
ETH Library

On the complexity of two dots for
narrow boards and few colors

Conference Paper

Author(s):
Bilò, Davide; Gualà, Luciano; Leucci, Stefano; Misra, Neeldhara

Publication date:
2018

Permanent link:
https://doi.org/10.3929/ethz-b-000273188

Rights / license:
Creative Commons Attribution 3.0 Unported

Originally published in:
Leibniz International Proceedings in Informatics 100, https://doi.org/10.4230/LIPIcs.FUN.2018.7

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://doi.org/10.3929/ethz-b-000273188
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.4230/LIPIcs.FUN.2018.7
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use

On the Complexity of Two Dots for Narrow
Boards and Few Colors
Davide Bilò
University of Sassari, Italy
davide.bilo@uniss.it

https://orcid.org/0000-0003-3169-4300

Luciano Gualà
University of Rome “Tor Vergata”, Italy
guala@mat.uniroma2.it

https://orcid.org/0000-0001-6976-5579

Stefano Leucci
ETH Zürich, Switzerland
stefano.leucci@inf.ethz.ch

https://orcid.org/0000-0002-8848-7006

Neeldhara Misra
Indian Institute of Technology, Gandhinagar
mail@neeldhara.com

https://orcid.org/0000-0003-1727-5388

Abstract
Two Dots® is a popular single-player puzzle video game for iOS and Android. A level of this
game consists of a grid of colored dots. The player connects two or more adjacent dots, removing
them from the grid and causing the remaining dots to fall, as if influenced by gravity. One special
move, which is frequently a game-changer, consists of connecting a cycle of dots: this removes
all the dots of the given color from the grid. The goal is to remove a certain number of dots
of each color using a limited number of moves. The computational complexity of Two Dots has
already been addressed in [Misra, FUN 2016], where it has been shown that the general version
of the problem is NP-complete. Unfortunately, the known reductions produce Two Dots levels
having both a large number of colors and many columns. This does not completely match the
spirit of the game, where, on the one hand, only few colors are allowed, and on the other hand,
the grid of the game has only a constant number of columns. In this paper, we partially fill this
gap by assessing the computational complexity of Two Dots instances having a small number of
colors or columns. More precisely, we show that Two Dots is hard even for instances involving
only 3 colors or 2 columns. As a contrast, we also prove that the problem can be solved in
polynomial-time on single-column instances with a constant number of goals.

2012 ACM Subject Classification Theory of computation → Problems, reductions and com-
pleteness

Keywords and phrases puzzle, NP-complete, perfect information, combinatorial game theory

Digital Object Identifier 10.4230/LIPIcs.FUN.2018.7

1 Introduction

Two Dots® (http://weplaydots.com/twodots.html) is a popular single-player puzzle video
game for iOS and Android. The game has been so much appreciated by the community that,
not even after 3 years from its launch, a recently introduced follow-up game, called Dots&Co®

© Davide Bilò, Luciano Gualà, Stefano Leucci, and Neeldhara Misra;
licensed under Creative Commons License CC-BY

9th International Conference on Fun with Algorithms (FUN 2018).
Editors: Hiro Ito, Stefano Leonardi, Linda Pagli, and Giuseppe Prencipe; Article No. 7; pp. 7:1–7:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:davide.bilo@uniss.it
https://orcid.org/0000-0003-3169-4300
mailto:guala@mat.uniroma2.it
https://orcid.org/0000-0001-6976-5579
mailto:stefano.leucci@inf.ethz.ch
https://orcid.org/0000-0002-8848-7006
mailto:mail@neeldhara.com
https://orcid.org/0000-0003-1727-5388
http://dx.doi.org/10.4230/LIPIcs.FUN.2018.7
http://weplaydots.com/twodots.html
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

7:2 On the Complexity of Two Dots for Narrow Boards and Few Colors

(https://www.dots.co/dotsandco/), has already passed the 5 millions of downloads. In
its simplest form, the game is played on a vertical grid where each location initially contains
a colored dot. Dots of the same color can be “connected” by the player, as long as they are
adjacent horizontally or vertically (but never diagonally). In particular, the player selects a
path of dots of the same color which can be either simple or it can contain exactly one cycle.
In the former case only the selected dots disappear, while, in the latter case, all dots of that
color disappear. It turns out that the cyclic move is frequently a game-changer, and plays an
important role in our results too. It is clearly a popular heuristic, and the official Two Dots
tutorial even offers the helpful tip: “When in doubt, make squares”. After a move, all the
remaining dots in the area fall down as if influenced by gravity. The game provides a certain
number of moves, and demands certain goals to be met (which are typically of the form of
collecting at least so many dots of such and such a color, where a dot of a particular color is
collected whenever it is removed).

The computational complexity of the game has been analyzed in [16], where the author
showed that the problem of deciding whether an instance can be won by the player is
NP-complete even in very restricted settings. In particular, the problem remains hard when
the board has only four rows, or when there is only one goal of collecting two dots of a
particular color, even if there is no restriction on the number of moves. In [16] it is also
shown that the problem is W[1]-hard when parameterized by the number of moves. It turns
out that all these reductions use a large (i.e., typically linear in the size of the instance)
number of both different colors and columns. However, this does not completely match the
spirit of the game, where, on the one hand, only few colors are allowed, and on the other
hand, the arena of the game has only a constant number of columns, while there can be
many rows (even if the player can only see the few down-most ones). Understanding the
complexity of the game under these more realistic conditions is explicitly mentioned as open
problems in [16].
In this paper, we partially fill this gap by showing that:

the game is NP-complete even when the instance has three colors, two moves, and two
goals;1
the game is NP-complete even when the board has two columns and there is no restriction
on the number of moves;
the game is polynomial-time solvable when the board has only one column, provided that
the number of goals is constant;
the game is NP-complete even when the board has two rows.

