k-alliance in the graph G. In this framework, he characterized connected graphs G with γ o

k,c(G) = n(G)
(γ o

k,c(G) = n(G) − 1 in the case that δn ≥ k ≥ 2), and presented different tight bounds for γ o
k,c(G).

Yero and Rodrı́guez-Velázquez [32] studied the mathematical properties of boundary powerful k-alliances and
obtained that if S is a boundary offensive k-alliance in a graph G, then

⌈
δn+k

2

⌉
≤ |S| ≤

⌊ 2n−δn+k−2
2

⌋
(note that these

bounds are attained, for instance, for the complete graph G = Kn for every k ∈ {3 − n, . . . , n − 1}).
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3.1.2. Tree graphs
In this paragraph, we put on view some results concerning offensive k-alliance numbers in trees. Let T = (V, E)

be a tree of order n.
Favaron et al. [4] studied the offensive k-alliances and explored upper bounds for the offensive 1-alliance number

and the offensive 2-alliance number in trees. Thus, they obtained that for any tree of n vertices, ao
1 (T ) ≤

⌊ n
2

⌋
and

ao
2 (T ) ≤

⌈ 3n
4

⌉
. For the first bound, the equality is obtained for the path and the only other examples of equality are

K1,3 with one edge subdivided once, and K1,4 with two edges each subdivided once [4].
Rodrı́guez-Velázquez and Sigarreta [45] studied the global k-alliances in planar graphs and presented some results

for global offensive k-alliance numbers in trees. They obtained that if S is a global offensive 2-alliance in a tree such
that the subgraph ⟨S⟩ has c connected components, then |S| ≥ n−c+1. Furthermore, they showed that if S is a global
offensive 1-alliance (resp. 2-alliance) in T such that ⟨S̄⟩ is a forest with c connected components then |S| ≥

⌈
3(n−c)+1

4

⌉
(resp. |S| ≥

⌈ 4n−3c+1
5

⌉
). Moreover, Bouzefrane and Chellali [65] showed that for a tree T of order n ≥ 3 with l leaves

and s support vertices, the global offensive 1-alliance number is bounded lowerly by γ o
1 (T ) ≥

n−l+s+1
3 (with equality

if and only if T belongs to a special family of trees F [65]). They also proved that if T ∈ F then γ o
1 (T ) = γ (T ). On the

other hand, Favaron [39] compared the global offensive 1-alliance number and the global offensive 2-alliance number
to the independent domination number i . He was interested in the existence of bounds in the forms γ o

1 (T ) ≤ f (i(T ))
and i(T ) ≤ g(γ o

2 (T )) where f and g are functions. Thus, he obtained that for every tree T (resp. every tree T of order
n ≥ 2), γ o

1 (T ) ≤ 2i(T ) − 1 (resp. i(T ) ≤ γ o
2 (T ) − 1), and these bounds are sharp.

Harutyunyan [48] studied the global offensive k-alliances in complete t-ary trees and presented an exact value for
the global offensive 1-alliance number. Thus, they showed that for the complete t-ary tree Tt,d with depth d ≥ 1,
γ o

1 (Tt,d ) =
⌊ n

t+1

⌋
.

On the other hand, Chellali [66] studied the offensive k-alliances in trees and proved that if k ≥ 2 and T belongs to
a special family of trees Fk , then γ o

k (T ) = γk(T ), with γk(T ) is the k-domination number of T . Moreover, Chellali and
Volkmann [67] obtained an other exact value for the global offensive k-alliance number of any tree T of the family Fk

by involving the cardinality of Lσ (T ) which is the set of vertices having degree at most σ − 1. Thus, they showed that
if T ∈ Fk , then γ o

k (T ) =
n+|Lσ (T )|

2 . Furthermore, Sigarreta [43] presented a lower bound for the cardinality of every
global offensive k-alliance. He proved that if S is a global offensive k-alliance in a tree T such that the subgraph ⟨S̄⟩

is a forest with c connected components, then |S| ≥

⌈
n(k+2)−3c+1

k+3

⌉
(note that this bound is reached, for example, for

the graph given in Fig. 1(j) of Appendix, where |S| = 2 and c = 4).

3.1.3. Planar graphs
In this part, we present results concerning global offensive k-alliances in planar graphs. Let P = (V, E) be a planar

graph of order n.
Rodrı́guez-Velázquez and Sigarreta [45] studied the global offensive k-alliances in planar graphs and showed that,

for a planar graph P of order n > 2, if S is a global offensive 1-alliance (resp. 2-alliance) in P such that the subgraph
⟨S̄⟩ has c connected components then |S| ≥

⌈ n−2c+4
3

⌉
(resp. |S| ≥

⌈ n−c+2
2

⌉
). Moreover, for a planar graph P of order

n, they proved that if S is a global offensive 1-alliance (resp. 2-alliance) in P such that the minimum degree of ⟨S̄⟩ is
at least σ then |S| ≥ ⌈

n(σ−1)+4
σ+1 ⌉ (resp. |S| ≥ ⌈

nσ+4
σ+2 ⌉). Furthermore, Rodrı́guez-Velázquez and Sigarreta [45] obtained

other lower bounds for the cardinality of S which can be a global offensive 1-alliance or 2-alliance by using the
number of faces of ⟨S̄⟩. Thus, they proved that, for a planar graph of order n, if S is a global offensive 1-alliance (resp.
2-alliance) in P such that the subgraph ⟨S̄⟩ is connected and has f faces, then |S| ≥

⌈
n+2 f

3

⌉
(resp. |S| ≥

⌈
n+ f

2

⌉
).

Sigarreta [43] considered the global offensive k-alliances and obtained lower bounds concerning the cardinality
of every global offensive k-alliance in planar graphs. Thus, he showed that if S is a global offensive k-alliance in a
planar graph P of order n with k ∈ {1, 2, . . . , δ1} (resp. k ∈ {0, 1, . . . , δ1}) such that the subgraph ⟨S̄⟩ has c connected
components (resp. ⟨S̄⟩ is connected with f faces), then |S| ≥

⌈
nk+2(2−c)

k+2

⌉
(resp. |S| ≥

⌈
nk+2 f

k+2

⌉
) (note that these

bounds are attained, for example, for the graph given in Fig. 1(k) of Appendix where |S| = 3). Furthermore, he
presented a lower bound for the global offensive k-alliance number, that is for a planar graph P of order n and size m,
if P contains a global offensive k-alliance of minimum cardinality greater than two, then γ o

k (P) ≥

⌈
2m−n(6−k)+24

6+k

⌉
.
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3.1.4. Complete graphs
We exhibit in this paragraph some exact values obtained for offensive k-alliance numbers in complete graphs. Let

Kn = (V, E) be a complete graph of order n.
Favaron et al. [4] studied the offensive k-alliances and established exact values for the offensive 1-alliance number

and the offensive 2-alliance number in complete graphs. Thus, they obtained that for n ≥ 1, ao
1 (Kn) =

⌈ n
2

⌉
and

ao
2 (Kn) =

⌈ n+1
2

⌉
. Note that these values are examples of equality in bounds given in Section 3.1.1 obtained for

general graphs by Favaron et al. [4], that are ao
1 (G) ≥

δn+1
2 and ao

2 (G) > δn+1
2 .

Fernau et al. [59] obtained an exact value for the offensive k-alliance number in complete graphs, that is for
every k ∈ {3 − n, . . . , n − 1}, ao

k (Kn) =
⌈ n+k−1

2

⌉
. It is clear, in this case, that every offensive k-alliance is global

and every vertex-set of cardinality
⌈ n+k−1

2

⌉
is a global offensive k-alliance. Thus, as given by Bermudo et al. [68],

γ o
k (Kn) =

⌈ n+k−1
2

⌉
.

3.1.5. Bipartite graphs and complete bipartite graphs
In this part, we present theoretical results representing bounds or exact values concerning offensive k-alliance

numbers in bipartite graphs and complete bipartite graphs. Let B = (X, Y, E) be a bipartite graph of order n, and Kr,s

be a complete bipartite graph.
Favaron et al. [4] studied the offensive k-alliances and presented some exact values for the offensive 1-alliance

number and the offensive 2-alliance number in complete bipartite graphs. Thus, they obtained that:

• for 1 ≤ r ≤ s, ao
1 (Kr,s) =

⌈ r+1
2

⌉
;

• for 2 ≤ r ≤ s, ao
2 (Kr,s) =

⌈ r
2 + 1

⌉
, but ao

2 (K1,s) =
⌈ s

2 + 1
⌉

.

Note that these values are examples of equality in bounds given in Section 3.1.1 obtained for general graphs by
Favaron et al. [4], that are ao

1 (G) ≥
δn+1

2 and ao
2 (G) > δn+1

2 .
Sigarreta and Rodrı́guez-Velázquez [60] studied the global offensive k-alliances and established an upper bound

for the global offensive 1-alliance number in bipartite graphs. Thus, they obtained that for all nontrivial bipartite
graph, γ o

1 (B) ≤
n
2 . Note that this bound is an improvement of the one given by Rodrı́guez-Velázquez and Sigarreta

[5] for general graphs (γ o
1 (G) ≤

⌊ 2n
3

⌋
) in the case of bipartite graphs. Moreover, the same authors in [69] proved that

this bound is an exact value for the global offensive 2-alliance number in the case of bipartite cubic graphs, that is
γ o

2 (B) =
n
2 . On the other hand, Chellali [70] obtained other bounds for γ o

1 (B) and γ o
2 (B). Thus, he showed that for

every bipartite graph B without isolated vertices, having l vertices of degree one (and s support vertices), γ o
2 (B) ≤

n+l
2

(and γ o
1 (B) ≤

n−l+s
2 ).

By using Lσ (B) (the set of vertices having degree at most σ − 1), Chellali and Volkmann [67] established a
bound for the global offensive k-alliance number in bipartite graphs. They proved that for an integer σ ≥ 1, one
has γ o

k (B) ≤
n+|Lσ (B)|

2 . On the other hand, Bermudo et al. [68] and Yero [25] gave bounds for the same parameter
in complete bipartite graphs. Thus, they showed that for a complete bipartite graph Kr,s with s ≤ r and for every
k ∈ {2 − r, . . . , r} :

(i) If k ≥ s + 1, then γ o
k (Kr,s) = r .

