
Tarski’s Theorem, Supermodular Games, and the Complexity of
Equilibria

Kousha Etessami
U. of Edinburgh

kousha@inf.ed.ac.uk

Christos Papadimitriou
Columbia U.

christos@cs.columbia.edu

Aviad Rubinstein
Stanford U.

aviad@cs.stanford.edu

Mihalis Yannakakis
Columbia U.

mihalis@cs.columbia.edu

Abstract

The use of monotonicity and Tarski’s theorem in existence proofs of equilibria is very
widespread in economics, while Tarski’s theorem is also often used for similar purposes in the
context of verification. However, there has been relatively little in the way of analysis of the
complexity of finding the fixed points and equilibria guaranteed by this result. We study a
computational formalism based on monotone functions on the d-dimensional grid with sides of
length N , and their fixed points, as well as the closely connected subject of supermodular games
and their equilibria. It is known that finding some (any) fixed point of a monotone function can
be done in time logdN , and we show it requires at least log2N function evaluations already on
the 2-dimensional grid, even for randomized algorithms. We show that the general Tarski prob-
lem of finding some fixed point, when the monotone function is given succinctly (by a boolean
circuit), is in the class PLS of problems solvable by local search and, rather surprisingly, also in
the class PPAD. Finding the greatest or least fixed point guaranteed by Tarski’s theorem, how-
ever, requires d ·N steps, and is NP-hard in the white box model. For supermodular games, we
show that finding an equilibrium in such games is essentially computationally equivalent to the
Tarski problem, and finding the maximum or minimum equilibrium is similarly harder. Interest-
ingly, two-player supermodular games where the strategy space of one player is one-dimensional
can be solved in O(logN) steps. We also observe that computing (approximating) the value
of Condon’s (Shapley’s) stochastic games reduces to the Tarski problem. An important open
problem highlighted by this work is proving a Ω(logdN) lower bound for small fixed dimension
d ≥ 3; we discuss certain promising approaches.
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1 Introduction

Equilibria are paramount in economics, because guaranteeing their existence in a particular strategic
or market-like framework enables one to consider “What happens at equilibrium?” without further
analysis. Equilibrium existence theorems are nontrivial to prove. The best known example is Nash’s
theorem [18], whose proof in 1950, based on Brouwer’s fixed point theorem, transformed game theory,
and inspired the Arrow-Debreu price equilibrium results [1], among many others. Decades later,
complexity analysis of these theorems and corresponding solution concepts by computer scientists
has created a fertile and powerful field of research [19].

Not all equilibrium theorems in economics, however, rely on Brouwer’s fixed point theorem for
their proof (even though, in a specific sense made clear and proved in this paper, they could have...).
Many of the exceptions ultimately rely on Tarski’s fixed point theorem [22], stating that all monotone
functions on a complete lattice have a fixed point — and in fact a whole sublattice of fixed points
with a largest and smallest element [23, 17, 24]. In contrast to the equilibrium theorems whose
proof relies on Brouwer’s fixed point theorem, there has been relatively little complexity analysis of
Tarski’s fixed point theorem and the equilibrium results it enables. (We discuss prior related work
at the end of this introduction.)

Here we present several results in this direction. Let [N ] = {1, . . . , N}. To formulate the basic
problem, we consider a monotone function f on the d-dimensional grid [N ]d, that is, a function
f : [N ]d 7→ [N ]d such that for all x, y ∈ [N ]d, x ≥ y implies f(x) ≥ f(y); in the black-box oracle
model, we can query this function with specific vectors x ∈ [N ]d; in the white-box model we assume
that the function is presented by a boolean circuit1. Thus, d and N are the basic parameters to our
model; it is useful to think of d as the dimensionality of the problem, while N is something akin to
the inverse of the desired approximation ε.

• Tarski’s theorem in the grid framework is easy to prove. Let 1̄ = (1, . . . , 1) denote the (d-
dimensional) all-1 vector. Consider the sequence of grid points 1̄, f(1̄), f(f(1̄)), . . . , f i(1̄), . . ..
From monotonicity of f , by induction on i we get, for all i ≥ 0, f i(1̄) ≤ f i+1(1̄). Unless a
fixed point is arrived at, the sum of the coordinates must increase at each iteration. Therefore,
after at most dN iterations of f applied to 1̄, a fixed point is found. In other words fdN (1̄) =
fdN+1(1̄).

• This immediately suggests an O(dN) algorithm. But an O(logdN) algorithm is also known2:
Consider the (d − 1)-dimensional function obtained by fixing the “input value” in the d’th
coordinate of the function f with some value rd (initialize rd := dN/2e). Find a fixed point
z∗ ∈ [N ]d−1 of this (d − 1)-dimensional monotone function f(z, rd) (recursively). If the dth
coordinate fd(z∗, rd) of f(z∗, rd), is equal to rd, then (z∗, rd) is a fixed point of the overall
function f , and we are done. Otherwise, a binary search on the d’th coordinate is enabled: we
need to look for a larger (smaller) value of rd if fd(z∗, rd) > rd (respectively, if fd(z∗, rd) < rd).
By an easy induction, this establishes the O(logdN) upper bound ([5]).

• We conjecture that this algorithm is essentially optimal in the black box sense, for small fixed
constant dimension d. In Theorem 4.1 we prove this result for the d = 2 case. We provide a

1Naturally, one could have addressed the more general problem in which the lattice is itself presented in a general
way through two functions meet and join;however, this framework (a) leads quickly and easily to intractability; and
(b) does not capture any more applications in economics than the one treated here.

2This algorithm appears to have been first observed in [5].
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class of monotone functions that we call the herringbones: two monotonic paths, one starting
from 1̄ and the other from N̄ , meeting at the fixed point, while all other points in the N ×N
grid are mapped diagonally: f(x) = x+ (−1,+1) or x+ (+1,−1), whichever of the points is
closer to the monotonic path that contains the fixed point. We prove that any randomized
algorithm needs to make Ω(log2N) queries (with high probability) to find the fixed point.

• Can this lower bound result be generalized to fixed d ≥ 3? This is a key question left open
by this paper. There are several obstacles to a proof establishing, e.g., a Ω(log3N) lower
bound in the 3-dimensional case (d = 3), and some possible ways for overcoming them. First,
it is not easy to identify a suitable “herringbone-like” function in three or more dimensions
— a monotone family of functions built around a path from 1̄ to N̄ . It nevertheless seems
plausible that logdN should still be (close to) a lower bound on any such algorithm (assuming
of course that N is sufficiently larger than d, so that the dN algorithm does not violate the
lower bound). We prove one encouraging result in this context: We give an alternative proof
of the d = 2 lower bound, in which we establish that any deterministic black-box algorithm
for Tarski in two dimensions must solve a sequence of Ω(logN) one-dimensional problems
(Theorem 4.7), a result pointing to a possible induction on d (recall that this is precisely the
form of the logdN algorithm).

• Tarski’s theorem further asserts that there is a greatest and a least fixed point, and these fixed
points are especially useful in the economic applications of the result (see for example [17]).
It is not hard to see, however, that finding these fixed points is NP-hard, and takes Ω(dN)
time in the black box model (see Proposition 2.1).

• In terms of complexity classes, the problem Tarski is obviously in the class TFNP of total
function (total search) problems. But where exactly? We show (Theorem 3.2) that it belongs
in the class PLS of local optimum search problems.

• Surprisingly, Tarski is also in the class PPPAD of problems reducible to a Brouwer fixed
point problem (Theorem 3.3), and thus, by the known fact that the class PPAD is closed
under polynomial time Turing reductions ([2]) it is in PPAD (Corollary 3.4). This result
presents a heretofore unsuspected connection between two main sources of equilibrium results
in economics.