Observe that the first two results immediately imply that the problem is not fixed
parameter tractable when parameterized w.r.t. the number of colors, or the number of
columns, unless P=NP. We leave open the problem of setting the computational complexity
of the game when the instance has both a constant number of colors and columns.

Other related results

Two Dots belongs to the class of tile-matching video games. Tile-matching games allow the
player to select a subset of tiles on the board according to some matching rule. Once selected,
the tiles are removed from the board and the board configuration is updated automatically
following the game-specific rules (for instance, all the remaining tiles might move to fill
the voids as if influenced by gravity). Other popular games of this class also exhibit a rich

1 A playable version of this reduction is available at https://twodots.isnphard.com.

https://www.dots.co/dotsandco/
https://twodots.isnphard.com

D. Bilò, L. Gualà, S. Leucci, and N. Misra 7:3

Figure 1 A depiction of a regular move. The first panel shows the set of locations of a move, the
second panel shows the voids created, and the third panel shows how dots fall due to gravity.

combinatorial structure and have been studied from the computational complexity perspective.
A noteworthy example is that of Candy Crush that has been shown to be NP-complete
together with other match-three games in [12]. Another game having a somewhat similar
mechanic to Two Dots is Flow Free: initially only a small number of dots of the board
are colored, each color appearing exactly twice, while all the other positions are filled with
uncolored dots. A move consists of connecting the two dots of a matching color by a path
that traverses only uncolored-dots, which then inherit the color of the path’s endpoints. The
player is challenged to connect all the matching pairs while coloring all the dots on the board,
which is equivalent to finding an embedding of monochromatic, non-intersecting, paths on
the game board. This problem is also known as Zig-Zag Numberlink and has been shown to
be NP-complete in [1]. The gameplay of Button and Scissors is also similar to the one of Two
Dots: the player selects a monochromatic horizontal, vertical, or diagonal path traversing at
least two dots (buttons), which are then removed (cut) from the board (the remaining dots
are unaffected by gravity). It has been shown that clearing the board is NP-hard [11] even
when only two colors are involved or when each color is used by at most 4 dots [6].

More broadly, all these games belong to the class of casual games. Casual games are
often characterized by a puzzle-like gameplay and simple rules, which make these games easy
to play, yet difficult to master. Indeed, the quality and enjoyability of puzzles has even been
linked to their computational complexity [7]. It is then not surprising that many of most
successful puzzles have been shown to be NP-complete, or even harder. This is the case,
e.g., of Tetris [5], the (n2 − 1)-puzzle (a generalized version of the famous 15-puzzle) [17],
Rush Hour [9, 8], Peg-Solitaire [18, 13], Trainyard [3], Clickomania (also known as Same
Game) [4, 2], 2048 [15], and many others [14].

Organization of the paper

The paper is organized as follows: Section 2 provides the problem definition and basic
notation used through the paper, in Section 3 we show that the problem is NP-complete
when the the number of colors is constant, and in Section 4 we address levels of the game
with a constant number of columns. Finally, the results for levels with a constant number of
rows are reported in Section 5.

2 Preliminaries

An instance of Two Dots consists of the following:
1. A m × n grid in which each position (i, j) is occupied by exactly one dot whose color

belongs to a set C.

FUN 2018

7:4 On the Complexity of Two Dots for Narrow Boards and Few Colors

Figure 2 A depiction of a cyclic move, which has the effect of eliminating all the blue dots from
the board. The example is rather similar to the above, but note the difference in the number of
voids created.

2. A natural number k, specifying the number of moves allowed in the game.
3. A set of goals G. Every element of G is a pair (c, `), where c ∈ C and ` ∈ N.

Intuitively, a player has a winning strategy in an instance of Two Dots if all the goals
can be achieved within k moves. To formalize this, we need to first define moves, and the
notion of dots being collected.

There are two types of moves in Two Dots: regular moves and cyclic moves. We first de-
scribe the regular moves, which essentially involve removing simple paths in the grid occupied
by the same color. Recall that, two dots are adjacent if they occupy two neighboring position
on the grid, either horizontally or vertically (dots aligned diagonally are not considered
adjacent). Any move (either regular or cyclic) consists of a sequence of locations 〈t1, . . . ts〉,
with s ≥ 2, such that all locations contain a dot of the same color and, for every i = 2, . . . , s,
ti is adjacent to ti−1.

In a regular move all the locations of the sequence 〈t1, . . . ts〉 are unique (see Figure 1).
In a cyclic move all the locations of the subsequence 〈t1, . . . ts−1〉 are unique and ts
coincides with tj , for some j ∈ {1, . . . , s − 4} (see Figure 2). Informally speaking, the
locations induce a cycle with a (possibly empty) dangling path from tj consisting of the
locations in {t1, . . . , tj}.

A regular move creates voids in all the locations corresponding to the sequence. A cyclic
move creates voids in all the locations of the grid containing dots whose color match the color
of the dots in the selected sequence.2 All the removed dots are collected by the player. Then
the dots “fall down” to fill out the voids — it is useful to think of the board as a vertically
oriented object, and the dots therein following the natural laws of gravity, pushing the voids
to the top.3 We refer the reader to Figure 1 for an illustration.