(ii) If k ≤ s and
⌈ r+k

2

⌉
+

⌈ s+k
2

⌉
≥ s, then γ o

k (Kr,s) = s.
(iii) If −s < k ≤ s and

⌈ r+k
2

⌉
+

⌈ s+k
2

⌉
< s, then γ o

k (Kr,s) =
⌈ r+k

2

⌉
+

⌈ s+k
2

⌉
.

(iv) If k ≤ −s and
⌈ r+k

2

⌉
+

⌈ s+k
2

⌉
< s, then γ o

k (Kr,s) = min{s, 1 +
⌈ r+k

2

⌉
}.

3.1.6. Regular graphs
We present in this paragraph some results obtained for offensive k-alliance numbers in regular graphs. We denote

by Rδ = (V, E) the δ-regular graph of order n.
Rodrı́guez-Velázquez and Sigarreta [69] studied mathematical properties of the global offensive k-alliance numbers

of cubic graphs and presented lower and upper bounds for the global offensive 1-alliance number in δ-regular graphs.
Thus, they showed that for all δ-regular graph Rδ of order n and odd degree δ, n(δ+1)

3δ+1 ≤ γ o
1 (Rδ) ≤

n
2 . In the case

of regular graphs of odd degree, this upper bound is an improvement of the one given by Rodrı́guez-Velázquez and
Sigarreta [5] for general graphs (γ o

1 (G) ≤
⌊ 2n

3

⌋
). The same authors in [60] established an upper bound for the global

offensive 2-alliance number in 3-regular connected graph, that is γ o
2 (R3) ≤

⌊ 3n
4

⌋
.
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Bermudo et al. [68] and Yero [25] investigated the relationships between global offensive k-alliances and some
characteristic sets of a graph including r -dependent sets. They obtained an exact value for the offensive k-alliance
number in δ-regular graphs, with δ > 0, by using a parameter of graphs, which is the maximum cardinality of an
r -dependent set αr (Rδ) (for a graph G = (V, E), a set S ⊆ V is an r -dependent set in G if the maximum degree of
every vertex in the subgraph ⟨S⟩ induced by S is at most r i.e. degS(v) ≤ r , ∀ v ∈ S). Thus, they showed that for every
k ∈ {1, . . . , δ}, γ o

k (Rδ) = n − α⌊
δ−k

2

⌋(Rδ).

3.1.7. Cycle graphs
Let Cn = (V, E) be a cycle graph of order n. In this part, we exhibit some results obtained for offensive k-alliance

numbers in this class of graphs.
Favaron et al. [4] studied the offensive k-alliances and they obtained that the offensive 1-alliance number and the

offensive 2-alliance number have the same value. Thus, they established that for n ≥ 3, ao
1 (Cn) = ao

2 (Cn) =
⌈ n

2

⌉
.

The problem of finding the global offensive k-alliance number is N P-complete. Even so, for some graphs it is
possible to obtain this number [25,68]. For instance, the family of the complete graphs, the cycle graphs and the path
graphs. Thus, Bermudo et al. [68] and Yero [25] obtained exact values for the global offensive k-alliance number in

cycle graphs for small specific values of k, in terms only of the order of graph, that is γ o
k (Cn) =

{
⌈

n
3

⌉ for k = 0,

⌈
n
2

⌉ for k = 1, 2.

3.1.8. Path graphs
Let Pn = (V, E) be a path graph of order n. Favaron et al. [4] studied the offensive k-alliances and established

exact values for the offensive 1-alliance number and the offensive 2-alliance number. Thus they obtained that for
n ≥ 1, ao

1 (Pn) =
⌊ n

2

⌋
and ao

2 (Pn) =
⌊ n

2

⌋
+ 1.

Bermudo et al. [68] and Yero [25] studied the global offensive k-alliances and presented exact values for the
global offensive k-alliance number in path graphs for small specific values of k. Thus, they obtained that γ o

k (Pn) ={
⌈

n
3

⌉ for k = 0,

⌊
n
2

⌋ + k − 1 for k = 1, 2.

3.1.9. Line graphs
In this part, we exhibit some results obtained for offensive k-alliance numbers in line graphs. Let G = (V, E) be a

graph and L(G) its associated line graph.
Sigarreta [43] studied the offensive k-alliances and obtained a lower bound for the global offensive k-alliance

number in the line graph L(G). Thus, from a bound obtained for general graphs (that is γ o
k (G) ≥

⌈
2m+kn
3δ1+k

⌉
), he

deduced that for a graph G of size m having a degree sequence δ1 ≥ δ2 ≥ · · · ≥ δn , γ o
k (L(G)) ≥

⌈∑n
i=1δ

2
i +m(k−2)

3(δ1+δ2−2)+k

⌉
.

Furthermore, Fernau et al. [59] and Sigarreta [43] presented a lower bound for γ o
k (L(G)) where G is a δ-regular graph.

Thus, they showed that if L(G) is a line graph of a δ-regular graph G of order n, then γ o
k (L(G)) ≥

n
4

⌈
2(δ−1)+k

2

⌉
(note

that this bound is attained, for instance, for the graph given in Fig. 1(l) of Appendix, with γ o
1 (L(G)) = γ o

2 (L(G)) = 3).
On the other hand, Sigarreta [43] deduced that if G is a cubic graph of order n then 3n

4 ≤ γ o
2 (L(G)) = γ o

1 (L(G)) ≤ n.
Note that these latter bounds are tight. For example, Sigarreta [43] mentioned that the upper one is reached in the
case of the complete graph K4: γ o

1 (L(K4)) = 4 = n. Moreover, in the case of the complete bipartite graph K3,3, he
obtained that γ o

1 (L(K3,3)) = 5 and for the lower bound 9
2 ≤ γ o

1 (L(K3,3)).

3.1.10. Cartesian product graphs
Let G i = (Vi , Ei ) be a graph of order ni , minimum degree δ̄i and maximum degree ∆̄i , i ∈ {1, 2}.
Yero and Rodrı́guez-Velázquez [61] obtained various closed formulas for the global offensive 1-alliance number

of several families of Cartesian product graphs, given as follows:

• For any graphs G1 and G2, γ o
1 (G1 × G2) ≥

1
2 max{γ (G1)γ o

1 (G2), γ o
1 (G1)γ (G2)}. Moreover, if G1 has an

efficient dominating set (S is an efficient dominating set if each vertex in S̄ is adjacent to exactly one vertex in
S), then γ o

1 (G1 × G2) ≥ γ (G1)γ o
1 (G2).
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• Let Pn be a path graph of order n. For every graph G of minimum degree δ̄ ≥ 1, γ o
1 (G × Pn) ≥

⌈
(n−1)γ o

1 (G)
2

⌉
+⌈

δ̄
2

⌉
.

• Let Cn be a cycle graph of order n. For every graph G, γ o
1 (G × Cn) ≥

⌈
nγ o

1 (G)
2

⌉
.

• If Bi is a connected bipartite graph of order ni , i ∈ {1, 2}, then γ o
1 (B1 × B2) ≤

n1n2
2 .

• The global offensive 1-alliance number of bamboo graph Kr × Pt is γ o
1 (Kr × Pt ) =

⌊ r t
2

⌋
.

• For any complete graph Kr and any path graph Pt , γ o
1 (Kr × Pt ) ≥ γ o

1 (Kr )γ o
1 (Pt ).

• If G1 is a graph partitionable into two global offensive 1-alliances X1 and X2 and G2 is a graph partitionable
into two global offensive 2-alliances Y1 and Y2, then γ o

1 (G1 × G2) ≤ |X1∥Y1| + |X2∥Y2|.
• For any torus graph Cr × Ct , γ o

1 (Cr × Ct ) ≥ γ o
1 (Cr )γ o

1 (Ct ).
• The global offensive 1-alliance number of the graph Kr × Ct is γ o

1 (Kr × Ct ) =
⌈ r t

2

⌉
.

• For any path graph Pr and any cycle graph Ct , γ o
1 (Pr × Ct ) ≥ γ o

1 (Pr )γ o
1 (Ct ).

• Let r and t be two positive integers. If r , t have the same parity, then γ o
1 (Kr × Kt ) =

⌈ r t
2

⌉
, and if r

and t have different parity then
⌈

r t(r+t−1)
2(r+t)

⌉
≤ γ o

1 (Kr × Kt ) ≤
⌈ r t

2

⌉
. Moreover, for any complete graphs

γ o
1 (Kr × Kt ) ≥ γ o

1 (Kr )γ o
1 (Kt ).

• Let Pr × Pt be a grid graph.

▷ If r and t are even, then γ o
1 (Pr × Pt ) =

r t
2 .

▷ If r is even and t is odd, then γ o
1 (Pr × Pt ) =

r (t−1)
2 +

⌈ r
3

⌉
.

▷ If r and t are odd, then (r−1)(t−1)
2 +

⌈ r
3

⌉
+

⌈ t
3

⌉
≤ γ o

1 (Pr × Pt ) ≤
r (t−1)

2 +
⌈ r

3

⌉
.

Yero in his thesis [25] obtained bounds for the offensive k-alliance number in Cartesian product graphs. He showed
that:

(i) If Si is an offensive ki -alliance in G i = (Vi , Ei ), i ∈ {1, 2}, then, for k = min{k2 − ∆̄1, k1 − ∆̄2}, S1 × S2 is an
offensive k-alliance in G1 × G2.

(ii) If S1 × S2 is an offensive k-alliance in G1 ×G2, with Si ⊂ Vi , i ∈ {1, 2}, then S1 is an offensive (k + δ̄2)-alliance
in G1 and S2 is an offensive (k + δ̄1)-alliance in G2, moreover, k ≤ min{∆̄1 − δ̄2, ∆̄2 − δ̄1}.

As a consequence, he obtained that for every k ≤ min{k1 − ∆̄2, k2 − ∆̄1}, ao
k (G1 × G2) ≤ ao

k1
(G1)ao

k2
(G2). Note that

there is equality for the graph C4 × K4, that is ao
−3(C4 × K4) = 2 = ao

0 (C4)ao
1 (K4) [25].

On the other hand, Yero [25] studied the global offensive k-alliance number in Cartesian product graphs and he
showed that:

(a) If S is a global offensive k-alliance in G1, then S × V2 is a global offensive (k − ∆̄2)-alliance in G1 × G2.
(b) If S × V2 is a global offensive k-alliance in G1 × G2, then S is a global offensive (k + δ̄2)-alliance in G1,

moreover, k ≤ ∆̄1 − δ̄2.