• Supermodular games [23, 17, 24] — or games with strategic complementarities — comprise
a large and important class of economic models, with complete lattices as strategy spaces,
in which a player’s best response is a monotone function (or monotone correspondence) of
the other player’s strategies. They always have pure Nash equilibria due to Tarski’s theorem.
We show that finding an equilibrium for a supermodular game with (discrete) Euclidean grid
strategy spaces is essentially computationally equivalent to the problem of finding a Tarski
fixed point of a monotone map (Proposition 5.2 and Theorem 5.4). If there are two players
and one of them has a one-dimensional strategy space, we show that a Nash equilibrium can
be found in logarithmic time (in the size of the strategy spaces).

• Stochastic games [21, 4]. We show that the problems of computing the (irrational) value of
Shapley’s discounted stochastic games to desired accuracy, and computing the exact value of
Condon’s simple stochastic games (SSG), are both P-time reducible to the Tarski problem.
The proofs employ known characterizations of the value of both Shapley’s stochastic games
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and Condon’s SSGs in terms of monotone fixed point equations, which can also be viewed as
monotone “polynomially contracting” maps with a unique fixed point, and from properties of
polynomially contracting maps, see [11].

Prior related work: in recent years a number of technical reports and papers by Dang, Qi, and
Ye, have considered the complexity of computational problems related to Tarski’s theorem [5, 6, 7].
In particular, in [5] the authors provided the already-mentioned logdN algorithm for computing a
Tarski fixed point for a discrete map, f : [N ]d → [N ]d, which is monotone under the coordinate-wise
order. In [5] they also establish that determining the uniqueness of the fixed point of a monotone
map under coordinate-wise order is coNP-hard, and that uniqueness under lexicographic order is
also coNP-hard (already in one dimension). In [6] the authors studied another variant of the Tarski
problem, namely computing another fixed point of a monotone function in an expanded domain
where the smallest point is a fixed point; this variant is NP-hard (the claim in the paper that this
problem is in PPA has been withdrawn by the authors [8]). In earlier work, Echenique [10], studied
algorithms for computing all pure Nash equilibria in supermodular games (and games with strategic
complementaries) whose strategy spaces are discrete grids. Of course computing all pure equilibria
is harder than computing some pure equilibrium; indeed, we show that computing the least (or
greatest) pure equilibrium of such a supermodular game is already NP-hard (Corollary 5.5). In
earlier work Chang, Lyuu, and Ti [3] considered the complexity of Tarski’s fixed point theorem over
a general finite lattice given via an oracle for its partial order (not given it explicitly) and given an
oracle for the monotone function, and they observed that the total number of oracle queries required
to find some fixed point in this model is linear in the number of elements of the lattice. They did
not study monotone functions on euclidean grid lattices, and their results have no bearing on this
setting.

2 Basics

A partial order (L,≤) is a complete lattice if every nonempty subset S of L has a least upper bound
(or supremum or join, denoted supS or ∨S) and a greatest lower bound (or infimum or meet,
denoted inf S or ∧S) in L. A function f : L → L is monotone if for all pairs of elements x, y ∈ L,
x ≤ y implies f(x) ≤ f(y). A point x ∈ L is a fixed point of f if f(x) = x. Tarski’s theorem ([22])
states that the set Fix(f) of fixed points of f is a nonempty complete lattice under the same partial
order ≤; in particular, f has a greatest fixed point (GFP) and a least fixed point (LFP).

In this paper we will take as our underlying lattice L a finite discrete Euclidean grid, which we fix
for simplicity to be the integer grid [N ]d, for some positive integers N, d, where [N ] = {1, . . . , N}.
Comparison of points is componentwise, i.e. x ≤ y if xi ≤ yi for all i = 1, . . . , d. We will also
consider the corresponding continuous box, [1, N ]d that includes all real points in the box. Both,
the discrete and continuous box are clearly complete lattices.

Given a monotone function f on the integer grid [N ]d, the problem is to compute a fixed point
of f (any point in Fix(f)). A generally harder problem is to compute specifically the LFP of f
or the GFP of f . We consider mostly the oracle model, in which the function f is given by a
black-box oracle, and the complexity of the algorithm is measured in terms of the number of queries
to the oracle. Alternatively, we can consider also an explicit model in which f is given explicitly
by a polynomial-time algorithm (a polynomial-size Boolean circuit), and then the complexity of
the algorithm is measured in the ordinary Turing model. Note that the number of bits needed to

3



represent a point in the domain is d logN , so polynomial time here means polynomial in d and
n = logN . The number Nd of points in the domain is exponential.

Tarski’s value iteration algorithm provides a simple way to compute the LFP of f : Starting from
the lowest point of the lattice, which here is the all-1 vector 1, apply repeatedly f . This generates
a monotonically increasing sequence of points 1 ≤ f(1) ≤ f2(1) ≤ . . . until a fixed point is reached,
which is the LFP of f . In every step of the sequence, at least one coordinate is strictly increased,
therefore a fixed point is reached in at most (N − 1)d steps. In the worst case, the process may
take that long, which is exponential in the bit size d logN . Similarly, the GFP can be computed by
applying repeatedly f starting from the highest point of the lattice, i.e., from the all-N point, until
a fixed point is reached.

Another way to compute some fixed point of a monotone function f (not necessarily the LFP
or the GFP) is by a divide-and-conquer algorithm. In one dimension, we can use binary search: If
the domain is the set L(l, h) = {x ∈ Z|l ≤ x ≤ h} of integers between the lowest point l and the
highest point h, then compute the value of f on the midpoint m = (l + h)/2. If f(m) = m then m
is a fixed point; if f(m) < m then recurse on the lower half L(l,m), and if f(m) > m then recurse
on the upper half L(m,h). The monotonicity of f implies that f maps the respective half interval
into itself. Hence the algorithm correctly finds a fixed point in at most logN iterations, where N is
the number of points.

In the general d-dimensional case, suppose that the domain is the set of integer points in the box
defined by the lowest point l and the highest point h, i.e. L(l, h) = {x ∈ Zd|l ≤ x ≤ h}. Consider
the set of points with d-th coordinate equal to m = (l+ h)/2; their first d− 1 coordinates induce a
(d − 1)-dimensional lattice L′(l, h) = {x ∈ Zd−1|li ≤ xi ≤ hi, i = 1, . . . d − 1}. Define the function
g on L′(l, h) by letting g(x) consist of the first d− 1 components of f(x,m). It is easy to see that
g is a monotone function on L′(l, h). Recursively, compute a fixed point x∗ of g. If fd(x∗,m) = m,
then (x∗,m) is a fixed point of f (this holds in particular if l = h). If fd(x∗,m) > m, then recurse
on L(f(x∗,m), h). If fd(x∗,m) < m, then recurse on L(l, f(x∗,m)). In either case, monotonicity
implies that if the algorithm recurses, then f maps the smaller box into itself and thus has a fixed
point in it. An easy induction shows that the complexity of this algorithm is O((logN)d), ([5]).

Computing the least or the greatest fixed point is in general hard, even in one dimension, both
in the oracle and in the explicit model.

Proposition 2.1. Computing the LFP or the GFP of an explicitly given polynomial-time monotone
function in one dimension is NP-hard. In the oracle model, the problem requires Ω(N) queries for
a domain of size N .

Proof. We prove the claim for the LFP; the GFP is similar. Reduction from Satisfiability. Given a
Boolean formula φ in n variables, let the domain D = {0, 1, . . . , 2n}, and define the function f as
follows. For x ≤ 2n − 1, viewing x as an n-bit binary number, it corresponds to an assignment to
the n variables of φ; let f(x) = x if the assignment x satisfies φ, and let f(x) = x + 1 otherwise.
Define f(2n) = 2n. Clearly f is a monotone function and it can be computed in polynomial time.
If φ is not satisfiable then the LFP of f is 2n, while if φ is satisfiable then the LFP is not 2n.

For the oracle model, use the same domain D and let f map every x ≤ 2n − 1 to x or x + 1,
and f(2n) = 2n. The LFP is not 2n iff there exists an x ≤ 2n − 1 such that f(x) = x, which in the
oracle model requires trying all possible x ≤ 2n − 1.