At the end of k moves, when the game is over, we say that the player has won if, for each
goal (c, `), the number of dots of color c collected by the player is at least `.

We wish to determine whether a Two Dots level (i.e., an instance) can be won by the
player, namely whether there exists a sequence of at most k moves that meets all the goals.

2 Our reductions work for this simplified model which somehow contains “all the hardness” of the game.
In the actual game, dots that are enclosed in the cycle of a cyclic move become bombs which, after
falling down, explode and destroy their 8-neighborhood. Our reductions still work in this general model
but we would then need to introduce additional gaps in our gadgets.

3 This is a standard approach to generalize the game, but it differs slightly from the model used in [16],
where new dots join the board to fill the voids. We point out that the results in [16] also work in our
case.

D. Bilò, L. Gualà, S. Leucci, and N. Misra 7:5

3 Hardness of levels with three colors, two moves, and two goals

In this section, we show that Two Dots is NP-complete even when the number of colors is
bounded by three. Since it is clear that Two Dots is in NP (a certificate being the sequence
of moves of a solution), we now focus on showing that Two Dots is NP-hard. A playable
version of the reduction is available at https://twodots.isnphard.com.

We reduce from the Exact Cover by 3-Sets problem (X3C for short). In an X3C
instance we are given: (i) a set I = {I1, I2, . . . , I3n} of 3n items; and (ii) a collection
S = {S1, S2, . . . , Sm} of m subsets of I, each subset having cardinality exactly 3. The
problem is that of determining whether there exists a collection S ′ ⊆ S of n sets such that⋃

S∈S′ S = I, i.e., each item belongs to exactly one set in S ′. This problem is well-known to
be NP-complete (see, for example, [10]). W.l.o.g. we will assume that n is an odd number.

The overview of our reduction is shown in Figure 3. We focus on describing the construct
in the gray box, ignoring the first and last few columns. The middle columns correspond
to items in groups of five — thus the first five columns encode the first item, and so forth.
The dots are arranged in what we refer to as wires. There is one horizontal wire made of
red dots and m horizontal wires made of blue dots. The red wire is a check-wire while the
other m wires consisting of blue dots are set-wires. There are two empty rows between
any pair of consecutive wires. To complete the board, we connect together the left (resp.
right) endpoints of the set-wires using a single column of blue dots. Then, we introduce
several more columns — the exact number of which we will specify later — on the extreme
left and the extreme right of the board. These columns are populated with blue dots on
rows corresponding to the set wires and are connected to the two blue columns joining the
set-wires with a single dot each, on the top-right and on the bottom-left position, respectively
(see Figure 3). All remaining dots in the grid are occupied by green dots.

The player is asked to eliminate a sufficiently large number of blue dots and all the red
dots in two moves. The layout of the check-wire is such that all the red dots cannot all be
eliminated in the first move. Further, we need to use at least one move to meet the goal for
the blue dots. Therefore, in a winning strategy, the first move must involve the blue dots
and achieve two things: (i) the move should clear the desired number of blue dots, and (ii)
the move should result in the “alignment” of the red dots on the check-wire. The wires are
set up in such a way that the dots on the check-wire align only when the dots removed from
the set-wires correspond to the sets of a solution of the X3C instance.

We now describe the check-wire and set-wires in greater detail. First, let us establish
some notation. Given a X3C instance with 3n items and m sets, the board in the reduced
instance of Two Dots will have 5n+ 2T columns and 4(m+ 1) rows, where T is a parameter
that we will fix later. In our discussion, we use p1, . . . , pT and q1, . . . , qT to label the first
and last T columns, respectively. The remaining columns (indexed from T + 1 to T + 5n)
are labeled by c1, . . . , c5n and use C to refer to this subset of columns. On the other hand,
we index the rows simply by their numbers, with the topmost row being the first.

The set-wires. For each set Sj ∈ S there is a two-cell tall set-wire traversing all columns
in C. The j-th wire is on rows rj = 4(j + 1) and rj − 1.

The wire is constructed as follows: For each item Ii ∈ I we consider the sub-grid consisting
of 10 cells on rows rj and rj − 1, and on columns ci to ci + 4. If Ii 6∈ Sj the lower row of
this sub-grid is filled with blue dots while the top row remains empty (see the highlighted
sub-grid corresponding to set S2 and item I4 in Figure 3). If Ii ∈ Sj then the we place a
blue dot on (i) all the cells of the bottom row of the sub-grid except for the one on column
ci + 2, and (ii) the cells on the top row of the sub-grid that are on columns ci + 1, ci + 2 and

FUN 2018

https://twodots.isnphard.com

7:6 On the Complexity of Two Dots for Narrow Boards and Few Colors

Figure 3 Overview of the reduction.

ci + 3 (see the highlighted sub-grid corresponding to set S1 and item I2 in Figure 3).
Notice that if all the dots of the set-wire corresponding to, say, the set Sj are removed,

then all the dots above row rj will fall by exactly 1 cell, except for the ones on columns ci + 1
and ci + 3 where i is such that Ii ∈ Sj : in these columns, the dots above row rj will fall by
exactly 2 cells.

Finally, since the number of items contained in each set is exactly 3, notice that the
number of blue dots in each set-wire is exactly b := 5 · (3n− 3) + 7 · 3 = 15n+ 6.