As a consequence, he obtained that for any graph G1 and any graph G2 of order n2 and maximum degree ∆̄2,
γ o

k−∆̄2
(G1 × G2) ≤ n2γ

o
k (G1). Furthermore, he established that the result given in (a) above can be simplified in

the case of G2 is a regular graph. In fact, for G2 = (V2, E2) a δ-regular graph, a set S is a global offensive k-alliance
in G1 if and only if S × V2 is a global offensive (k − δ)-alliance in G1 × G2.

Remark 4. Let us note that the offensive k-alliances were studied in the literature for other graph classes such as star
graphs and cubic graphs [39,61,69].

Now, we summarize the results presented above by giving some bounds and exact values obtained for various
offensive k-alliance numbers for different graph classes. These results are given in Table 4:

Concluding remarks 3. As we can see from Table 4, the most studied parameter is the global offensive k-alliance
number (γ o

k (G)) and the least studied one is the offensive k-alliance number (ao
k (G)). Furthermore, the general and tree

graph classes are the most studied ones and the line graphs class is the least studied one. Moreover, some parameters
are not studied for all or certain graph classes. For example, the upper offensive 1-alliance number Ao

1(G) and the
upper offensive 2-alliance number Ao

2(G) are not studied for all graph classes. Besides, for the line graphs class, only
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Table 4
Previous results on offensive k-alliance numbers for various graph classes.

Graph
classes

Offensive k-alliance numbers

ao
1 (G) ao

2 (G) γ o
1 (G) γ o

2 (G) ao
k (G) γ o

k (G)

G •
δn+1

2 ≤ ao
1 (G) ≤

γ (G)+n
2 [4]

• ao
1 (G) ≤

2n
3 [4]

• ao
2 (G) > δn+1

2 [4]
• ao

2 (G) ≤
5n
6 [4]

• ao
2 (G) ≤

3n
4 [4]

• γ o
1 (G) ≤

⌊ 2n
3

⌋
[5,60]

• γ o
1 (G) ≤

⌊
γ (G)+n

2

⌋
[5,60]

• γ o
1 (G) ≤⌊

n(2µ∗−δn )
2µ∗

⌋
[5,60]

• γ o
1 (G) ≤ min{n −

β(G),
⌊

n+β(G)
2

⌋
} [5,60]

• γ o
1 (G) ≤

⌊
2n−δ1

2

⌋
[5,60]

• γ o
1 (G) ≥⌈

3n−

√
9n2−8n−16m

4

⌉
[5,60]

• γ o
1 (G) ≥

⌈
2m+n
3δ1+1

⌉
[5,60]

• γ o
1 (G) ≥⌈

n
µ∗

⌈
δn+1

2

⌉⌉
[5,40,60]

• |S| ≥

⌈
3n−2
δ1+3

⌉
[60]

• γ o
2 (G) ≤⌊

n+γ2(G)
2

⌋
[5,60]

• γ o
2 (G) ≤ n − β(G) [5,60]

• γ o
2 (G) ≤

⌊ 5n
6

⌋
[5,60]

• γ o
2 (G) ≥⌈

3n+1−

√
9n2−10n−16m+1

4

⌉
[5,60]

• γ o
2 (G) ≥

⌈
2(m+n)
3δ1+2

⌉
[5,60]

• γ o
2 (G) ≥⌈

n
µ∗

(
⌈
δn
2

⌉
+ 1)

⌉
[5,40,60]

• |S| ≥

⌈
4n−2
δ1+4

⌉
[60]

•

⌈
δn+k

2

⌉
≤ ao

k (G) ≤

n −

⌈
δn−k+2

2

⌉
[43,59]

•

⌈
δn+k

2

⌉
≤ γ o

k (G) ≤

n −

⌈
δn−k+2

2

⌉
[43,59]

• γ o
k (G) ≤⌊

n(2k+1)
2k+2

⌋
[43,59]

•

⌈
n
µ∗

⌈
δn+k

2

⌉⌉
≤

γ o
k (G) ≤⌊
γk (G)+n

2

⌋
[44,59]

• γ o
k (G) ≥

⌈
2m+kn
3δ1+k

⌉
[43]

T • ao
1 (T ) ≤

⌊ n
2

⌋
[4] • ao

2 (T ) ≤
⌈ 3n

4

⌉
[4] • |S| ≥

⌈
3(n−c)+1

4

⌉
[45]

• γ o
1 (T ) ≥

n−l+s+1
3 [65]

• γ o
1 (T ) = γ (T ) [65]

• γ o
1 (T ) ≤ 2i(T ) − 1 [39]

• γ o
1 (Tt,d ) =

⌊
n

t+1

⌋
[48]

• |S| ≥ n − c + 1 [45]
• |S| ≥

⌈ 4n−3c+1
5

⌉
[45]

• i(T ) ≤ γ o
2 (T ) − 1 [39]

• γ o
k (T ) = γk (T ) [66]

• γ o
k (T ) =

n+|Lσ (T )|
2 [67]

• |S| ≥

⌈
n(k+2)−3c+1

k+3

⌉
[43]

P • |S| ≥
⌈ n−2c+4

3

⌉
[45]

• |S| ≥

⌈
n(σ−1)+4
σ+1

⌉
[45]

• |S| ≥

⌈
n+2 f

3

⌉
[45]

• |S| ≥
⌈ n−c+2

2

⌉
[45]

• |S| ≥

⌈
nσ+4
σ+2

⌉
[45]

• |S| ≥

⌈
n+ f

2

⌉
[45]

• |S| ≥

⌈
nk+2(2−c)

k+2

⌉
[43]

• |S| ≥

⌈
nk+2 f

k+2

⌉
[43]

• γ o
k (P) ≥⌈

2m−n(6−k)+24
6+k

⌉
[43]

Kn • ao
1 (Kn) =

⌈ n
2

⌉
[4] • ao

2 (Kn) =⌈ n+1
2

⌉
[4]

• ao
k (Kn) =

⌈ n+k−1
2

⌉
[59] • γ o

k (Kn) =⌈ n+k−1
2

⌉
[59,68]

• B
• Kr,s

• ao
1 (Kr,s ) =

⌈ r+1
2

⌉
[4] • ao

2 (Kr,s ) =⌈ r
2 + 1

⌉
[4]

• ao
2 (K1,s ) =⌈ s

2 + 1
⌉

[4]

• γ o
1 (B) ≤

n
2 [60]

• γ o
1 (B) ≤

n−l+s
2 [70]

• γ o
2 (B) =

n
2 [69]

• γ o
2 (B) ≤

n+l
2 [70]

• γ o
k (B) ≤

n+|Lσ (B)|
2 [67]

• γ o
k (Kr,s ) = r [25,68]

• γ o
k (Kr,s ) = s [25,68]

• γ o
k (Kr,s ) =⌈ r+k
2

⌉
+

⌈ s+k
2

⌉
[25,68]

• γ o
k (Kr,s ) =

min{s, 1 +
⌈ r+k

2

⌉
} [25,68]

(continued on next page)



140
K

.O
uazine

etal./A
K

C
E

InternationalJournalofG
raphs

and
C

om
binatorics

15
(2018)115–154

Table 4 (continued)
Graph
classes

Offensive k-alliance numbers

ao
1 (G) ao

2 (G) γ o
1 (G) γ o

2 (G) ao
k (G) γ o

k (G)

Rδ •
n(δ+1)
3δ+1 ≤ γ o

1 (Rδ) ≤
n
2 [69]

• γ o
2 (R3) ≤

⌊ 3n
4

⌋
[60] • γ o

k (Rδ) =

n − α⌊
δ−k

2

⌋(Rδ) [25,68]

Cn • ao
1 (Cn) =

⌈ n
2

⌉
[4] • ao

2 (Cn) =
⌈ n

2

⌉
[4] • γ o

k (Cn) ={
⌈

n
3

⌉, k = 0

⌈
n
2

⌉, k = 1, 2
[25,68]

Pn • ao
1 (Pn) =

⌊ n
2

⌋
[4] • ao

2 (Pn) =⌊ n
2

⌋
+ 1 [4]

• γ o
k (Pn) ={

⌈
n
3

⌉, k = 0

⌊
n
2

⌋ + k − 1, k = 1, 2
[25,68]

L(G) • γ o
k (L(G)) ≥⌈ ∑n
i=1δ

2
i +m(k−2)

3(δ1+δ2−2)+k

⌉
[43]

• γ o
k (L(G)) ≥

n
4

⌈
2(δ−1)+k

2

⌉
[43,59]

G1×

G2

• γ o
1 (G1 × G2) ≥

1
2 max{γ (G1)γ o

1 (G2), γ o
1 (G1)γ (G2)} [61]

• γ o
1 (B1 × B2) ≤

n1n2
2 [61]

• γ o
1 (Kr × Pt ) ≥

γ o
1 (Kr )γ o

1 (Pt ) [61]
• γ o

1 (Cr × Ct ) ≥

γ o
1 (Cr )γ o

1 (Ct ) [61]
• γ o

1 (Pr × Ct ) ≥

γ o
1 (Pr )γ o

1 (Ct ) [61]
• γ o

1 (Kr × Kt ) ≥

γ o
1 (Kr )γ o

1 (Kt ) [61]

• ao
k (G1 × G2) ≥

ao
k1

(G1)ao
k2

(G2) [25]
• γ o

k−∆̄2
(G1 × G2) ≥

n2γ
o
k (G1) [25]
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the global offensive k-alliance number γ o
k (L(G)) is investigated. However, for the global offensive 2-alliance number

γ o
2 (G) there is no result in the case of cycle, path and Cartesian product graph classes.

3.2. Study of offensive k-alliance partition numbers

Like the partitioning of graphs into defensive k-alliances the partitioning into offensive k-alliances is also studied
in the literature. There are two parameters of the partitioning of graphs into offensive k-alliances which are defined
as follows: for any graph G = (V, E), the (global) offensive k-alliance partition number of G, (ψ go

k (G)) ψo
k (G),

k ∈ {2 − δ1, . . . , δ1}, is defined to be the maximum number of sets in a partition of V such that each set is (a
global offensive) an offensive k-alliance [25]. We say that G is partitionable into (global) offensive k-alliances if
(ψ go

k (G) ≥ 2) ψo
k (G) ≥ 2. Note that if every vertex of G has even degree and k is odd, or every vertex of G has odd

degree and k is even, then every (global) offensive k-alliance in G is an offensive (a global offensive) (k + 1)-alliance
and vice versa. Hence, in such a case, ψo

k (G) = ψo
k+1(G) and ψ go

k (G) = ψ
go
k+1(G) [24,25].