In the case of a continuous domain [1, N ]d, we may not be able to compute an exact fixed
point, and thus we have to be content with approximation. Given an ε > 0, an ε-approximate fixed
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point is a point x such that |f(x) − x| ≤ ε, where we use the L∞ (max) norm, i.e. |f(x) − x| =
max{|fi(x)− xi||i = 1, . . . , d}. In this context, polynomial time means polynomial in logN, d, and
log(1/ε) (the number of bits of the approximation). An ε-approximate fixed point need not be
close to any actual fixed point of f . A problem that is generally harder is to compute a point that
approximates some actual fixed point, and an even harder task is to approximate specifically the
LFP or the GFP of f . Tarski’s value iteration algorithm, starting from the lowest point converges
in the limit to the LFP (and if started from the highest point, it converges to the GFP), but there
is no general bound on the number of iterations needed to get within ε of the LFP (or the GFP).
The algorithm reaches however an ε-approximate fixed point within Nd/ε iterations (note, this is
exponential in logN, log(1/ε)).

It is easy to see that the approximate fixed point problem for the continuous case reduces to the
exact fixed point problem for the discrete case.

Proposition 2.2. The problem of computing an ε-approximate fixed point of a given monotone
function on the continuous domain [1, N ]d reduces to the exact fixed point problem on a discrete
domain [N/ε]d.

Proof. Given the monotone function f on the continuous domain D1 = [1, N ]d, consider the discrete
domain D2 = {x ∈ Zd|k ≤ xi ≤ Nk, i = 1, . . . , d}, where k = d1/εe, and define the function g on
D2 as follows. For every x ∈ D2, let g(x) be obtained from kf(x/k) by rounding each coordinate
to the nearest integer, with ties broken (arbitrarily) in favor of the ceiling. Since f is monotone, g
is also monotone. If x∗ is a fixed point of g, then kf(x∗/k) is within 1/2 of x∗ in every coordinate,
and hence f(x∗/k) is within 1/2k < ε of x∗/k. Thus x∗/k is an ε-approximate fixed point of f .

3 Computing a Tarski fixed point is in PLS ∩ PPAD

For a monotone function f : [N ]d → [N ]d (with respect to the coordinate-wise ordering), we are
interested in computing a fixed point x∗ ∈ Fix(f), which we know exists by Tarski’s theorem. We
shall formally define this as a discrete total search problem, using a standard construction to avoid
the “promise” that f is monotone.

Recall that a general discrete total search problem (with polynomially bounded outputs), Π, has
a set of valid input instances DΠ ⊆ {0, 1}∗, and associates with each valid input instance I ∈ DΠ, a
non-empty set OI ⊆ {0, 1}pΠ(|I|) of acceptable outputs, where pΠ(·) is some polynomial. (So the bit
encoding length of every acceptable output is polynomially bounded in the bit encoding length of
the input I.)

We are interested in the complexity of the following total search problem:

Definition 3.1. Tarski:

Input: A function f : [N ]d → [N ]d with N = 2n for some n ≥ 1, given by a boolean circuit,
Cf , with (d · n) input gates and (d · n) output gates.

Output: Either a (any) fixed point x∗ ∈ Fix(f), or else a witness pair of vectors x, y ∈ [N ]d

such that x ≤ y and f(x) 6≤ f(y).

Note Tarski is a total search problem: If f is monotone, it will contain a fixed point in [N ]d,
and otherwise it will contain such a witness pair of vectors that exhibit non-monotonicity. (If it is
non-monotone it may of course have both witnesses for non-monotonicity and fixed points.)
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Tarski ∈ PLS

Recall that a total search problem, Π, is in the complexity class PLS (Polynomial Local Search) if
it satisfies all of the following conditions (see [16, 25]):

1. For each valid input instance I ∈ DΠ ⊆ {0, 1}∗ of Π, there is an associated non-empty set
SI ⊆ {0, 1}p(|I|) of solutions, and an associated payoff function3, gI : SI → Z. For each s ∈ SI ,
there is an associated set of neighbors, NI(s) ⊆ SI .
A solution s ∈ SI is called a local optimum (local maximum) if for all s′ ∈ NI(s), gI(s) ≥ gI(s′).
We let OI denote the set of all local optima for instance I. (Clearly OI is non-empty, because
SI is non-empty.)

2. There is a polynomial time algorithm, AΠ, that given a string I ∈ {0, 1}∗, decides whether I
is a valid input instance I ∈ DΠ, and if so outputs some solution s0 ∈ SI .

3. There is a polynomial time algorithm, BΠ, that given valid instance I ∈ DΠ and a string
s ∈ {0, 1}p(|I|), decides whether s ∈ SI , and if so, outputs the payoff gI(s).

4. There is a polynomial time algorithm, HΠ, that given valid instance I ∈ DΠ and s ∈ SI ,
decides whether s is a local optimum, i.e., whether s ∈ OI , and otherwise computes a strictly
improving neighbor s′ ∈ NI(s), such that gI(s′) > gI(s).

Theorem 3.2. Tarski ∈ PLS.

Proof. Each valid input instance If ∈ DTarski ⊆ {0, 1}∗ of Tarski is an encoding of a function
f : [N ]d → [N ]d via a boolean circuit Cf . We can view the problem Tarski as a polynomial local
search problem, as follows:

1. Define the set of “solutions” associated with valid input If to be the disjoint union SIf = S′If ∪
S′′If , where S

′
If

= {x ∈ [N ]d | x ≤ f(x)} and S′′If = {(x, y) ∈ [N ]d×[N ]d | x ≤ y∧f(x) 6≤ f(y)}.
Clearly, Fix(f) ⊆ S′If ⊆ SIf . Let the payoff function gIf : SIf → Z, be defined as follows. For

x ∈ S′If , gIf (x) :=
∑d

i=1 xi; for (x, y) ∈ S′′If , gIf (x, y) := (dN) + 1. We define the neighbors
of solutions as follows. For any x ∈ S′If , if f(x) ≤ f(f(x)) then let the neighbors of x be
the singleton-set NIf (x) := {f(x)}. Note that in this case again f(x) ∈ S′If . Otherwise, if
f(x) 6≤ f(f(x)), then let NIf (x) := {(x, f(x))}. Note that in this case (x, f(x)) ∈ S′′If , since
f(x) 6≤ f(f(x)). For (x, y) ∈ S′′If , let NIf (x, y) := ∅ be the empty set. Thus, the set of local

optima is by definition OIf = {x ∈ S′If |
∑d

i=1 xi ≥
∑d

i=1 fi(x)} ∪ S′′If .

Observe that in fact OIf = Fix(f) ∪ S′′If . Indeed, if x ∈ OIf then x ∈ S′If meaning x ≤ f(x),

and also
∑d

i=1 xi ≥
∑d

i=1 fi(x). But this is only possible if f(x) = x, i.e., x ∈ Fix(f).
Likewise, if (x, y) ∈ OIf then (x, y) ∈ S′′If . On the other hand, if x ∈ Fix(f), then clearly

x ∈ S′If and
∑d

i=1 xi =
∑d

i=1 fi(x), hence x ∈ OIf .

2. There is a polynomial time algorithm ATarski that, given a string If ∈ {0, 1}∗ first determines
whether this is a valid input instance, by checking that it suitably encodes a boolean circuit

3Or, cost function, if we were considering local minimization. But here we focus on local maximization.
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(straight-line program) Cf with (d logN) input gates and the same number of output gates,
and thereby defines a function f : [N ]d → [N ]d. If the input is a valid instance, then ATarski

outputs a solution s0 ∈ SIf , by just letting s0 := 1 ∈ [N ]d be the all 1 vector. Clearly,
1 ≤ f(1), so indeed 1 ∈ S′If ⊆ SIf .