The check-wire. The check-wire is a four-cell tall wire that is initially placed at top of the
board. It is constructed simply by repeating the same pattern of 9 red dots every 5 columns,
i.e., column ci+5 has the same layout of column ci. The pattern is shown in Figure 4 (a).

Suppose that all the blue dots contained the set-wires corresponding to solution S ′ of the
X3C instance are removed by the player, from top to bottom. This would cause all the dots of
the check-wire to fall by exactly n rows, except for the dots on column ci + 1 and ci + 3 for
i = 1, . . . , 3n that will fall by exactly (n+ 1) cells. This will cause the dots on the items-wire
to arrange in the configuration shown in Figure 4 (b). Notice that, in this configuration, all
the 9 · 3n = 27n dots of the items-wire can be removed by the player using a single move.

The reduction from X3C to Two Dots

We are now able to prove our result:

I Theorem 1. Two Dots is NP-complete even when the numbers of colors, moves, and goals
are bounded by 3, 2, and 2, respectively.

Proof. Let A = 〈I = {I1, . . . , I3n},S = {S1, . . . , Sm}〉 be an instance of X3C and consider
the corresponding instance B of Two Dots as described above, where T is such that the
number η of blue dots in the first T − 2 columns (resp. the last T − 2 columns) is greater
than the number of remaining blue dots.

Assume, without loss of generality, that S is not itself a set cover for I and remember
that n is odd. We will show that at least 2η blue dots and all the red dots can be removed
from B using at most two moves if and only if A admits an exact cover by 3-sets.

D. Bilò, L. Gualà, S. Leucci, and N. Misra 7:7

I1 I2 I3n

· · ·
· · ·

· · ·
· · ·

(a)

4

I1 I2 I3n

· · ·
· · ·

· · ·
· · ·

(b)

4 + n

Figure 4 (a) Initial setup of the check-wire. (b) The check-wire once it gets aligned.

The Forward Direction. Let S ′ = {Sj1 , Sj2 , . . . , Sjn
} exact cover by 3-sets for A where

jk ∈ {1, . . . ,m} for k = 1, . . . , n. We assume, w.l.o.g., that j1 < j2 < · · · < jn. A winning
sequence of moves for the instance of B consists of:

1. connecting, in order and in a single move: all the blue dots in the fist T − 2 columns, the
single dot in the (T − 1)th column, all the dots of the set-wires on rows rj1 , . . . rjn

in a
zig-zag fashion, the single dot in the (T + 5n+ 1)th column, and finally all the dots in
the last T − 2 columns. Notice that the above move is feasible since n is odd.

2. connecting, in a single move, all the red dots. This is possible since S ′ is an exact cover,
and hence the previous move will cause the check-wire to align.

It is easily checked that both goals are satisfied (notice that the first and last T − 2 columns
contain 2η blue dots).

The Reverse Direction. Suppose now that there is a solution to the instance B of Two
Dots. From the fact that: (i) we are permitted only two moves; (ii) we have to clear all the
red dots; and (iii) all the red dots are not aligned in the initial state, it follows that the first
move has to meet the goal for the blue dots and also align the red dots on the check-wire so
that the second move can be used to eliminate all of them in one move. This means that the
first move cannot be a cycle-move, that it must involve dots that belong to both the first
and the last T − 2 columns of the board, and that it must traverse set-wires entirely and in
a zig-zag fashion. Let S ′ be the sets corresponding to the sets-wires whose dots have been
removed in the first move. Suppose, towards a contradiction, that S ′ is not an exact cover
for A. This means that at least one of the following conditions is true: (i) there exists an
item Ij that is not covered by S ′; or (ii) there exists one item Ij that belongs t ≥ 2 sets in S ′.
In the former case the number of blue dots removed from the columns associated with item
Ij is the same, and hence it will not be possible to connect all the dots in the check-wire
in a single move. In the latter case, the number of blue dots removed from the 2nd and 4th

column associated with item Ij exceeds the corresponding number of removed blue dots for
the 1st, 3rd, and 5th column by 2t. Hence, after the first move, the red dots in the check-wire
are not aligned and therefore it is not possible to meet the read goal using a single additional
move. J

FUN 2018

7:8 On the Complexity of Two Dots for Narrow Boards and Few Colors

4 Boards with a constant number of columns

In this section, we address the complexity of Two Dots on boards that have a constant number
of columns. More precisely, we show that the problem is NP-complete if the board has two
or more columns, while it is polynomial-time solvable in the one-column case. Interestingly,
our hardness result holds even when the player has an unlimited number of moves and only
one goal to achieve.

4.1 Hardness of levels with two columns, one goal and unlimited moves

We proceed here by a reduction from 3-SAT. Let C1, . . . , Cm be a set of clauses over the
variables x1, . . . , xn. We assume, without loss of generality, that every clause consists of
exactly three literals. The overall structure of the Two Dots instance that we construct is
given in Figure 5. We describe the components starting from the bottom. First, we stack
up a collection of clause gadgets, one corresponding to each variable of the 3-SAT instance.
Then, after a suitable gap, we introduce the variable gadgets, one corresponding to each
variable of the instance. Finally, we have a formula-check gadget, which is the basis for the
only goal that we have in this instance. We introduce one color for every literal and one for
every clause of the 3-SAT instance. Let the colors associated with the literals xi and xi be pi

and qi, respectively; while we denote the color associated with the clause Cj by `j . We also
have one special color that we denote by ∫ . We now describe each gadget separately and
then explain the equivalence of the instances. In the following, when we speak of gaps in
the board, we may assume these to be dots of “dummy” colors, which are newly introduced
colors distinct from the colors mentioned already, and also distinct from each other.