In this subsection, we study the mathematical properties of the offensive k-alliance partition numbers. In particular,
we exhibit bounds and/or exact values obtained for the (global) offensive k-alliance partition number for some graph
classes.

3.2.1. General graphs
Sigarreta et al. [24] and Yero [25] studied the partitioning of graphs into (global) offensive k-alliances and

obtained several results. Using the relation between the offensive k-alliance number and the offensive k-alliance
partition number (ao

k (G)ψo
k (G) ≤ n), they established that lower bounds on ao

k (G) lead to upper bounds on ψo
k (G).

For example, from the lower bound given by Fernau et al. in [59], that is ao
k (G) ≥

⌈
δn+k

2

⌉
, they obtained that

ψo
k (G) ≤

{
⌊

2n
δn + k

⌋, δn + k even,

⌊
2n

δn + k + 1
⌋, δn + k odd.

. Note that this bound is attained, for instance, for every δ-regular graph, δ ≥ 1,

by taking k = 2 − δ. In such a case, each vertex is an offensive (2 − δ)-alliance and ψo
k (G) = n as illustrated

in [24,25].
Analogously, by using the relation between the global offensive k-alliance number and the global offensive k-

alliance partition number, that is γ o
k (G)ψ go

k (G) ≤ n, Sigarreta et al. [24] and Yero [25] established that lower bounds
on γ o

k (G) lead to upper bounds on ψ go
k (G). Thus, from the lower bound presented by Bermudo et al. in [68], that

is γ o
k (G) ≥

⌈
2m+kn
3δ1+k

⌉
, they obtained that the global offensive k-alliance partition number is bounded upperly by

ψ
go
k (G) ≤

⌊
n⌈

2m+kn
3δ1+k

⌉
⌋

. This bound is attained, for instance, for the circulant graph C R(n, 2) for k = −2, and if

n = 3 j it is also attained for k ∈ {−1, 0} as mentioned in [24,25]. On the other hand, they showed that if a graph G
is partitionable into global offensive k-alliances, then

(i) ψ go
k (G) ≤

⌊
2m−n(k−4)

2n

⌋
.

(ii) ψ go
k (G) ≤

⌊
δn−k+4

2

⌋
.

(iii) ψ go
k (G) ≤

⌊
4−k+

√
k2+2(δn−k)
2

⌋
.

Sigarreta et al. [24] and Yero [25] also obtained that for any graph G of order n and size m, ψ go
k (G) ≤

⌊ 6m+nk
2m+nk

⌋
,

and they noted that this bound is attained for the circulant graph C R(5n, 2), where ψ go
−2(G) = 5. Moreover, they

established bounds for the cardinality of sets belonging to a partition. Thus, they showed that if S belongs to a
partition of G into global offensive k-alliances, then

⌈
n(2δn−δ1+k)
δ1+2δn+k

⌉
≤ |S| ≤

⌊
2nδ1

δ1+2δn+k

⌋
. These bounds are reached

for the circulant graph C R(n, 2) which contains a partition into two global offensive 0-alliances S and S̄, such
that |S| = ⌈

n
3 ⌉ and |S̄| = ⌊

2n
3 ⌋ [24,25]. Furthermore, they proved that for a graph G with Laplacian spectral

radius µ∗, if S belongs to a partition of G into global offensive k-alliances with −δn ≤ k ≤ µ∗ − δn , then⌈
n
2 −

√
n2(µ∗−k)−2nm

4µ∗

⌉
≤ |S| ≤

⌊
n
2 +

√
n2(µ∗−k)−2nm

4µ∗

⌋
. Note that these bounds are attained for the complete graph
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Kn with n is even and k = 1. In this case Kn is partitioned into two global offensive 1-alliances of cardinality n
2 as

discussed in [24,25].

3.2.2. Cartesian product graphs
Let G i = (Vi , Ei ) be a graph of order ni , i ∈ {1, 2}. Sigarreta et al. [24] and Yero [25] studied the partitioning

of Cartesian product graphs into offensive k-alliances and obtained that if G i = (Vi , Ei ) is a graph of minimum
degree δ̄i and maximum degree ∆̄i , i ∈ {1, 2} and Si is an offensive ki -alliance in G i , i ∈ {1, 2}, then, for
k = min{k2 − ∆̄1, k1 − ∆̄2}, S1 × S2 is an offensive k-alliance in G1 × G2. Thus, they deduced that a partition
Π o

ri
(G i ) = {S(i)

1 , S(i)
2 , . . . , S(i)

ri
} of G i into ri offensive ki -alliances, i ∈ {1, 2}, induces a partition of G1 × G2 into r1r2

offensive k-alliances, with k = min{k2 − ∆̄1, k1 − ∆̄2}. This partition is formally illustrated by the following matrix
given in [24,25]:

Π o
r1r2

(G1 × G2) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
S(1)

1 × S(2)
1 · · · S(1)

1 × S(2)
r2

S(1)
2 × S(2)

1 · · · S(1)
2 × S(2)

r2
...

. . .
...

S(1)
r1

× S(2)
1 · · · S(1)

r1
× S(2)

r2

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ .
As a consequence, Sigarreta et al. [24] and Yero [25] established that for any graph G i of maximum degree ∆̄i ,
i ∈ {1, 2}, and for every k ≤ min{k1 − ∆̄2, k2 − ∆̄1}, ψo

k (G1 × G2) ≥ ψo
k1

(G1)ψo
k2

(G2), and they noted that for the
particular case of the graph C4 × K4, ψo

−3(C4 × K4) = 8 = 4 · 2 = ψo
0 (C4)ψo

1 (K4).
For the global offensive k-alliance partition number, Sigarreta et al. [24] and Yero [25] showed that for G i =

(Vi , Ei ) a graph of order ni and Π
go

ri (G i ) a partition of G i into ri global offensive ki -alliances, i ∈ {1, 2}, if
xi = minS∈Π

go
ri (Gi ){|S|} and k ≤ min{k1, k2}, then

(i) γ o
k (G1 × G2) ≤ min{n2x1, n1x2};

(ii) ψ go
k (G1 × G2) ≥ max{ψ

go
k1

(G1), ψ go
k2

(G2)}.

They mentioned that if G i is partitionable into global offensive ki -alliances, for ki ≥ 1 and i ∈ {1, 2}, the
bound concerning the global offensive k-alliance partition number is attained for 1 ≤ k ≤ min{k1, k2}, where
ψ

go
k (G1 × G2) = 2 = max{2, 2} = max{ψ

go
k1

(G1), ψgo
k2

(G2)}. Moreover, Sigarreta et al. [24] and Yero [25]
deduced that if a graph G i of order ni is partitionable into global offensive ki -alliances, i ∈ {1, 2}, then for
k ≤ min{k1, k2}, γ o

k (G1 × G2) ≤
n1n2

max{ψ
go
k1

(G1),ψgo
k2

(G2)}
. Example of equality is obtained in [24,25] for C4 × K2,

i.e. γ o
1 (C4 × K2) =

4.2
max{ψ

go
1 (C4),ψgo

1 (K2)}
= 4.

3.2.3. Circulant graphs — C R(n, 2)
Let Zn be the additive group of integers modulo n and let M ⊂ Zn such that, i ∈ M if and only if −i ∈ M . A graph

G = (V, E) can be constructed as follows, the vertices of V are the elements of Zn and (i, j) is an edge in E if and
only if j − i ∈ M . This graph is called a circulant of order n and it is denoted by C R(n,M). The set M is called the
set of generators of the circulant graph. With this notation, a cycle graph is C R(n, {−1, 1}) and the complete graph is
C R(n,Zn).

Yero [25] in his thesis studied the partitioning of circulant graphs of type C R(n, 2) = C R(n, {−2,−1, 1, 2})
into global offensive k-alliances and obtained some theoretical results. He established two partitions of C R(n, 2) as
follows: if n is even, Π go

2 (C R(n, 2)) = {{1, 3, 5, . . . , n − 1}, {2, 4, 6, . . . , n}} is a partition of C R(n, 2) into global
offensive 0-alliances, moreover, if n = 4 j , Π go

4 (C R(n, 2)) = {{1, 5, . . . , n − 3}, {2, 6, . . . , n − 2}, {3, 7, . . . , n −

1}, {4, 8, . . . , n}} is a partition of C R(n, 2) into global offensive (−2)-alliances.
Furthermore, Yero [25] considered the circulant graph G = C R(n, 2) and proved that:

(i) Any dominating set in G is a global offensive (−2)-alliance.
(ii) G is not partitionable into global offensive 3-alliances or global offensive 4-alliances.

(iii) ψ go
1 (G) = ψ

go
2 (G) = 2 if and only if n = 4 j .

(iv) ψ go
−1(G) = ψ

go
0 (G) = 3 if and only if n = 3 j .

(v) ψ go
−2(G) =

⌊
n

⌈ n
5 ⌉

⌋
.
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3.2.4. Relations between ψ go
k (G) and k

Sigarreta et al. [24] and Yero [25] studied relations between ψ go
k (G) and k and they first obtained that, for any

graph G without isolated vertices, there exists k ∈ {0, . . . , δn} such that G is partitionable into global offensive
k-alliances. As a consequence, they deduced that any graph without isolated vertices is partitionable into global
offensive 0-alliances. Furthermore, they showed that if a graph is partitionable into r ≥ 3 global offensive k-alliances,
then k ≤ 3 − r . From this latter result, they obtained an interesting consequence which state that if G is partitionable
into global offensive k-alliances for k ≥ 1, then ψ go

k (G) = 2. Moreover, for a graph G without isolated vertices,
they deduced that if k ∈ {2 − δ1, . . . , 0} then the global offensive k-alliance partition number is bounded by
2 ≤ ψ

go
k (G) ≤ 3 − k. Note that, for the complete graph Kn , ψ go

0 (Kn) = 2 and for the cycle graph C3n , n ≥ 1,
ψ

go
0 (C3n) = 3 [24,25]. On the other hand, Yero [25] proved that if G is a graph of order n such that ψ go

k (G) > 2,
then for every l ∈ {1, . . . , ψ go

k (G) − 2}, there exists a subgraph, Gl , of G of order n(Gl) ≤ n − lγ o
k (G) such that

ψ
go
l+k(Gl) + l ≥ ψ

go
k (G).