3. There is a polynomial time algorithm BTarski that, given a valid instance If and given a string
s ∈ {0, 1}∗, first decides whether s ∈ SIf . It does so as follows: if s is (a binary encoding of)
x ∈ [N ]d, then BTarski computes f(x) using the given boolean circuit Cf (encoded in instance
If ), and checking whether x ≤ f(x). If instead s = (x, y) ∈ [N ]d × [N ]d, then it checks
whether (x, y) is a witness of non-monotonicity, by computing f(x) and f(y) using Cf , and
checking that both x ≤ y and f(x) 6≤ f(y) hold.

If s ∈ SIf , the algorithm can also easily output the value of the objective gIf (s). Namely, if
s = x ∈ S′If , then gIf (s) :=

∑d
i=1 xi, and if s = (x, y) ∈ S′′If then gIf (s) := dN + 1.

4. Finally, there is a polynomial time algorithm HTarski that, given an instance If ∈ DTarski

and a solution s ∈ SIf , decides whether s ∈ OIf = Fix(f) ∪ S′′If , and otherwise outputs
s′ ∈ NIf (s), such that gIf (s′) > gIf (s). Firstly, if s = (x, y) ∈ S′′If (which we can check as in
the prior item), then clearly s ∈ OIf and there is nothing more to do. If on the other hand
s = x ∈ S′If , the algorithm uses the given circuit Cf to compute f(x), checks first whether
f(x) = x. If so, we are done. If not, it checks whether f(x) ≤ f(f(x)) and if so it outputs
x′ := f(x). In this case, since x ≤ f(x) and x 6= f(x), we indeed have strictly improved the
objective: gIf (x′) =

∑d
i=1 fi(x) >

∑d
i=1 xi = gIf (x). Finally, if f(x) 6≤ f(f(x)) it outputs the

pair (x, f(x)). Note that in this case (x, f(x)) ∈ NIf (x), and that we do strictly improve the
objective value, since gIf ((x, f(x)) = dN + 1 >

∑d
i=1N ≥

∑d
i=1 xi = gIf (x).

We have thus shown that Tarski satisfies all the conditions of being in PLS.

Tarski ∈ PPAD

To show that Tarski ∈ PPAD, we first show that Tarski ∈ PPPAD meaning that the total search
problem Tarski can be solved by a polynomial time algorithm, M, with oracle access to PPAD.
The algorithmM should take an input If ∈ {0, 1}∗, and firstly decide whether it is a valid instance
If ∈ DTarski, and if so it can make repeated, adaptive, calls to an oracle for solving a PPAD total
search problem. After at most polynomial time (and hence polynomially many such oracle calls)
as a function of the input size |If |, M should output either an integer vector x ∈ Fix(f), or else
output a pair of vectors x, y ∈ [N ]d with x ≤ y and f(x) 6≤ f(y), which witness non-monotonicity
of the function f : [N ]d → [N ]d defined by the input instance If .

Once we have established that Tarski ∈ PPPAD, the fact that Tarski ∈ PPAD will follow as
a simple corollary, using a prior result of Buss and Johnson [2], who showed that PPAD is closed
under polynomial-time Turing reductions.

There are a number of equivalent ways to define the total search complexity class PPAD. Rather
than give the original definition ([20]), we will use an equivalent characterization of PPAD (a.k.a.,
linear-FIXP) from [11] (see section 5 of [11]). Informally, according to this characterization, a discrete
total search problem, Π, is in PPAD if and only if it can be reduced in P-time to computing a
Brouwer fixed point of an associated “polynomial piecewise-linear” continuous function that maps a
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non-empty convex polytope to itself. More formally, Π is in PPAD if it satisfies all of the following
conditions:

1. Each valid instance I ∈ DΠ ⊆ {0, 1}∗ can be associated with a “polynomial-time definable”
(see below) piecewise-linear continuous function FI : W (I) → W (I). Here W (I) ⊆ RdI is a
non-empty (rational) convex polytope.

2. There is a polynomial time algorithm, R1
Π, that, given a string I ∈ {0, 1}dI , first decides

whether I is a valid instance in DΠ of Π, and if so, outputs a rational matrix AI ∈ QmI×dI

and a rational vector bI ∈ QdI , such thatW (I) = {x ∈ RdI | AIx ≤ bI} is a non-empty convex
polytope.

3. There is a polynomial time oracle algorithm, R2
Π, that “computes” the piecewise-linear function

FI in the following sense.

For any real vector x ∈ RdI , consider an oracle Ox with the following property: when Ox is
called with a rational vector a ∈ QdI and a rational value c ∈ Q, then the oracle outputs
Ox(a, c) = TRUE if aTx ≤ c, and otherwise it outputs Ox(a, c) = FALSE.

R2
Π(I,Ox), runs in time polynomial in |I|, and hence makes poly(|I|) many calls to the oracle

Ox, for any x ∈ RdI . When given as input a valid instance I ∈ DΠ and oracle access to
Ox for some x ∈ RdI , R2

Π(I,Ox) outputs “No” if x 6∈ W (I), and otherwise, if x ∈ W (I),
then it outputs a rational matrix C ∈ QdI×dI , and a rational vector C ′ ∈ QdI , such that
FI(x) = Cx+ C ′ ∈W (I). (Note that since R2

Π runs in polynomial time in the input size |I|,
the bit encoding sizes of the coefficients in C and C ′ are polynomial in |I|.)
Note that in this sense R2

Π does indeed define the piecewise-linear function FI : W (I) →
W (I). Specifically, for x ∈ W (I), the sequence of (polynomially many) oracle queries made
by R2

Π(I,Ox) defines a system of linear inequalities (with rational, polynomially bounded,
coefficients) satisfied by x which define a “piece” or “cell” such that x ∈ Cx ⊆W (I), and such
that FI is linear on Cx; specifically such that for any y ∈ Cx, FI(y) = Cy + C ′.

4. There is a polynomial time algorithm R3
Π that, given an instance I ∈ DΠ, and given any

rational fixed point x∗ ∈ Fix(FI) ∩QdI , outputs an acceptable output in OI for the instance
I of the total search problem Π.

By Brouwer’s theorem, the set Fix(FI) = {x ∈ W (I) | FI(x) = x} of fixed points of FI is
non-empty. Moreover, because of the “polynomial piecewise-linear” nature of FI , Fix(FI) must also
contain a rational fixed point x∗ ∈ QdI , with polynomial bit complexity as a function of |I| (see
[11], Theorem 5.2). See [11], section 5, for more details on this characterization of PPAD.

Given two vectors l ≤ h ∈ Zd, let L(l, h) = {x ∈ Zd | l ≤ x ≤ h}, and let B(l, h) = {x ∈ Rd |
l ≤ x ≤ h}.

Theorem 3.3. Tarski ∈ PPPAD.

Proof. Suppose we are given an instance If ∈ DTarski of Tarski, corresponding to a function
f : [N ]d → [N ]d (given by a boolean circuit Cf ).

Let a = 1 ∈ Z, and b = N ∈ Zd, denote the all 1, and all N , vectors respectively. We first extend
the discrete function f to a (polynomial piecewise-linear) continuous function f ′ : B(a, b)→ B(a, b),
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by a suitable linear interpolation. By Brouwer’s theorem, f ′ has a fixed point in B(a, b). However,
f ′ may have non-integer fixed points that do not correspond to (and are not close to) any fixed
point of f (indeed, since we do not apriori know that f is monotone, there may not be any integer
fixed points).

Nevertheless, we will show that finding any such fixed point of f ′ allows us to make progress
(via a divide and conquer binary search), towards either finding a discrete fixed point of f (if it is
monotone), or finding witnesses for a violation of monotonicity of f .

We now define f ′ in detail. Consider the following simplicial decomposition4 of B(a, b). For each
i ∈ [d], let ei ∈ {0, 1}d denote the standard unit vector with 0’s in every coordinate except a 1 in the
i’th coordinate. For each integer vector y ∈ L(a, b− 1), and for every permutation π = (π1, . . . , πd)
of [d], define the subsimplex Sy,π as the convex hull of the following d + 1 (affinely independent)
vertices y0, . . . , yd+1 ∈ L(a, b), given by y0 = y, and for i ∈ {1, . . . , d}, yi = yi−1 + eπi .