The clause gadgets. Consider a clause Cj . The gadget corresponding to a clause is shown
in part (a) of Figure 6. Let a, b, c be the colors corresponding to the literals of Cj . The first
row is a gap row, and the next seven rows4 consist of the following:

Dots colored `j occupy the first column on all seven rows;
Dots with colors a, b and c occupy the second column on the third, fifth and seventh
rows, respectively; and
Dots colored `j occupy the remaining rows on the second column.

After these rows, we introduce another gap row. Finally, the first column of the last three
rows are occupied by dots colored a, b and c, respectively; while the second column on the
last three rows are occupied by dummy dots. Note that because of the way the seven rows
described above are “sandwiched” between gap rows, the only way to obtain a `j-colored
square is to make a square move with at least one of a, b or c.

The variable gadgets. For a variable xi, the variable gadget consists of four rows, alternat-
ingly occupied by dots of colors pi and qi on both columns (see Figure 6(c)). To be specific,
the first and third rows have dots colored pi on both columns, while the second and fourth
rows have dots colored qi on both columns. Observe that within the scope of this gadget,
any valid gameplay can involve a square move on either pi or qi, but not both.

4 Recall that our convention is to count rows from the top.

D. Bilò, L. Gualà, S. Leucci, and N. Misra 7:9

F
o
rm

u
la

C
h
ec
k

G
a
d
g
et

V
a
ri
a
b
le

G
a
d
g
et
s

x (); x ()

y (); y ()

z (); z ()

C
la
u
se

G
a
d
g
et

(
)

(x
∨
y
∨
z
)

C
la
u
se

G
a
d
g
et

(
)

(x
∨
y
∨
z
)

×
×
×

×

×

×

×
×
×
×

×

×

×

×

×
×
×
×

∫

∫

Figure 5 Overview of the reduction. The grid cells marked × are filled with distinct colors
different from the ones used to represent variables and clauses. The goal of the game is to hit two
dots of color ∫ and the number of moves are unbounded.

FUN 2018

7:10 On the Complexity of Two Dots for Narrow Boards and Few Colors

×
×
×

×

×

×

×

(a)

×
×
××
×

× ×

(b) (c) (d)

×
×
×
×
×
×

∫

∫

(e)

Figure 6 (a) Initial setup of the clause gadget. (b) The clause gadget in its aligned state. (c)
Initial setup of the variable gadget. (d) The state of the variable gadget after one move on one of
the literals. (e) The formula-check gadget.

The formula-check gadget. The formula-check gadget is depicted in Figure 6(e). It consists
of (m + 2) rows, where the dots occupying the first and last row of the first column have
color ∫ and the interim rows comprise of one dot each of color `j , 1 ≤ j ≤ m. For all rows,
we have dummy dots occupying the second column. The only goal in the game will be to hit
two dots colored ∫ .

We are now ready to prove our main theorem for this section:

I Theorem 2. Two Dots is NP-complete on boards that have only two columns, even when
the player has to achieve only one goal with an unlimited number of moves at his disposal.

Proof. We proceed by a reduction from 3-SAT. Let an instance I of 3-SAT comprise of the
clauses C1, . . . , Cm over the variables x1, . . . , xn, where every clause consists of exactly three
literals. Let B denote the instance of Two Dots constructed as described above. Recall that
the goal is to hit two dots colored ∫ and there is no bound on the number of moves. We now
establish the equivalence of the instances.

The Forward Direction. Let τ : V → {0, 1} be a satisfying assignment for the instance I.
For any variable x for which τ(x) = 1, we eliminate the row containing dots colored qi and
perform a square move on the dots of color pi, which becomes feasible once the qi-colored
dots are removed from either row of the variable gadget. On the other hand, for any variable
x for which τ(x) = 0, we eliminate the row containing dots colored pi and perform a square
move on the dots of color qi. Observe that after each square move on a variable gadget,
the design of the clause gadgets ensures that the number of dots hit in both columns is
equal. Therefore, after these moves are complete, an `j-colored square is created for every
1 ≤ j ≤ m. Making these moves in any order leaves us with a board where the ∫ -colored
dots become adjacent, and the goal can be met with one final move.

The Reverse Direction. A winning gameplay involves a move that hits at least two ∫ -
colored dots on board. Recall that the only ∫ -colored dots are available in the formula check

D. Bilò, L. Gualà, S. Leucci, and N. Misra 7:11

gadget and that they are separated by m dots corresponding to the colors of the clauses.
Since all other adjacent locations are occupied by dummy dots, it follows that the only way
to arrive at a configuration where the two ∫ -colored dots are adjacent is to play a `j-cyclic
move for all 1 ≤ j ≤ m. For any such j, consider the clause gadget corresponding to Cj and
let a, b, c denote the colors of the literals that appear in Cj . A cycle with dots colored `j

can only manifest if there was a square move involving one of the colors a, b or c. We now
propose an assignment based on these moves: set the variable xi to 1 if the given gameplay
involved a square move on the color pi and set xi to 0 if the gameplay involved a square move
on the color qi . If the gameplay did not have a square move on either pi or qi, then set the
value of xi arbitrarily. Note that this is a well-defined assignment since no valid gameplay
can involve a square move on both pi and qi, by the design of the variable gadget and the
fact that the variable gadget is the only part of the overall construction where dots of these
colors are adjacent. To see that this is a satisfying assignment, proceed by contradiction: if a
clause Cj is not satisfied, then it is easy to see that the choice of square moves amongst the
variable gadget which led us to our assignment were such that no `j-squares were generated,
which contradicts our assumption that we started with a winning gameplay. J