3.2.5. Partition number and chromatic number
Motivated by the lower and upper bounds given for ψ go

k (G) in Section 3.2.4, that is if k ∈ {2 − δ1, . . . , 0} then
2 ≤ ψ

go
k (G) ≤ 3 − k, Sigarreta et al. [24] and Yero [25] studied the limit cases ψ go

0 (G) = 2 and ψ go
0 (G) = 3.

Essentially, in this study they established relationships that exist between the chromatic number of G, χ (G), and
ψ

go
0 (G).
Given a positive integer t , a t-dependent set in G is a set of vertices of G such that no vertex in the set is adjacent

to more than t vertices of the set. Thus, a 0-dependent set in G is simply an independent set of vertices in G. Sigarreta
et al. [24] and Yero [25] showed that, any set belonging to a partition of a graph into r ≥ 3 global offensive k-alliances
is a (−k)-dependent set. Moreover, they noted that if k = 0 in this result, then r = 3 and as a consequence, every set
in a partition into three global offensive 0-alliances is an independent set, and also if ψ go

0 (G) = 3 then χ (G) ≤ 3. A
trivial example of graph where ψ go

0 (G) = 3 and χ (G) = 3 is the cycle graph C3, and a graph where ψ go
0 (G) = 3 and

χ (G) = 2 is the cycle graph C6 [24,25].
Sigarreta et al. [24] and Yero [25] also obtained that if G is a non bipartite graph and ψ go

0 (G) = 3, then χ (G) = 3,
and they mentioned that the complete graph Kn with n ≥ 4 is an example of graph where χ (G) > 3 and ψ go

0 (G) = 2.
Moreover, they deduced that for any graph G without isolated vertices and χ (G) > 3, ψ go

0 (G) = 2. On the other
hand, they have given another sufficient condition for the global offensive 0-alliance partition number to be 2, that
is for any graph G without isolated vertices containing a vertex of odd degree, it is satisfied ψ go

0 (G) = 2. Sigarreta
et al. [24] and Yero [25] remarked that this latter result is equivalent to saying that if ψ go

0 (G) = 3, then every vertex
in G has even degree. As a consequence of this, for k odd, every partition of G into (global) offensive k-alliances is a
partition of G into (global) offensive (k + 1)-alliances and vice versa. This latter leads to obtain that, if ψ go

0 (G) = 3
and k is odd, then ao

k (G) = ao
k+1(G), γ o

k (G) = γ o
k+1(G), ψo

k (G) = ψo
k+1(G) and ψ go

k (G) = ψ
go
k+1(G) [24,25].

Now, we summarize the results presented above by giving some bounds obtained for offensive k-alliance partition
numbers for general, circulant and Cartesian product graph classes. These results are given in Table 5.

Concluding remarks 4. As we can see from Table 5, and comparing with Table 4, we deduce that the offensive
k-alliance partition numbers are studied on much less graph classes contrary to the offensive k-alliance numbers.
Furthermore, we note that only the offensive partition numbers with index k namely ψo

k (G) and ψ go
k (G) that are

investigated. Between these two parameters, the global offensive k-alliance partition number ψ go
k (G) is the most

studied one. Moreover, there are only three graph classes which are addressed in this case and the general class is the
most studied one.

4. Powerful k-alliances in graphs

In this section, we study mathematical properties of powerful k-alliances by giving bounds and/or exact values
of several parameters studied for various graph classes. A powerful k-alliance is a set of vertices S ⊂ V of a graph
G = (V, E), which is both defensive k-alliance and offensive (k + 2)-alliance. The case k = −1 (resp. k = 0)
corresponds to the standard powerful alliances (resp. strong powerful alliances) defined in [1,7].
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Table 5
Previous results on offensive k-alliance partition numbers for some graph classes.

Graph classes Offensive k-alliance partition numbers

ψo
k (G) ψ

go
k (G)

G • ao
k (G)ψo

k (G) ≤ n [24,25]

• ψo
k (G) ≤

⎧⎨⎩⌊
2n

δn + k
⌋, δn + keven,

⌊
2n

δn + k + 1
⌋, δn + kodd.

[24,25]

• γ o
k (G)ψgo

k (G) ≤ n [24,25]

• ψ
go
k (G) ≤

⌊
n⌈

2m+kn
3δ1+k

⌉
⌋

[24,25]

• ψ
go
k (G) ≤

⌊
2m−n(k−4)

2n

⌋
[24,25]

• ψ
go
k (G) ≤

⌊
δn−k+4

2

⌋
[24,25]

• ψ
go
k (G) ≤

⌊
4−k+

√
k2+2(δn−k)

2

⌋
[24,25]

• ψ
go
k (G) ≤

⌊
6m+nk
2m+nk

⌋
[24,25]

•

⌈
n(2δn−δ1+k)
δ1+2δn+k

⌉
≤ |S| ≤

⌊
2nδ1

δ1+2δn+k

⌋
[24,25]

•

⌈
n
2 −

√
n2(µ∗−k)−2nm

4µ∗

⌉
≤ |S| ≤

⌊
n
2 +

√
n2(µ∗−k)−2nm

4µ∗

⌋
[24,25]

• ψ
go
k (G) = 2 [24,25]

• 2 ≤ ψ
go
k (G) ≤ 3 − k [24,25]

G1 × G2 • ψo
k (G1 × G2) ≥ ψo

k1
(G1)ψo

k2
(G2) [24,25] • ψ

go
k (G1 × G2) ≥ max{ψ

go
k1

(G1), ψgo
k2

(G2)} [24,25]

G = C R(n, 2) • ψ
go
1 (G) = ψ

go
2 (G) = 2 [25]

• ψ
go
−1(G) = ψ

go
0 (G) = 3 [25]

• ψ
go
−2(G) =

⌊
n⌈ n
5
⌉ ⌋

[25]

Several parameters have been defined and studied in the literature for powerful k-alliances, one can see [6,7,25,40]
and others. These parameters are defined as follows: The powerful (−1)-alliance number known as powerful alliance
number a p

−1(G) (resp. powerful 0-alliance number known as strong powerful alliance number a p
0 (G)) is the minimum

cardinality among all (critical) powerful (−1)-alliances (resp. powerful 0-alliances) of G [6,7]. The global powerful
(−1)-alliance number γ p

−1(G) (resp. global powerful 0-alliance number γ p
0 (G)) is the minimum cardinality among all

(critical) global powerful (−1)-alliances (resp. global powerful 0-alliances) of G [6]. The powerful k-alliance number
a p

k (G) is the minimum cardinality among all (critical) powerful k-alliances of G [43]. The global powerful k-alliance
number γ p

k (G) is the minimum cardinality among all (critical) global powerful k-alliances of G [43].
For any graph G, we have the following relations between different powerful k-alliance numbers:

(1) a p
−1(G) ≥ max{ad

−1(G), ao
−1(G)} [6];

(2) γ p
−1(G) ≥ max{γ (G), a p

−1(G)} [6];
(3) a p

k (G) ≥ max{ad
k (G), ao

k+2(G)} [43];
(4) γ p

k (G) ≥ max{γ (G), a p
k (G)} [43];

(5) γ p
k (G) ≥ max{γ d

k (G), γ o
k+2(G)} [43];

(6) γ p
k+1(G) ≥ γ

p
k (G) [43].

4.1. Study of powerful k-alliance numbers for various graph classes

In this subsection, we exhibit mathematical properties of powerful k-alliances for different graph classes.
Essentially, we give bounds or exact values for powerful k-alliance numbers studied for various graph classes.

4.1.1. General graphs
In this paragraph, we present theoretical results representing bounds for powerful k-alliance numbers in general

graphs. Let G = (V, E) be a general graph of order n and size m.
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For any connected graph G of order n ≥ 2, Brigham et al. [6] studied powerful k-alliances and proposed a sharp
upper bound for the powerful (−1)-alliance number. Thus, they used the packing number ρ(G) which is the maximum
cardinality of a packing in G (a subset P ⊂ V is called a packing in G if for every vertex v ∈ V , |N [v]∩P| ≤ 1 [6,71]).
They obtained that the powerful (−1)-alliance number is bounded by a p

−1(G) ≤ n − ρ(G).
Brigham et al. [6] established lower bounds for the global powerful (−1)-alliance number by using the order of

G, its maximum degree δ1, its minimum degree δn and its domination number γ (G). Thus, they showed that for
any graph G, its order satisfies n ≤ ( δ1+δn+2

δn+1 )γ p
−1(G) which leads to obtain that γ p

−1(G) ≥
n(δn+1)
δ1+δn+2 . Furthermore,

they proved that γ p
−1(G) ≥ γ (G) +

⌊
δn
2

⌋
. Moreover, they obtained a sharp upper bound for the same parameter by

showing that for any graph G with no isolated vertices, γ p
−1(G) ≤ n −

⌊
δn
2

⌋
. On the other hand, Rodrı́guez-Velázquez

and Sigarreta [40] gave tight lower bounds for the global powerful (−1)-alliance number and the global powerful
0-alliance number by means of the order of a simple graph G, its size m and its spectral radius λ. Thus, they showed
that γ p

−1(G) ≥

⌈
2m+n
4(λ+1)

⌉
, γ p

0 (G) ≥
⌈ m+n

2λ+1

⌉
, γ p

−1(G) ≥

⌈√
2m+n

2

⌉
and γ p

0 (G) ≥

⌈
1+

√
1+8(n+m)

4

⌉
. Note that Rodrı́guez-

Velázquez and Sigarreta [40] have presented graphs for which these bounds are reached.
Fernau et al. [44] studied the powerful k-alliances and established lower and upper bounds for the global powerful

k-alliance number. They obtained that for any graph G,
⌈√

8m+4n(k+2)+(k+1)2+k+1
4

⌉
≤ γ

p
k (G) ≤ n −

⌊
δn−k

2

⌋
. These

bounds are also given by Sigarreta [43] by assuming that k ∈ {1 − δn, . . . , δn − 2} for the upper bound (note that these
bounds are reached, for example, for the cycle graph G = C3 for every k ∈ {−2,−1, 0}). Moreover, Brigham and
Dutton [72] obtained a lower bound for the same parameter, that is γ p

k (G) ≥

⌈
δ1+k+1

2

⌉
. By using the spectral radius

λ, Sigarreta [43] obtained that for any graph G, γ p
k (G) ≥

⌈
2m+n(k+2)
4λ−2k+2

⌉
.