The union of all d! simplices {Sy,π | π is a permutation of [d]} constitutes a simplicial subdivi-
sion of the d-cube B(y, y+1), and the union of all such simplices, for all y ∈ L(a, b−1) constitutes
a simplicial subdivision of B(a, b). Note the following important property of this simplicial subdi-
vision, which we exploit: the vertices y0, y1, . . . , yd of each subsimplex Sy,π are totally ordered with
respect to coordinate-wise order: y0 ≤ y1 ≤ y2 ≤ . . . ≤ yd.

Given this simplicial subdivision of B(a, b), we define f ′ : B(a, b) → B(a, b) so that it linearly
interpolates f inside each subsimplex Sy,π. Specifically, for any point x ∈ Sy,π, there is a unique
vector λ = (λ0, λ1, . . . , λd) ∈ [0, 1]d+1, such that

∑d
j=0 λj = 1, and such that x =

∑d
j=0 λjy

j . We
define f ′(x) :=

∑d
j=0 λjf(yj). Note that f ′ agrees with f on integer points in L(a, b). Also if x

belongs to several x ∈ Sy,π (i.e. lies on some common faces of the subsimplices), then only the
common vertices will have nonzero coefficients in any subsimplex, thus they all yield the same value
for f ′(x).

Our next task is to show that computing a rational fixed point of f ′(x) is in PPAD, which will
allow us to use the PPAD oracle to find such a rational fixed point. Applying the definition of
PPAD we have given above, all we need to do is to specify a polynomial time oracle algorithm that,
given oracle access Ox to some x ∈ Rd, can first locate the subsimplex Sy,π such that x ∈ Sy,π (or
report that x is not in the domain B(a, b)), and then compute the matrix C and vector C ′ that
specify the affine transformation such that f ′(x) = Cx+C ′. It was explained in [11] (see page 2583,
second paragraph) how to do this for a standard simplicial decomposition, and essentially the same
approach works for the simplicial decomposition we are using here.

Thus, f ′ is a polynomial piecewise-linear Brouwer function, and we can compute a rational fixed
point x∗ ∈ Fix(f ′) for it in PPAD. If x∗ is an integer vector, we are done: we have found a fixed
point of f .

Suppose, on the other hand, that the computed fixed point x∗ of f ′ is non-integer in some
coordinate. It is still useful. Consider the cell C ⊆ Sy,π, defined as the convex hull of the unique
subset Y ′ = {yj1 , yj2 , . . . , yjk} of the vertices Y = {y0, . . . , yd} of Sy,π, such that C contains x∗ in
its strict interior. In other words, x∗ =

∑k
r=1 λjry

jr , such that 0 < λjr < 1 for all r ∈ {1, . . . , k}.
Let u = yjt be the maximum vertex of C, and let v = yjq be the minimum vertex of C (the vertices
of C are ordered since they are a subset of the vertices of Sy,π).

Suppose that f is monotone and f(u)i < ui for some coordinate i. Then f(u)i ≤ ui− 1 because
f(u)i is an integer. Furthermore, for all vertices yjr of C, since yjr ≤ u = yjt , we must also have
fi(y

jr) ≤ fi(u) ≤ ui − 1 ≤ yjri (where the last inequality holds because two vertices of C differ in
4Known as Freudenthal’s simplicial division [15].
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any given coordinate by at most 1). But we have
∑k

r=1 λjry
jr
i = x∗i = f ′(x∗)i =

∑k
r=1 λjrf(yjr)i,

which is impossible, since yjri ≥ f(yjr)i for every r, and y
jt
i > f(yjt)i, and λjt > 0. Thus, since x∗ is

a fixed point of f ′, it can not be the case that f is monotone and f(u)i < ui for some coordinate i.
Therefore, if f is monotone, then f(u) ≥ u (in all coordinates). For a completely analogous reason,
if f is monotone, we also have f(v) ≤ v.

Suppose, on the other hand we either find that f(u) 6≥ u, or that f(v) 6≤ v. Then necessarily, it
must be the case that there are a pair of vertices yjb , yje of the cell C containing x∗ in its interior,
such that yjb ≤ yje but f(yjb) 6≤ f(yje). So, in this case, we examine all such pairs to find such a
pair, we halt and output (yjb , yje) as a witness pair for the non-monotonicity of f .

Assume on the other hand that f(u) ≥ u and f(v) ≤ v. Note that in that case, if f is monotone,
then it maps the sublattice L(u, b) to itself, and it also maps the disjoint sublattice L(a, v) to itself.
Thus, if f is monotone, f must have an integer fixed point in both L(a, v) and L(u, b).

So, we can choose the smaller of these two sublattices, consider the function f restricted to that
sublattice, and continue recursively to find a fixed point in that sublattice (if f is monotone) or
a violation of monotonicity. If f is not monotone, it is possible that it maps some points in the
sublattice L(a, v) (or L(u, b)) to points outside. Therefore, in the recursive call for the sublattice,
when we define the piecewise-linear function f ′ on the corresponding box B(a, v) (or B(u, b)) we
take the maximum with a and minimum with v (or u and b respectively), i.e., threshold it, so that
it maps the box to itself, and hence it is a Brouwer function. When the PPAD oracle gives us back
a fixed point x∗ for this (possibly thresholded) function f ′, we find the vertices yjr of the cell C
that contains x∗ in its strict interior (i.e. the ones that have nonzero coefficients in the convex
combination) and test if f maps all of them within the current box. If this is not the case then
we get a violation of monotonicity: Suppose wlog that the current box is B(a, v) (similarly if it is
B(u, b)). If f(yjr) 6≥ a then (a, yjr) is a violating pair because f(a) ≥ a; if f(yjr) 6≤ v then (yjr , v)
is a violating pair because f(v) ≤ v. Thus, if f(yjr) lies outside the current box, then we return the
discovered violating pair and terminate. Otherwise, the thresholding did not affect the f(yjr) and
f ′(x∗) and we proceed as explained above.

Every iteration decreases the total number of points in our current lattice by a factor of 2, from
the number of points in the original lattice L(a, b). So after a polynomial number of iterations in
(d+logN), we either find a fixed point of f , or we find a witness pair of integer vectors that witness
the non-monotonicity of f .

Corollary 3.4. Tarski ∈ PPAD.

Proof. This follows immediately from Theorem 3.3, combined with a result due to Buss and Johnson
([2], Theorem 6.1), who showed that PPAD is closed under polynomial-time Turing reductions.

4 The 2-dimensional lower bound

Consider a monotone function defined on theN×N grid f : [N ]2 7→ [N ]2. LetA be any (randomized)
black-box algorithm for finding a fixed point of the function by computing a sequence of queries
of the form f(x, y) =?; A can of course be adaptive in that any query can depend in arbitrarily
complex ways on the answers to the previous queries. For example, the divide-and-conquer algorithm
described in the introduction is a black box algorithm. The following result suggests that this
algorithm is optimal for two dimensions.
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Figure 1: A 2-dimensional “herringbone” monotone function.

Theorem 4.1. Given black-box access to a monotone function f : [N ]2 → [N ]2, finding a fixed
point of f requires Ω(log2N) queries (with high probability).

Below, we construct a hard distribution of such functions.

The basic construction

Given a monotone path from (1, 1) to (N,N) on the N ×N grid graph and a point (i∗, j∗) on the
path, we construct f as follows:

• We let (i∗, j∗) be the unique fixed point of f , i.e. f (i∗, j∗) , (i∗, j∗).

• At all other points on the path, f is directed towards the fixed point. For a point (x, y)
on the path that is dominated by (i∗, j∗), we let f(x, y) be the next point on the path, i.e.
f(x, y) = (x+ 1, y) or f(x, y) = (x, y + 1). Similarly, for a point (x, y) that is on the path
and dominates (i∗, j∗), we let f(x, y) be the previous point on the path.