4.2 A polynomial-time algorithm for levels with one column
Let B be an instance of Two Dots where the board consists of one column with n dots. For
1 ≤ i ≤ n, let c(i) denote the color of the ith dot in B. Moreover, for i ≤ j, let Bi,j denote
the subsequence of dots starting at the ith row and ending at the jth row. By a slight abuse
of notation, we also use Bi,j to denote the natural instance of Two Dots associated with this
(truncated) board. As a warm-up, and since this is instrumental to our general algorithm,
we begin by considering the case in which the goal is to remove all the dots in the board
(i.e., to clear the board) using the minimum number of moves.

4.2.1 Clearing the board
Let C(i, j) be the minimum number of moves needed to clear Bi,j , or +∞ if there exists no
such sequence of moves. We now describe a dynamic programming algorithm to compute all
the values C(i, j) (and, in particular, C(1, n)).

If j− i+ 1 ≤ 0, or if j− i+ 1 = 1, then clearly C(i, j) = 0 and C(i, j) = +∞, respectively.
We therefore consider the case in which j ≥ i+ 1. Notice that, in order to clear the board
Bi,j , the dot on the first row of Bi,j must be hit with a move connecting (at least) one other
dot. Let h be the smallest index of a row in Bi,j that contains one such dot. We distinguish
two cases:
1. The move hitting the dot on the first row of Bi,j connects exactly 2 dots.
2. The move hitting the dot on the first row of Bi,j connects 3 or more dots.

If the former case we “guess” the location h of the dot that partners with the first dot
of Bi,j . This decomposes our instance into two sub-instances corresponding to the boards
Bi+1,h−1 and Bh+1,j . In formulas:

C1(i, j) = min
i<h≤j such that c(h)=c(i)

{C(i+ 1, h− 1) + C(h+ 1, j) + 1},

where last term accounts for to the move that is used to hit the ith dot and the hth dot.
In the latter case we still guess the location h, but we now decompose the board into two

different sub-instances, namely Bi+1,h−1 and Bh,j (i.e., we still include the hth dot in the
second sub-instance). The hth dot can then be combined with another dot in row h′ > h

FUN 2018

7:12 On the Complexity of Two Dots for Narrow Boards and Few Colors

belonging to the same move that is used to hit both the ith and the hth dot. This can be
repeated recursively until the last two dots hit by the move are considered, which falls into
the former case, and thus accounts for the whole multi-dot move. In formulas:

C2(i, j) = min
i<h≤j such that c(h)=c(i)

{C(i+ 1, h− 1) + C(h, j)}.

Overall, our recurrence is given by C(i, j) = min{C1(i, j), C2(i, j)}.

4.2.2 The general case

For the sake of simplicity we describe our algorithmic approach for the case when the game
has only one goal, and our task is to determine the minimum number of moves that are needed
to achieve said goal. In particular, suppose that the single goal demands the elimination of `
red dots. Nevertheless, our approach can be easily generalized for the case of multiple goals.

We now describe a dynamic programming routine to check if there is a sequence of at
most k moves that hits at least ` red dots. To this aim, let T (i, j, δ) be the minimum number
of moves needed to gain at least δ red dots in Bi,j , or +∞ if there is no such sequence of
moves. By our definition, we have that, if δ ≤ 0, then T (i, j, δ) = 0 ∀i, j. If δ > 0 and
j <= i+ 1, then T (i, j, δ) = +∞. Otherwise, we consider the following three cases:
1. There is a solution that does not hit the ith dot.
2. There is a solution that hits the ith dot along with one other dot.
3. There is a solution that hits the ith dot along with two or more other dots.

To describe our recurrence corresponding to these cases, we denote by ∇(i′, j′) the number
of red dots in Bi′,j′ . We start by addressing the first case, in which the ith dot can be simply
ignored from the current board:

T1(i, j, δ) = T (i+ 1, j, δ).

In the second case, we “guess” the location h of the dot that partners with the ith dot in
an optimal move. To this end, we consider separately the subsequences of dots corresponding
to Bi+1,h−1 and to Bh+1,n. This two sub-instances are handled differently as, in order to
connect the ith dot with the hth dot, all the dots in Bi+1,h−1 need to be removed (while this
is not true for Bh+1,n. We can write:

T2(i, j, δ) = min
i<h≤j such that c(h)=c(i)

{C(i+ 1, h− 1) + T (h+ 1, j, δ −∇(i, h)) + 1}.

In the last case, we have the following analogous recurrence:

T3(i, j, δ) = min
i<h≤j such that c(h)=c(i)

{C(i+ 1, h− 1) + T (h, j, δ −∇(i, h− 1))}.

Overall, our recurrence is given by T (i, j, δ) = min{T1(i, j, δ), T2(i, j, δ), T3(i, j, δ)}, and
we can state the following.

I Theorem 3. Two Dots admits a polynomial time algorithm for a constant number of goals
when the board consists of only one column.