Yero [25] and Yero and Rodrı́guez-Velázquez [32] studied the mathematical properties of boundary powerful k-
alliances. They obtained that if S is a boundary powerful k-alliance in a graph G, then

⌈
δn+k+2

2

⌉
≤ |S| ≤

⌊ 2n−δn+k
2

⌋
.

Furthermore, they showed that if S is a global boundary powerful k-alliance then
⌈

2m+n(k+2)
2δ1+2

⌉
≤ |S| ≤

⌊
2m+n(k+2)

2δn+2

⌋
and

⌈
n(2δn+k+2)−2m

2δn+2

⌉
≤ |S| ≤

⌊
n(2δ1+k+2)−2m

2δ1+2

⌋
(note that all these bounds are attained, for instance, for the complete

graph G = Kn for every k ∈ {1 − n, . . . , n − 3}). By using the number of edges of G with one endpoint in S and the
other endpoint outside of S, C, they proved that if S is a global boundary powerful k-alliance in G, with k ̸= −1, then
|S| =

2(m+n−2C)+nk
2(k+1) (see the graph given in Fig. 1(m) of Appendix for illustration, where |S| = 4).

4.1.2. Tree graphs
We present in this part some results concerning powerful k-alliance numbers in trees. Let T = (V, E) be a tree of

order n.
Brigham et al. [6] initiated the study of powerful k-alliances in graphs and established a sharp upper bound for

the powerful (−1)-alliance number in trees. Thus, they deduced from the result given by Meir and Moon in [71] (the
domination number and the packing number of a tree are equal) that for any tree T , a p

−1(T ) ≤ n − γ (T ). They also
obtained an other sharp upper bound for the same parameter, by proving that if T is a tree of order n and T ̸= Pn ,
then a p

−1(T ) ≤
⌊ n+3

2

⌋
.

On the other hand, Rodrı́guez-Velázquez and Sigarreta [45] presented bounds concerning the cardinality of every
global powerful (−1)-alliance or 0-alliance in trees. They showed that if S is a global powerful (−1)-alliance
(resp. 0-alliance) in T and the subgraph induced by S has c connected components, then |S| ≥

⌈ 3n+8c−2
12

⌉
(resp.

|S| ≥
⌈ 2n+4c−1

5

⌉
). As a consequence, they obtained tight bounds for the global powerful (−1)-alliance number and

the global powerful 0-alliance number, that are γ p
−1(T ) ≥

⌈ n+2
4

⌉
and γ p

0 (T ) ≥
⌈ 2n+7

5

⌉
. Rodrı́guez-Velázquez and

Sigarreta [45] have given graphs for which these bounds are attained. Note that these two latter bounds are also given
by Sigarreta in his thesis [43].

Sigarreta [43] established a lower bound for the cardinality of every global powerful k-alliance in trees. He
showed that if S is a global powerful k-alliance in T and the subgraph ⟨S⟩ has c connected components, then
|S| ≥

⌈
n(k+4)+8c−2

2(5−k)

⌉
(note that this bound is reached, for example, for the graph given in Fig. 1(n) of Appendix,

where |S| = 5).
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4.1.3. Planar graphs
In this paragraph, we put on view bounds obtained for powerful k-alliance numbers in planar graphs. Let

P = (V, E) be a planar graph of order n and size m.
Rodrı́guez-Velázquez and Sigarreta [45] studied mathematical properties of powerful k-alliances in planar graphs

and obtained tight bounds for the global powerful (−1)-alliance number and the global powerful 0-alliance number
given as follows:

(i) If n > 6, then γ p
−1(P) ≥

⌈ 2m+n+48
28

⌉
.

(ii) If n > 6 and P is a triangle-free graph, then γ p
−1(P) ≥

⌈ 2m+n+32
20

⌉
.

(iii) If n > 4, then γ p
0 (P) ≥

⌈m+n+24
13

⌉
.

(iv) If n > 4 and P is a triangle-free graph, then γ p
0 (P) ≥

⌈m+n+16
9

⌉
.

Furthermore, they showed that if S is a global powerful (−1)-alliance (resp. 0-alliance) in a general graph G such that
the subgraph ⟨S⟩ is planar connected with f faces, then |S| ≥

⌈
2m+n−8 f +16

12

⌉
(resp. |S| ≥

⌈
m+n−4 f +8

5

⌉
). Moreover,

Rodrı́guez-Velázquez and Sigarreta in [45] showed that for a global powerful (−1)-alliance (resp. 0-alliance) S in a
planar graph, |S| ≥

⌈ 2m+n+48
28

⌉
(resp. |S| ≥

⌈m+n+24
13

⌉
). Enciso and Dutton [33] and Enciso [51] proved that these

bounds are increased when S is an empire. Thus, they obtained that for a planar graph P with a global powerful
(−1)-alliance (resp. 0-alliance) S, if S is an empire then |S| ≥

⌈ 2m+n+24
20

⌉
(resp. |S| ≥

⌈m+n+12
9

⌉
).

Sigarreta in his thesis [43] studied the powerful k-alliances in planar graphs and presented some bounds for the
global powerful k-alliance number given as follows:

(i) If n > 2(2 − k), then γ p
k (P) ≥

⌈
2(m+24)+n(k+2)

2(13−k)

⌉
.

(ii) If n > 2(2 − k) and P is a triangle-free graph, then γ p
k (P) ≥

⌈
2(m+16)+n(k+2)

2(9−k)

⌉
.

Moreover, he showed that if S is a global powerful k-alliance in a general graph G such that the subgraph ⟨S⟩ is planar
connected with f faces, then |S| ≥

⌈
2(m−4 f +8)+n(k+2)

2(5−k)

⌉
. Note that Sigarreta [43] have given graphs for which these

bounds are attained.
Yero and Rodrı́guez-Velázquez [32] studied the boundary powerful k-alliances and proved that if S is a global

boundary powerful k-alliance in a planar connected graph with f faces, then
⌈

n(k+4)+2 f −4
2δ1+2

⌉
≤ |S| ≤

⌊
n(k+4)+2 f −4

2δn+2

⌋
.

These bounds are also given by Yero in his thesis [25].

4.1.4. Complete graphs
Let Kn = (V, E) be a complete graph of order n. We exhibit in this part some exact values obtained for powerful

k-alliance numbers in this class of graphs.
Brigham et al. [6] studied the powerful k-alliances and they obtained that the powerful (−1)-alliance number and

the global powerful (−1)-alliance number have the same exact value. Thus, they showed that for the complete graph
Kn , a p

−1(Kn) = γ
p

−1(Kn) =
⌈ n

2

⌉
. This value is also obtained by Fernau et al. [44] and Sigarreta [43] for the global

powerful (−1)-alliance number.
Yero in his thesis [25] and Yero and Rodrı́guez-Velázquez [32] studied the boundary powerful k-alliances and

proved that if S is a boundary powerful k-alliance in a complete graph Kn , then |S| =
⌈ n+k+1

2

⌉
.

4.1.5. Complete bipartite graphs
Let Kr,s = (X, Y, E) be a complete bipartite graph where r (resp. s) is the cardinality of the set of vertices X (resp.

Y ). In this paragraph, we present some results obtained for powerful k-alliance numbers in complete bipartite graphs.
Brigham et al. [6] studied the powerful k-alliances in complete bipartite graphs and they obtained a same exact

value for the powerful (−1)-alliance number and the global powerful (−1)-alliance number. Thus, they showed that
for the complete bipartite graph Kr,s , 1 ≤ r ≤ s, a p

−1(Kr,s) = γ
p

−1(Kr,s) = min{r +
⌊ s

2

⌋
,
⌈ r+1

2

⌉
+

⌈ s+1
2

⌉
}. Note that

Fernau et al. [44] and Sigarreta [43] also established the same value for the global powerful (−1)-alliance number.
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4.1.6. Regular graphs
We give in this paragraph some results obtained for powerful k-alliance numbers in regular graphs. We denote by

Rδ = (V, E) the δ-regular graph of order n.
Brigham et al. [6] studied the powerful k-alliances in regular graphs and they obtained that if S is a powerful

(−1)-alliance of a δ-regular graph Rδ , then |∂S| ≤ |S|. Furthermore, they established that the order of a δ-regular
graph Rδ satisfies n ≤ 2γ p

−1(Rδ), which leads to obtain that the global powerful (−1)-alliance number is bounded by
γ

p
−1(Rδ) ≥

n
2 .

Yero [25] and Yero and Rodrı́guez-Velázquez [32] studied the boundary powerful k-alliances and showed that if
S is a global boundary powerful k-alliance in a δ-regular graph, then |S| =

⌈
n(δ+k+2)

2(δ+1)

⌉
. They also obtained that if

Rδ is a δ-regular connected planar graph with f faces and S is a global powerful k-alliance, then |S| =
n(k+4)+2 f −4

2(δ+1) .
Furthermore, they showed that if S is a global boundary powerful k-alliance in a δ-regular graph Rδ , with k ̸= −1,
then |S| =

n(δ+k+2)−4C
2k+2 and C =

n(δ2
+2δ−k2

−2k)
4(δ+1) , where C the number of edges of Rδ with one endpoint in S and the

other endpoint outside of S.

4.1.7. Cycle graphs
Let Cn = (V, E) be a cycle graph of order n. In this paragraph, we present some results obtained for powerful

k-alliance numbers for the class of cycle graphs.
Brigham et al. [6] studied the powerful k-alliances in graphs and they obtained that the powerful (−1)-alliance

number and the global powerful (−1)-alliance number have the same value. Thus, they showed that for any cycle Cn ,
a p

−1(Cn) = γ
p

−1(Cn) =
⌈ 2n

3

⌉
. Moreover, Fernau et al. [44] and Sigarreta [43] established the same value written in

another form for the global powerful (−1)-alliance number, that is γ p
−1(Cn) = n −

⌊ n
3

⌋
.