• For all points outside the path, f is directed towards the path. Observe that the path partitions
[N ]2 into three (possibly empty) subsets: below the path, the path, and above the path. For a
point (x, y) below the path, we set f (x, y) , (x− 1, y + 1). Similarly, for a point (x, y) above
the path, f (x, y) , (x+ 1, y − 1).

An example of such a function f : [5]2 → [5]2 is given in Figure 1.

Claim 4.2. For any choice of path and point (i∗, j∗) on the path, f constructed as above is monotone.

Choosing the fixed point In our hard distribution, once we fix a path, we choose (i∗, j∗)
uniformly at random among all points on the path.
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Claim 4.3. Given oracle access to f and the path, any (randomized) algorithm that finds a point
(i′, j′) on the path that is within

√
N (Manhattan distance) from (i∗, j∗) requires querying f at

Ω (logN) points on the path that are at least
√
N apart.

Proof. Observe that once we fix the path, the values of f outside the path do not reveal information
about the location of (i∗, j∗). The lower bound now follows from the standard lower bound for
binary search.

Choosing the central path

Our goal now is to prove that it is hard to find many distant points on the path. To simplify
the analysis, we will only consider the special case where all points (x, y) on the path satisfy
x − y ∈

[
−N1/4, N1/4

]
. We partition the N × N grid into Θ

(√
N
)

regions of the form Ra ,{
(x, y) | x+ y ∈ [a, a+

√
N)
}
. Notice that each region intersects the path at exactly

√
N points.

The path enters each region5 at a point (x, y) for a value x− y chosen uniformly at random among[
−N1/4, N1/4

]
. We will argue (Lemma 4.6 below) that in order to find a point on the path in

any region Ra, the algorithm must query the function at Ω (logN) points in Ra or its neighboring
regions.

Each region is further partitioned into Θ
(
N1/4

)
sub-regions Sa ,

{
(x, y) | x+ y ∈ [a, a+ 2N1/4)

}
.

For each region, we choose a special sub-region uniformly at random. In all non-special sub-regions,
the path proceeds while maintaining x− y fixed, up to ±1. Inside the special sub-region, the value
of x − y for path points changes from the value chosen at random for the current region, to the
value chosen at random for the next region.

Given a choice of random x− y entry point for each region, and a random special sub-region for
each region, we consider an arbitrary path that satisfies the description above. This completes the
description of the construction.

Claim 4.4. Finding the special sub-region in region Ra requires Ω (logN) queries to points in Ra.

Let Sa and Sb be the special sub-regions of two consecutive regions. Let T ,
{

(x, y) | x+ y ∈ [a+ 2N1/4, b)
}

be the union of all the sub-regions between Sa and Sb. Observe that the value of x − y remains
fixed (up to ±1) for all points in the intersection of the path with T . Also, the construction of f
outside Sa ∪ T ∪ Sb does not depend at all on this value.

Claim 4.5. In order to find any point in the intersection of the path and T , the algorithm must
query either Ω (logN) points from T , or at least one point from Sa or Sb.

By Claim 4.4, finding Sa or Sb requires at least Ω (logN) queries to the regions containing them.
Therefore, the above two claims together imply:

Lemma 4.6. In order to query a point in the intersection of the path and region Ra, any algorithm
must query at least Ω (logN) points in Ra or its neighboring regions.

Therefore, in order to find Ω (logN) points on the path that are at least
√
N apart, the algorithm

must make a total of Ω
(
log2N

)
queries, completing the proof of Theorem 4.1.

5For the first and last region, the path is obviously forced to start at (1, 1) (respectively end at (N,N)); but those
two regions can only account for two of the Ω (logN) distant path points required by Claim 4.3, so we can safely
ignore them.
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4.1 An alternative proof

Theorem 4.7. Any deterministic black box algorithm for finding a Tarski fixed point in two dimen-
sions needs Ω(log2N) queries.

This proof appears to be more promising to generalize to more dimensions: its gist is that any
such algorithm must solve Ω(logN) independent one-dimensional problems.

Proof. We shall describe a simple strategy for the adversary that achieves this bound. The adver-
sary’s strategy is to again commit to “herringbone” functions as in Figure 1: the function consists
of a main path consisting of a monotonically increasing path from (1, 1) to a point x∗, and a mono-
tonically decreasing path from (N,N) to x∗, with each step along the path, except for x∗, changing
one dimension of the argument by one unit. For all points (x, y) off the main path, f(x, y) is either
(x − 1, y + 1) or (x + 1, y − 1), depending on whether (x, y) is below or above the main path,
respectively; thus, the graph of the function is again herringbone-like, consisting of the main path,
plus 45o paths towards the main path (see Figure 1).

For the sake of exposition and geometric intuition, we shall use a simple notation based on the
eight cardinal directions6: N, S, E, W, NW, SE, SW, NE. Thus, the answer (x − 1, y + 1) to the
query f(x, y) will be denoted NW. To summarize the adversary’s strategy, the answer to a query
f(x, y) is either SE or NW, thus declaring that (x, y) is not on the path, unless both answers would
contradict monotonicity, in which case the adversary must choose one of the principal directions,
N, S, E, W. A query of the latter type is termed a decisive query. Note that the answer to any
non-decisive query f(x, y) effectively “removes from consideration” a rectangular area of the grid —
if f(x, y) = NW , the block {(x′, y′) : x′ ≥ x, y′ ≤ y}, that is the whole block to the SE of (x, y), is
excluded for further consideration in the sense that the main path can no longer intersect it, and all
points (x′, y′) in this block must have f(x′, y′) = NW .7 At any time, the union of these forbidden
rectangles consist of an upper left region that contains all points that are above and/or to the left
of the query points (x, y) that point SE (i.e. such that f(x, y) = SE) and a lower right region that
contains all points that are below or to the right of query points that point NW. The two forbidden
regions are bounded by monotone staircase curves, and the main path must lie strictly between
these two curves.

A query at point q = (x, y) is decisive precisely when both points (x−1, y+1) and (x+1, y−1)
to the NW and SE of q belong to the forbidden area, the first one to (the boundary of) the upper
left region and the second one to the lower right region. Thus, the main path must pass through
the query point q and now the adversary must decide whether the fixed point x∗ is above or below
(x, y).

How is this decision, as well as the decisions off the path (the choice between NW and SE) made?
At any query, the algorithm has effectively determined that the part of the main path of current
interest (certain to include the fixed point) is one of the possible monotonically increasing paths
from some point (x, y) (the SW-most part of the domain), either the origin or a past decisive query,
to some point (x̄, ȳ) > (x, y) (the NE-most point of the domain) that avoids all blocks removed by
past non-decisive queries. We call this region the current domain. During a decisive query q, the
algorithm has to choose: which of the two subdomains of the current domain, the one to the SW

6We will try to avoid confusion between the direction N (North), and the number N . That is why we use boldface
for the basic directions.

7Strictly speaking point on the block’s boundary do not have this restriction, but let us assume that they do, as
this simplification favors the algorithm.
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or the one to the NE, will be the new domain? The answer is whichever subdomain has the largest
number of potential main paths. Since there is at least one potential main path remaining, at least
one of the directions S, W must be available at q (i.e., the point below or to the left of q = (x, y)
is not forbidden - it is possible that both are available), and similarly at least one of the directions
N, E must be available at q. The adversary compares the number of feasible monotone paths in
the lower and upper subdomain (i.e. the number of feasible monotone paths between (x, y) and q,
to the number between q and (x̄, ȳ)), continues in the subdomain with the largest number of paths,
and if both choices for direction are available in this subdomain, then it chooses again the direction
with the larger number of paths.