D. Bilò, L. Gualà, S. Leucci, and N. Misra 7:13

×
× ×

×
×

Figure 7 The edge gadget for the case of boards with two rows. Here we are representing an
edge e () incident on vertices u () and v ().

5 Boards with a constant number of rows

Here, we state and prove the following result, strengthening the NP-hardness result for four
rows given in [16]. Unlike for the case of two columns, the reduction in this setting employs
the use of many goals and many colors.

I Theorem 4. Two Dots is NP-complete when the board has only two rows and can be solved
in polynomial time for boards that have one row.

Proof. The hardness for the case of two rows is by a reduction from Vertex Cover. Let
the (G = (V,E), k) be an instance of Vertex Cover where V = {v1, . . . , vn} and E =
{e1, . . . , em}. Our board consists of two rows and 2n + 5m columns. For every vertex vi,
introduce four dots of color ci such that they form a square on the adjacent columns 2i− 1
and 2i. For every edge ej = (vp, vq), introduce the edge gadget shown in Figure 7, which
involves three dots that have color dj and one dot each of color cp and cq. The remaining
five positions in the grid are filled with dummy dots that have colors distinct from the colors
that correspond to edges and vertices. The goal is to hit at least two dots of color dj for
each 1 ≤ j ≤ m in at most m+ k moves.

We now argue the equivalence of these instances. In the forward direction, given a vertex
cover S ⊆ V of size k, perform the square moves on the colors corresponding to vertices in S.
This uses up the first k moves. Since S is a vertex cover, this causes at least two dots of
color dj to become adjacent in the edge gadget corresponding to ej . The remaining m moves
can be used to now meet the demands of the game. In the other direction, assume we have a
valid gameplay that meets all the goals. Note that at least m moves must be used to hit
dots of color dj . Let S denote the set of colors on which square moves were employed in the
remaining moves. Note that this is a set of at most k colors, each of which corresponds to a
vertex in the graph G. We claim that this subset is a vertex cover. Indeed, if not, observe
that the edge gadget corresponding to any uncovered edge (say ej) remains unchanged and
therefore the goal for the color dj cannot be met, contradicting our assumption that we
started with a winning gameplay.

We now turn to the case of boards with one row, where we claim that a natural greedy
algorithm solves Two Dots in polynomial time. First, note that the goal of hitting k dots of
color c can be met if and only if the total number of dots colored c present in intervals of
length at least two is at least k. Further, it is easily checked that in an optimal play, every
move hits colors for which there is a non-trivial goal left (note that this is not true in the
general game, where moves involving colors that have no goals associated with them can also
help with meeting the goals of the game). Finally, observe that we may employ a greedy
strategy here to meet any particular goal, where we proceed by hitting maximal intervals of
the longest length of a particular color first. J

FUN 2018

7:14 On the Complexity of Two Dots for Narrow Boards and Few Colors

6 Conclusions

In this paper we have settled the computational complexity of several restrictions of Two
Dots involving narrow boards and/or few colors. Some problems which are still open and
that we regard as interesting are those of understanding the computational complexity of
Two Dots for (i) boards with only two colors, and (ii) boards with a constant number of
columns and colors, which nicely captures the spirit of the game. Finally, we remark that –
by carefully positioning the wire gadgets, and employing some other small modifications –
our reduction involving 3 colors, 2 moves, and 2 goals, can be adapted to require only 1 goal.

References

1 Aaron B. Adcock, Erik D. Demaine, Martin L. Demaine, Michael P. O’Brien, Felix Reidl,
Fernando Sánchez Villaamil, and Blair D. Sullivan. Zig-zag numberlink is np-complete.
JIP, 23(3):239–245, 2015. doi:10.2197/ipsjjip.23.239.

2 Aviv Adler, Erik D Demaine, Adam Hesterberg, Quanquan Liu, and Mikhail Rudoy. Clicko-
mania is hard, even with two colors and columns. The Mathematics of Various Entertaining
Subjects: Research in Games, Graphs, Counting, and Complexity, 2:325, 2017.

3 Matteo Almanza, Stefano Leucci, and Alessandro Panconesi. Trainyard is np-hard. Theor-
etical Computer Science, 2017. doi:10.1016/j.tcs.2017.09.039.

4 Therese C. Biedl, Erik D. Demaine, Martin L. Demaine, Rudolf Fleischer, Lars Jacobsen,
and J. Ian Munro. The complexity of clickomania. CoRR, cs.CC/0107031, 2001. URL:
http://arxiv.org/abs/cs.CC/0107031.

5 Ron Breukelaar, Erik D. Demaine, Susan Hohenberger, Hendrik Jan Hoogeboom, Walter A.
Kosters, and David Liben-Nowell. Tetris is hard, even to approximate. Int. J. Comput.
Geometry Appl., 14(1-2):41–68, 2004. doi:10.1142/S0218195904001354.

6 Kyle Burke, Erik D. Demaine, Harrison Gregg, Robert A. Hearn, Adam Hesterberg, Michael
Hoffmann, Hiro Ito, Irina Kostitsyna, Jody Leonard, Maarten Löffler, Aaron Santiago,
Christiane Schmidt, Ryuhei Uehara, Yushi Uno, and Aaron Williams. Single-player and
two-player buttons & scissors games - (extended abstract). In Jin Akiyama, Hiro Ito,
Toshinori Sakai, and Yushi Uno, editors, Discrete and Computational Geometry and Graphs
- 18th Japan Conference, JCDCGG 2015, Kyoto, Japan, September 14-16, 2015, Revised
Selected Papers, volume 9943 of Lecture Notes in Computer Science, pages 60–72. Springer,
2015. doi:10.1007/978-3-319-48532-4_6.