4.1.8. Path graphs
Let Pn = (V, E) be a path graph of order n. We exhibit in this part some exact values obtained for powerful

k-alliance numbers in path graphs.
This class of graphs is studied by Brigham et al. [6] and they obtained that the powerful (−1)-alliance number

and the global powerful (−1)-alliance number are equal in this case. Thus, they showed that for any path Pn ,
a p

−1(Pn) = γ
p

−1(Pn) =
⌊ 2n

3

⌋
. Moreover, this exact value, written in another form, is obtained by Fernau et al. [44] and

Sigarreta [43] for the global powerful (−1)-alliance number, that is γ p
−1(Pn) = n −

⌈ n
3

⌉
.

4.1.9. Cartesian product graphs
Let G i = (Vi , Ei ) be a graph of order ni , minimum degree δ̄i and maximum degree ∆̄i , i ∈ {1, 2}.
Yero [25] and Yero and Rodrı́guez-Velázquez [27] studied the powerful k-alliances in Cartesian product graphs

and obtained some results for the associated parameters. Thus, they showed that if Si ⊂ Vi is a powerful ki -alliance
in G i , i ∈ {1, 2}, then S1 × S2 is a powerful k-alliance in G1 × G2, for every k ∈ {−∆̄1 − ∆̄2, . . . ,min{k1 −

∆̄2, k2 − ∆̄1}}. As a consequence, they obtained that if G i contains powerful ki -alliances, i ∈ {1, 2}, then for every
k ∈ {−∆̄1 − ∆̄2, . . . ,min{k1 − ∆̄2, k2 − ∆̄1}}, a p

k (G1 × G2) ≤ a p
k1

(G1)a p
k2

(G2). Furthermore, they proved that if
S1 ⊂ V1 is a global powerful k1-alliance in G1, then S1 × V2 is a global powerful k-alliance in G1 × G2, for every
k ∈ {−∆̄1 − ∆̄2, . . . , k1 − ∆̄2}. As a consequence, they obtained that if G1 contains global powerful k1-alliances, then
for every k ∈ {−∆̄1 − ∆̄2, . . . , k1 − ∆̄2}, γ

p
k (G1 × G2) ≤ γ

p
k1

(G1)n2.

Remark 5. Let us note that the powerful k-alliances were studied for the class of cubic graphs by Sigarreta in his
thesis [43]. He established some relations between γ (G) and γ p

k (G), k ∈ {−3,−2,−1, 0, 1}, and gave lower bounds
for γ p

−1(G) and γ p
0 (G).

Now, we summarize the results presented above by giving some bounds and exact values obtained for powerful
k-alliance numbers for different graph classes. These results are given in Table 6.

Concluding remarks 5. As we can see from Table 6, the most studied parameter is the global powerful (−1)-alliance
number (γ p

−1(G)) and the least studied one is the powerful k-alliance number (a p
k (G)). Furthermore, the general and

tree graph classes are the most studied ones and the regular graphs class is the least studied one. Moreover, some
parameters are not studied for all or certain graph classes. For example, the powerful 0-alliance number a p

0 (G), the
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Table 6
Previous results on powerful k-alliance numbers for various graph classes.

Graph
classes

Powerful k-alliance numbers

a p
−1(G) γ

p
−1(G) γ

p
0 (G) a p

k (G) γ
p

k (G)

G • a p
−1(G) ≤ n − ρ(G) [6] • γ

p
−1(G) ≥

n(δn+1)
δ1+δn+2 [6]

• γ
p
−1(G) ≥ γ (G) +

⌊
δn
2

⌋
[6]

• γ
p
−1(G) ≤ n −

⌊
δn
2

⌋
[6]

• γ
p
−1(G) ≥

⌈
2m+n
4(λ+1)

⌉
[40]

• γ
p
−1(G) ≥

⌈ √
2m+n

2

⌉
[40]

• γ
p

0 (G) ≥

⌈
m+n
2λ+1

⌉
[40]

• γ
p

0 (G) ≥⌈
1+

√
1+8(n+m)

4

⌉
[40]

•

⌈√
8m+4n(k+2)+(k+1)2+k+1

4

⌉
≤

γ
p

k (G) ≤ n −

⌈
δn−k

2

⌉
[43,44]

• γ
p

k (G) ≥

⌈
δ1+k+1

2

⌉
[72]

• γ
p

k (G) ≥

⌈
2m+n(k+2)
4λ−2k+2

⌉
[43]

T • a p
−1(T ) ≤ n − γ (T ) [6]

• a p
−1(T ) ≤

⌊ n+3
2

⌋
[6]

• |S| ≥
⌈ 3n+8c−2

12

⌉
[45]

• γ
p
−1(T ) ≥

⌈ n+2
4

⌉
[43,45]

• |S| ≥
⌈ 2n+4c−1

5

⌉
[45]

• γ
p

0 (T ) ≥
⌈ 2n+7

5

⌉
[43,45]

• |S| ≥

⌈
n(k+4)+8c−2

2(5−k)

⌉
[43]

P • γ
p
−1(P) ≥

⌈ 2m+n+48
28

⌉
[45]

• |S| ≥

⌈
2m+n−8 f +16

12

⌉
[45]

• |S| ≥
⌈ 2m+n+24

20

⌉
[33,51]

• γ
p

0 (P) ≥
⌈ m+n+24

13

⌉
[45]

• |S| ≥

⌈
m+n−4 f +8

5

⌉
[45]

• |S| ≥
⌈ m+n+12

9

⌉
[33,51]

• γ
p

k (P) ≥

⌈
2(m+24)+n(k+2)

2(13−k)

⌉
[43]

• |S| ≥

⌈
2(m−4 f +8)+n(k+2)

2(5−k)

⌉
[43]

Kn • a p
−1(Kn) =

⌈ n
2

⌉
[6] • γ

p
−1(Kn) =

⌈ n
2

⌉
[6,43,44]

Kr,s • a p
−1(Kr,s ) = min{r +⌊ s

2

⌋
,
⌈ r+1

2

⌉
+

⌈ s+1
2

⌉
} [6]

• γ
p
−1(Kr,s ) =

min{r +
⌊ s

2

⌋
,
⌈ r+1

2

⌉
+⌈ s+1

2

⌉
} [6,43,44]

Rδ • γ
p
−1(Rδ) ≥

n
2 [6]

Cn • a p
−1(Cn) =

⌈ 2n
3

⌉
[6] • γ

p
−1(Cn) =

⌈ 2n
3

⌉
[6]

• γ
p
−1(Cn) = n −

⌊ n
3

⌋
[43,44]

Pn • a p
−1(Pn) =

⌊ 2n
3

⌋
[6] • γ

p
−1(Pn) =

⌊ 2n
3

⌋
[6]

• γ
p
−1(Pn) = n −

⌈ n
3

⌉
[43,44]

G1×

G2

• a p
k (G1 × G2) ≤

a p
k1

(G1)a p
k2

(G2) [25,27]
• γ

p
k (G1 × G2) ≤

γ
p

k1
(G1)n2 [25,27]
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upper powerful (−1)-alliance number Ap
−1(G), the upper powerful 0-alliance number Ap

0 (G) and the upper powerful
k-alliance number Ap

k (G) are not studied for all graph classes (note that these three latter numbers which are not
defined in the literature can be similarly defined as in the cases of defensive and offensive k-alliances). Also, the
classes of bipartite graphs and line graphs are not studied for this kind of alliances. In addition, the powerful k-alliance
number a p

k (G) is studied just in the case of Cartesian product graphs. Besides, in the regular (resp. Cartesian product)
graphs class, just the global powerful (−1)-alliance number γ p

−1(G) (resp. a p
k (G) and γ p

k (G)) is (resp. are) studied.
On the other hand, γ p

0 (G) and γ p
k (G) are not investigated for several graph classes such as the complete and complete

bipartite graphs.

4.2. Study of powerful k-alliance partition numbers

Like partitioning of graphs into defensive k-alliances or into offensive k-alliances, the partitioning of graphs into
powerful k-alliances is also studied in the literature. There are two parameters of the partitioning of graphs into
powerful k-alliances which are defined as follows: For any graph G = (V, E), the (global) powerful k-alliance
partition number of G, (ψ gp

k (G)) ψ p
k (G), k ∈ {−δ1, . . . , δ1 − 2}, is defined to be the maximum number of sets in a

partition of V such that each set is a (global) powerful k-alliance [25,27]. We say that a graph G is partitionable into
(global) powerful k-alliances if (ψ gp

k (G) ≥ 2) ψ p
k (G) ≥ 2.

In this subsection, we present theoretical results obtained for the powerful k-alliance partition numbers. We give
bounds and/or exact values for these parameters in general graphs and Cartesian product graphs, together with some
results concerning partitions into boundary powerful k-alliances.

4.2.1. General graphs
Yero [25] and Yero and Rodrı́guez-Velázquez [27] studied the partitioning of graphs into global powerful

k-alliances and established several results. They showed that, if there are two different sets in Πr (G) (a partition
of a graph G into r dominating sets) such that one of them is a defensive k-alliance and the other one is an offensive
(k + 2)-alliance, then k ≤ 1 − r . From this result, there are two direct and useful consequences [25,27]: the first one is
that for k ≥ 0, no graph is partitionable into global powerful k-alliances; and the second one states that if a graph G is
partitionable into global powerful k-alliances, thenψ gp

k (G) ≤ 1−k. Note that this latter bound is achieved for instance
for the complete graph, which can be partitioned into two global powerful (−1)-alliances [25,27]. Furthermore,
Yero [25] and Yero and Rodrı́guez-Velázquez [27] proved that for a graph G of order n, minimum degree δn and
maximum degree δ1, if G is partitionable into global powerful k-alliances then ψ gp

k (G) ≤

⌊
δ1+δn+2
δn+k+2

⌋
. They noted that

this bound is attained, for instance, for the complete graph G = Kn where ψ gp
−1(G) = 2, or for the circulant graph

G = C R(3t, 3) for which ψ gp
−4(G) = 3. Moreover, they obtained an other upper bound in terms only of k and the order

n. Thus, they showed that if G is partitionable into global powerful k-alliances, then ψ gp
k (G) ≤

⌊√
8n+(2k−1)2−2k+1

4

⌋
.

This bound is attained, for instance, for the circulant graph G = C R(10, 2) for which ψ gp
−4(G) = 5 as given in [25,27],

or for the graph given in Fig. 1(o) of Appendix where ψ gp
−1(G) = 2.