During any non-decisive query, the same criterion is used: The adversary will choose the answer
among NW and SE that will result in a new domain (the previous domain with one block removed)
with the largest number of paths that avoid all blocks, among the two possible choices. But there
is an exception: If the domain is becoming very narrow — that is, if the NW or the SE forbidden
region is very close to the query point q - then a different rule is used. Specifically, if the NW-SE line
through the query point q hits the boundary of the forbidden region on either side within distance
≤ w/2 = Nα/2, where α < 1 (for concreteness, assume for the rest of the proof that α = 1/2 and we
measure for simplicity the length of diagonal paths in the L∞ metric), then the adversary chooses
the direction NW or SE from q that is furthest from the forbidden region (breaking ties arbitrarily).
We call such queries short queries.

This completes the description of the adversary’s strategy. The potential function that will
inform our lower bound is the logarithm of the number of main paths is the current domain. That
is, for each time t, we define Lt as the logarithm of the number of monotonically increasing paths
in the domain at time t (that is to say, just before the t-th query). In the beginning, L1 ≥ N —
actually, it is 2N− 1

2 logN+o(1), since the number of paths is
(

2N
N

)
. When the algorithm concludes,

Lt = 0 (since there is only one path left, the one containing the fixed point). If the t-th query is
a decisive query, then Lt+1 ≥ Lt

2 − 1, since the number of main paths before query t was precisely
the product of the number of paths in the upper and lower subdomain, the adversary will choose
to continue in the subdomain with the largest of the two (thus, with at least the square root of the
number of paths), and if there are two available choices of direction in the subdomain, it chooses
the direction with the larger number of paths.

If the t-th query q is a non-decisive and non-short query, then all feasible paths, except for those
that go through the query point q, belong obviously to either the feasible domain that results if
f(q) = NW or the domain that results if f(q) = SE. Since q is not a short query, the number of
feasible paths that go through q is a small fraction of the total number of feasible paths. Since the
adversary chooses the direction among NW, SE with the larger number of paths, it follows that this
number is approximately at least one half of the paths, hence certainly Lt+1 ≥ Lt − 2.

The following lemma describes what happens at short queries:

Lemma 4.8. If t is a short query, then Lt+1 ≥ Lt −Nα logN .

Proof. Consider a short query q and the NW to SE line through it, which intersects the boundary
of the upper left forbidden region at a and the boundary of the lower right region at b. Suppose
wlog that the adversary in this case chose f(q) = NW , that is, |qa| ≥ |qb|, where |qa|, |qb| is the
length of the segments qa, qb (in L∞ metric). Since q is a short query, d = |qb| ≤ w/2. Let s be
the minimum point of the current domain, and u the maximum. For a point p of the segment ab,
we let np denote the number of monotone feasible paths from s to u that go through p. Let Q be
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the number of paths that go through a point in the qa segment, and Q′ the number of paths that
go through a point in the qb segment.

Consider a point p′ = (xp′ , yp′) ∈ qb and the point p = (xp, yp) = (xp′ − d, yp′ + d) that is NW
of p′ at distance d. The point p is in qa since d = |qb| ≤ |qa|. Map every s− u path π′ through p′

to the path π through p, which agrees with π′ until it reaches x−coordinate xp for the first time,
then π moves up vertically to p, then horizontally until it meets again π′, and then follows π′ until
the end (see Figure 2).

q 
a 

b 
p’ 

s 

u 

p 

z1 

z2 

Figure 2:

Let z1 be the first point of π with x−coordinate xp, and let z2 be the last point of π with
y-coordinate yp. How many paths π′ through p′ get mapped to the same path π through p? All
these paths π′ differ only in their portion between z1 and z2. The number of monotone paths from
z1 to p′ is at most

(
N
d

)
, because such a path amounts to choosing d E moves out of at most N

steps (and some of these paths may in fact not be feasible), and similarly the number of monotone
paths from p′ to z2 is at most

(
N
d

)
. Therefore, np′ ≤

(
N
d

)2 · np, for every p′ ∈ qb, and consequently
Q′ ≤

(
N
d

)2 ·Q. We have to account also for the s−u paths through the query point q. If |qa| > |qb|,
then we can map them to the paths through the point at distance d NW of q, but even if |qa| = |qb|,
note similarly that the number of paths through q is at most N2 times the number of paths through
the point immediately NW of it. In any case, since d ≤ w/2, the total number of paths before the
t-th query is 2Lt ≤ 2

(
N
w/2

)2 ·Q < Nw ·Q = Nw · 2Lt+1 . The lemma follows.

The rest of the lower bound argument proceeds as follows: We shall show that there are at least
Θ(logN) decisive queries such that we can “charge” to each of them Θ(logN) other queries — nat-
urally, a query should be charged to only one decisive query, or at most a constant number of them.
The theorem then follows immediately. The first part, the existence of Θ(logN) decisive queries,
is already obvious; the Θ(logN) queries that can be charged to each (without much overcharging)
will take a little more care to establish. We show first that there is a set of Ω(logN) decisive queries
that are w far from each other in both coordinates.

Lemma 4.9. If the total number of queries is no more than log2N , then there is a set S of K =
Ω(logN) decisive queries {q1 = (x1, y1), . . . , qK = (xK , yK)} such that, for any 1 ≤ i 6= j ≤ K we
have that |xi − xj |, |yi − yj | > w.

Proof. Any decisive query qt = (x, y) takes place within a domain Dt with a SW-most point (x, y)
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and a NE-most point (x̄, ȳ). We claim that, if x is within w of x, x̄, or if y is within w of y, ȳ,
then this query decreases Lt by at most w logN . In proof, if x is within w of x̄ the number of
paths between (x, y) and (x̄, ȳ) is at most

(
N
w

)
≤ Nw, and a similar argument holds for the other

directions. Let us call such decisive queries ineffective, and otherwise they are called effective.
In summary, we have a potential function that starts at the value N , and then is decreased in at

most log2N steps either (1) by a factor of no more than two, minus additive 1 (decisive queries that
are effective), or (2) by an additive term of at most Nα logN (non-decisive, or ineffective decisive
queries). It follows from arithmetic that there must be at least log

(
N1−α

log3N

)
queries of type (1).

Hence there is a set S of K = Ω(logN) decisive queries that are effective. At the time each of
these queries was issued, it was farther than w from the SW and NE corners of its domain, in both
the x and the y direction, and thus also farther than w from any other previous queries — and this
includes the previous decisive queries in S. Hence these queries are all farther than w away from
each other, as claimed in the lemma.

We show now how to assign Ω(log n) non-decisive queries to each ‘effective’ query q in the set S
of the previous lemma. These are essentially the trace of the binary search that helped the algorithm
corner the adversary into q. We will refer in the following to the two boundary half-lines of the
forbidden block generated by a non-decisive query as its walls. Consider a decisive effective query
q = (x, y) at time t.

Lemma 4.10. For every decisive effective query point q there are Ω(logN) walls, generated by
non-decisive queries, that intersect the NW-SE line through q within a distance w/2 from q.

Proof. Since the query point q = (x, y) is decisive, the points p1 = (x− 1, y+ 1), p2 = (x+ 1, y− 1)
that are at distance 1 NW and SE from q belong to the forbidden region, hence there exist two walls
within a distance of 1 from q on the NW-SE line, on either side of q, corresponding to two queries
q1 = (x1, y1) and q2 = (x2, y2), at times t1, t2. Since q is effective, the queries q1, q2 are non-decisive.
We will use induction on k = 2, . . . , blog(w/2)c, to show that there is a set Sk of k walls, generated
by non-decisive queries, that intersect the NW-SE line through q on both sides, within an interval
that includes the point q and has length δk ≤ 2k (in the L∞ metric). This claim for k = blog(w/2)c
implies immediately the lemma. For the basis, k = 2, we let S2 contain the walls at p1 and p2.