7 Davide Eppstein. Computational complexity of games and puzzles. ht-
tps://www.ics.uci.edu/ eppstein/cgt/hard.html, accessed on the 23rd of February 2018.

8 Henning Fernau, Torben Hagerup, Naomi Nishimura, Prabhakar Ragde, and Klaus Rein-
hardt. On the parameterized complexity of the generalized rush hour puzzle. In Proceedings
of the 15th Canadian Conference on Computational Geometry, CCCG’03, Halifax, Canada,
August 11-13, 2003, pages 6–9, 2003. URL: http://www.cccg.ca/proceedings/2003/22.
pdf.

9 Gary William Flake and Eric B. Baum. Rush hour is pspace-complete, or "why you should
generously tip parking lot attendants". Theor. Comput. Sci., 270(1-2):895–911, 2002. doi:
10.1016/S0304-3975(01)00173-6.

10 M. R. Garey and David S. Johnson. Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman, 1979.

11 Harrison Gregg, Jody Leonard, Aaron Santiago, and Aaron Williams. Buttons & scissors is
np-complete. In Proceedings of the 27th Canadian Conference on Computational Geometry,
CCCG 2015, Kingston, Ontario, Canada, August 10-12, 2015. Queen’s University, Ontario,

http://dx.doi.org/10.2197/ipsjjip.23.239
http://dx.doi.org/10.1016/j.tcs.2017.09.039
http://arxiv.org/abs/cs.CC/0107031
http://dx.doi.org/10.1142/S0218195904001354
http://dx.doi.org/10.1007/978-3-319-48532-4_6
http://www.cccg.ca/proceedings/2003/22.pdf
http://www.cccg.ca/proceedings/2003/22.pdf
http://dx.doi.org/10.1016/S0304-3975(01)00173-6
http://dx.doi.org/10.1016/S0304-3975(01)00173-6

D. Bilò, L. Gualà, S. Leucci, and N. Misra 7:15

Canada, 2015. URL: http://research.cs.queensu.ca/cccg2015/CCCG15-papers/48.
pdf.

12 Luciano Gualà, Stefano Leucci, and Emanuele Natale. Bejeweled, candy crush and other
match-three games are (np-)hard. In 2014 IEEE Conference on Computational Intelligence
and Games, CIG 2014, Dortmund, Germany, August 26-29, 2014, pages 1–8. IEEE, 2014.
doi:10.1109/CIG.2014.6932866.

13 Luciano Gualà, Stefano Leucci, Emanuele Natale, and Roberto Tauraso. Large peg-army
maneuvers. In Erik D. Demaine and Fabrizio Grandoni, editors, 8th International Confer-
ence on Fun with Algorithms, FUN 2016, June 8-10, 2016, La Maddalena, Italy, volume 49
of LIPIcs, pages 18:1–18:15. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2016.
doi:10.4230/LIPIcs.FUN.2016.18.

14 Robert A. Hearn and Erik D. Demaine. Games, puzzles and computation. A K Peters,
2009.

15 Stefan Langerman and Yushi Uno. Threes!, fives, 1024!, and 2048 are hard. In Erik D.
Demaine and Fabrizio Grandoni, editors, 8th International Conference on Fun with Al-
gorithms, FUN 2016, June 8-10, 2016, La Maddalena, Italy, volume 49 of LIPIcs, pages
22:1–22:14. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2016. doi:10.4230/
LIPIcs.FUN.2016.22.

16 Neeldhara Misra. Two dots is np-complete. In Erik D. Demaine and Fabrizio Grandoni,
editors, 8th International Conference on Fun with Algorithms, FUN 2016, June 8-10, 2016,
La Maddalena, Italy, volume 49 of LIPIcs, pages 24:1–24:12. Schloss Dagstuhl - Leibniz-
Zentrum fuer Informatik, 2016. doi:10.4230/LIPIcs.FUN.2016.24.

17 Daniel Ratner and Manfred K. Warmuth. Nxn puzzle and related relocation problem. J.
Symb. Comput., 10(2):111–138, 1990. doi:10.1016/S0747-7171(08)80001-6.

18 Ryuhei Uehara and Shigeki Iwata. Generalized Hi-Q is NP-complete. IEICE Transactions
(1976-1990), 73(2):270–273, 1990.

FUN 2018

http://research.cs.queensu.ca/cccg2015/CCCG15-papers/48.pdf
http://research.cs.queensu.ca/cccg2015/CCCG15-papers/48.pdf
http://dx.doi.org/10.1109/CIG.2014.6932866
http://dx.doi.org/10.4230/LIPIcs.FUN.2016.18
http://dx.doi.org/10.4230/LIPIcs.FUN.2016.22
http://dx.doi.org/10.4230/LIPIcs.FUN.2016.22
http://dx.doi.org/10.4230/LIPIcs.FUN.2016.24
http://dx.doi.org/10.1016/S0747-7171(08)80001-6

	Introduction
	Preliminaries
	Hardness of levels with three colors, two moves, and two goals
	Boards with a constant number of columns
	Hardness of levels with two columns, one goal and unlimited moves
	A polynomial-time algorithm for levels with one column
	Clearing the board
	The general case

	Boards with a constant number of rows
	Conclusions