4.2.2. Cartesian product graphs
Yero in his thesis [25] and Yero and Rodrı́guez-Velázquez [27] studied the partitioning of Cartesian product

graphs into (global) powerful k-alliances. They showed that for a graph G i = (Vi , Ei ) of maximum degree ∆̄i ,
i ∈ {1, 2}, if G i is partitionable into ri powerful ki -alliances, then the graph G1 × G2 is partitionable into r = r1r2
powerful k-alliances, for every k ∈ {−∆̄1 − ∆̄2, . . . ,min{k1 − ∆̄2, k2 − ∆̄1}}. Furthermore, they obtained that
ψ

p
k (G1 × G2) ≥ ψ

p
k1

(G1)ψ p
k2

(G2). Moreover, they established that if G1 is partitionable into global powerful
k1-alliances, then for every k ∈ {−∆̄1 − ∆̄2, . . . , k1 − ∆̄2}, ψ

gp
k (G1 × G2) ≥ ψ

gp
k1

(G1), and they remarked that
if G1 = C R(3t, 3) and G2 = K2, then ψ gp

−5(G1 × G2) = 3 = ψ
gp
−4(G1).

4.2.3. Partitioning a graph into boundary powerful k-alliances
Yero [25] studied the partitioning of graphs into boundary powerful k-alliances and he established that every graph

can be partitioned into two global boundary powerful (−1)-alliances. Thus he proved that, for a graph G = (V, E):
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Table 7
Previous results on powerful k-alliance partition numbers for some graph classes.

Graph classes Powerful k-alliance partition numbers

ψ
p
k (G) ψ

gp
k (G)

G • ψ
gp
k (G) ≤ 1 − k [25,27]

• ψ
gp
k (G) ≤

⌊
δ1+δn+2
δn+k+2

⌋
[25,27]

• ψ
gp
k (G) ≤

⌊√
8n+(2k−1)2−2k+1

4

⌋
[25,27]

G1 × G2 • ψ
p
k (G1 × G2) ≥ ψ

p
k1

(G1)ψ p
k2

(G2) [25,27] • ψ
gp
k (G1 × G2) ≥ ψ

gp
k1

(G1) [25,27]

(i) S ⊂ V is a global boundary powerful (−1)-alliance in G, if and only if, S̄ is a global boundary powerful
(−1)-alliance in G.

(ii) If G can be partitioned into two global boundary powerful k-alliances, then k = −1.

Furthermore, he obtained lower and upper bounds concerning the cardinality of every global boundary powerful
(−1)-alliance in terms of the order of the graph G, its minimum degree δn and its maximum degree δ1. Thus, he
showed that if S is a global boundary powerful (−1)-alliance in G, then

⌈
n(δn+1)
δ1+δn+2

⌉
≤ |S| ≤

⌊
n(δ1+1)
δ1+δn+2

⌋
, and he

noted that if S is a global boundary powerful (−1)-alliance in a δ-regular graph, then |S| =
n
2 . Moreover, Yero [25]

proved that if S ⊂ V is a global boundary powerful (−1)-alliance in a graph G = (V, E) and C is a cut set with
one endpoint in S and the other endpoint outside of S, then

⌈
2m+n
2δ1+2

⌉
≤ |S| ≤

⌊
2m+n
2δn+2

⌋
and |C| =

2m+n
4 . This

result leads to obtain the previous value of |S| concerning the δ-regular graph. On the other hand, he obtained the
result which shows the relationship between the algebraic connectivity of a graph, its Laplacian spectral radius and
the respective cardinalities of the two global boundary powerful (−1)-alliances S and S̄ which form a partition of the
graph. Thus, he proved that if S ⊂ V is a global boundary powerful (−1)-alliance in G, then without loss of generality,
n
2 +

⌈√
n2(µ−1)−2nm

4µ

⌉
≤ |S| ≤

n
2 +

⌊√
n2(µ∗−1)−2nm

4µ∗

⌋
and n

2 −

⌊√
n2(µ∗−1)−2nm

4µ∗

⌋
≤ |S̄| ≤

n
2 −

⌈√
n2(µ−1)−2nm

4µ

⌉
, where

µ (resp. µ∗) is the algebraic connectivity (resp. the Laplacian spectral radius) of the graph G. Recently, Slimani and
Kheddouci [26] have introduced a new concept of saturated vertices and studied the saturated boundary k-alliances in
graphs. They have proved that S ⊂ V is a minimal global boundary powerful (−1)-alliance in G, if and only if, S̄ is a
minimal global boundary powerful (−1)-alliance in G. Furthermore, as a main result, they have obtained tight bounds
for the cardinality of every minimal global boundary powerful (−1)-alliance in terms only of the order and the size of
graph by taking the two cases where ⟨S⟩ is connected or not. Hence, they showed that for a graph G = (V, E) with
|V | = n and |E | = m, if S ⊂ V is a minimal global boundary powerful (−1)-alliance, then:

(i) If S is connected, one has:

max

{
−1 +

√
1 + 4n

2
,

1 +
√

1 + 8m
4

}
≤ |S| ≤ min

{
2n + 1 −

√
4n + 1

2
,

m + 3
4

}
. (1)

(ii) If S is not connected, the relation becomes:

max

{
1 +

√
4n − 7
2

,
5 +

√
8m − 7
4

}
≤ |S| ≤ min

{
2n + 1 −

√
4n + 1

2
,m

}
. (2)

Note that several examples have been presented in [26] for which these bounds are reached. For instance, all the
bounds given in (1) are attained at the same time for the complete graph K2, and the upper bound m given in (2) is
reached when the graph G is constituted of not adjacent edges and every edge links a vertex of S with a vertex of S̄.

Now, we summarize the results presented above by giving some bounds obtained for powerful k-alliance partition
numbers in general and Cartesian product graphs. These results are given in Table 7.
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Concluding remarks 6. As we can see from Table 7, and comparing with Table 6, we deduce that the powerful
k-alliance partition numbers are studied on much less graph classes contrary to the powerful k-alliance numbers.
Furthermore, we note that only the powerful partition numbers with index k namely ψ p

k (G) and ψ gp
k (G) that are

investigated. Between these two parameters, the global powerful k-alliance partition number ψ gp
k (G) is the most

studied one. Moreover, there are only two graph classes which are addressed in this case, for the general graphs only
ψ

gp
k (G) is studied and for the Cartesian product graphs both ψ p

k (G) and ψ gp
k (G) are studied.

5. Conclusion and discussion

Since the beginning of the last decade, when alliances in graphs were first introduced, much research has been
focused on studying mathematical properties of various parameters of different types of k-alliances in graphs. In this
paper, we have surveyed and discussed the principal known results obtained on defensive, offensive and powerful
k-alliances by classifying them according to the different graph classes where the parameters are investigated. From
this survey, we draw the following conclusions:

• By considering the classification criterion “graph class” in the study of the three kinds of k-alliances, we deduce
that: the most studied graph classes on which there are more results are general, tree, planar and cartesian
product graphs, and the least studied graph classes on which there are fewer results are cycle, path and line
graphs.

• Several k-alliance numbers are defined in the literature. Some of them are received more attention and have
been studied for various graph classes, such as γ d

−1(G), γ o
k (G) and γ p

−1(G). However, there are some parameters
which are not studied for all graph classes, such as Ao

1(G), Ao
2(G) and a p

0 (G), and other ones are not studied for
certain graph classes, such as Ad

k (G), ao
k (G) and a p

k (G).
• The k-alliance partition numbers have been studied on much less graph classes contrary to the k-alliance

numbers. Moreover, only the partition numbers with index k are investigated in the case of partitioning of
graphs into offensive (powerful) k-alliances.

• There are more studies and hence more results obtained on defensive k-alliances than on offensive (powerful)
k-alliances.

• Some relationships are established between the global offensive k-alliance partition number and a coloration
parameter namely the chromatic number. In this sense an extensive study which includes other parameters can
be interesting.

• There are many investigations in the sense of theoretical aspects of k-alliances, but there are several prospects
and progress to carry out in the algorithmic and computational side.

• The alliances with their important properties are used in interesting applications in several areas. As prospects,
in practice there are many problems which have specific structures where the mathematical properties of the
alliances can be involved and contribute to solve these problems.

• The definition of the defensive (−1)-alliance which takes into consideration the defense of a single vertex
is generalized by Brigham et al. [53] to the concept of secure sets in order to forestall any attack on the entire
alliance or any subset of the alliance. In this sense, it would be interesting to consider k-secure sets as extensions
of defensive k-alliances and also to study the partitioning of graphs into k-secure sets. In this setting, motivations
with practical examples would be needed.
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Appendix

Note that the graphs given in Fig. 1 are denoted G1, G2, . . . ,G15 respectively.
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(a) S1 = {1, 2, 3, 4} is a (strong)
global defensive alliance in (G1 −{e})
G1.

(b) S2 = {1, 3, 5, 8} is a (global)
offensive alliance in (G2 − {10})
G2.

(c) S3 = {1, 3, 6} is a
global powerful alliance
in G3.

(d) S4 = {1, 2, 3, 4} is a global
boundary defensive (resp. of-
fensive) 0-alliance (resp. (−1)-
alliance) in G4.

(e) S5 = {1, 2, 5} is a bound-
ary offensive 1-alliance in
G5.

(f) S6 = {2, 3} is a
global boundary powerful
(−2)-alliance in G6.

(g) S7 = {3} is a
global defensive (−4)-
alliance in G7.

(h) S8 = {1, 2, 6} is a defensive 0-
alliance in G8 = L(K4).

(i) {S9 = {1, 3}, S′

9 = {2, 4}}

is a partition of G9 into two
defensive (−1)-alliances.

(j) S10 = {2, 3} is a global
offensive 1-alliance in G10.

(k) S11 = {3, 4, 5} is a global
offensive 1-alliance in G11.

(l) S12 = {2, 4, 6} is a global
offensive k-alliance in G12 =

L(C6) with k ∈ {1, 2}.

(m) S13 = {2, 5, 7, 8} is a global
boundary powerful (−2)-alliance
in G13.

(n) S14 = {1, 4, 5, 6, 10} is a
global powerful (−1)-alliance
in G14.

(o) {S15 = {1, 2, 3}, S′

15 =

{4, 5, 6}} is a partition of
G15 into two global boundary
powerful (−1)-alliances.

Fig. 1. Examples of k-alliances in graphs.
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