For the induction step, consider the set Sk of walls. Let tl be the earliest time that generated
a wall of Sk that intersects the NW-SE line through q left of q (i.e. NW of q), let pl be the
intersection point and ql the query point that generated the wall. Similarly, let tr be the earliest
time that generated a wall of Sk that intersects the NW-SE line through q right of q (i.e. SE of q),
let pr be the intersection point and qr the query point that generated the wall.

Suppose without loss of generality that tl > tr. Why did the adversary choose SE in response
to query ql at time tl? Since tl > tr, the walls of qr existed at time tl. The wall through pl is either
vertical, in which case ql is below pl, or the wall is horizontal, in which case ql is to the right of pl
(see Figure 3). In either case, it is easy to see that the line from ql in the SE direction hits a wall
of the query point qr within distance at most the length |plpr| of the segment (pl, pr), thus at most
2k; Fig. 3 shows the geometry when the wall at pr is vertical (the case of a horizontal wall at pr is
symmetric).

Since the line from ql in the SE direction hits a wall within 2k ≤ w/2, q is a short query. Since
the adversary chooses SE at ql, the line from ql in the NW direction must hit also within distance at
most 2k another wall, generated by a query point qk+1 at an earlier time tk+1 < tl. Since ql is below
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or to the right of pl, the NW-SE line through q hits a wall of qk+1 at a point pk+1 that is at most
2k beyond pl. Adding this wall to Sk yields the set Sk+1 that satisfies the induction hypothesis.

We can now complete the proof of Theorem 4.7. By Lemma 4.10, to every effective decisive
query q we can assign Ω(logN) non-decisive queries that generate walls within w/2 of q, hence their
x− or y−coordinate is within w/2 of that of q. Since the Ω(logN) effective queries of the set S of
Lemma 4.9 are more than w far from each other in both coordinates, a non-decisive query can be
close to at most one query of S in x-coordinate and at most one in y-coordinate. Therefore, there
are Ω(log2N) distinct non-decisive queries.

5 Supermodular Games

5.1 A brief intro to supermodular games

A supermodular game is a game in which the set Si of strategies of each player i is a complete lattice,
and the utility (payoff) functions ui satisfy certain conditions. Let k be the number of players and
let S = Πk

i=1Si be the set of strategy profiles. As usual, we use si to denote a strategy for player i
and s−i to denote a tuple of strategies for the other players. The conditions on the utility functions
ui are the following:
C1. ui(si, s−i) is upper semicontinuous in si for fixed s−i, and it is continuous in s−i for each fixed
si, and has a finite upper bound.
C2. ui(si, s−i) is supermodular in si for fixed s−i.
C3. ui(si, s−i) has increasing differences in si and s−i.

A function f : L→ R is supermodular if for all x, y ∈ L, it holds f(x)+f(y) ≤ f(x∧y)+f(x∨y).
A function f : L1×L2 → R, where L1, L2 are lattices, has increasing differences in its two arguments,
if for all x′ ≥ x in L1 and all y′ ≥ y in L2, it holds that f(x′, y′)− f(x, y′) ≥ f(x′, y)− f(x, y).

The broader class of games with strategic complementarities (GSC) relaxes somewhat the con-
ditions C2 and C3 into C2’, C3’ which depend only on ordinal information on the utility functions,
i.e. how the utilities compare to each other rather than their precise numerical values. The super-
modularity requirement of C2 is relaxed to quasi-supermodularity, where a function f : L → R is
quasi-supermodular if for all x, y ∈ L, f(x) ≥ f(x ∧ y) implies f(y) ≤ f(x ∨ y), and if the first in-
equality is strict, then so is the second. The increasing differences requirement of C3 is relaxed to the
single-crossing condition, where a function f : L1 × L2 → R, satisfies the single crossing condition,
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if for all x′ > x in L1 and all y′ > y in L2, it holds that f(x′, y) ≥ f(x, y) implies f(x′, y′) ≥ f(x, y′),
and if the first inequality is strict then so is the second. All the structural and algorithmic properties
below of supermodular games hold also for games with strategic complementarities.

We will consider here games where each Si is a discrete (or continuous) finite box in di dimensions
of size N in each coordinate. We let d =

∑k
i=1 di be the total number of coordinates. In the discrete

case, condition C1 is trivial. Condition C2 is trivial if di = 1 (all functions in one dimension are
supermodular), but nontrivial for 2 or more dimensions. C3 is nontrivial.

Supermodular games (and GSC) have pure Nash equilibria. Furthermore, the pure Nash equilib-
ria form a complete lattice [17], thus there is a highest and a lowest equilibrium. Another important
property is that the best response correspondence βi(s−i) for each player i has the property that
(1) both supβi(s−i) and inf βi(s−i) are in βi(s−i), and (2) both functions supβi(·) and inf βi(·) are
monotone functions [24]. The function β̄(s) = (supβ1(s−1), . . . , supβk(s−k)) of the supremum best
responses is a monotone function from S to itself, and its greatest fixed point is the highest Nash
equilibrium of the game. The function β(s) = (inf β1(s−1), . . . , inf βk(s−k)) of the infimum best
responses is also a monotone function, and its least fixed point is the lowest Nash equilibrium of
the game.

Example 5.1. (A simplified Diamond search model [17].) There are k players (businesses). Each
player i ∈ [k] can exert some amount of “effort”, si ∈ [0,mi], wheremi > 0, to find a business partner.
So, the strategy space Si of player i is the closed bounded interval [0,mi]. Any player i incurs a
cost Ci(si) for exerting effort si, where we assume Ci(·) is some arbitrary continuous function (we
do not necessarily assume that Ci(si) is increasing in si; this is not needed). The payoff to player
i depends also on how much effort others are putting into finding a business partner. Specifically,
for each player i, we assume that for some αi > 0 the utility function ui(s1, . . . , sk) for player i is
given by:

ui(s) := αi · si · (
∑
j 6=i

sj)− Ci(si)

Let us check that this is a supermodular game. Clearly the strategy space Si = [0,mi] of each player
(a closed interval) is a complete lattice.
C1. condition C1 certainly holds, since in fact ui(si, s−i) is continuous in both si and s−i, and has
a finite upper bound (because the strategy spaces of all players are bounded intervals).
C2. condition C2 holds vacuously, because for fixed s′−i, the function f(si) := ui(si, s

′
−i) is a func-

tion in a single real-valued parameter, si, and any such function is supermodular, because for all
si, s

′
i ∈ Si, f(si) + f(s′i) = f(min{si, s′i}) + f(max{si, s′i}) = f(si ∧ s′i) + f(si ∨ s′i).

C3. To see that condition C3 holds, i.e., that the payoff functions ui(si, s−i) have increasing dif-
ferences in si and s−i, suppose that s′i ≥ si and s′−i ≥ s−i (coordinate-wise inequality). Then note
that we have:

ui(s
′
i, s
′
−i)− ui(si, s′−i) = αis

′
i(
∑
j 6=i

s′j)− Ci(s′i)− (αisi(
∑
j 6=i

s′j)− Ci(si))

= αi(s
′
i − si)(

∑
j 6=i

s′j)− Ci(s′i) + Ci(si)

≥ αi(s
′
i − si)(

∑
j 6=i

sj)− Ci(s′i) + Ci(si)

= ui(s
′
i, s−i)− ui(si, s−i)
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5.2 Complexity of equilibrium computation in supermodular games

Given a supermodular game, the relevant problems include: (a) find a Nash equilibrium (anyone)8,
and (b) find the highest or the lowest equilibrium. In the case of continuous domains, we again have
to relax to an approximate solution. We assume that we have access to a best response function,
e.g. β̄(·) and/or β(·), as an oracle or as a polynomial-time function. The monotonicity of these
functions implies then easily the following:

Proposition 5.2. 1. The problem of computing a Nash equilibrium of a k-player supermodular
game over a discrete finite strategy space Πk

i=1[N ]di reduces to the problem of computing a fixed
point of a monotone function over [N ]d where d =

∑k
i=1 di. Computing the highest (or lowest) Nash

equilibrium reduces to computing the greatest (or lowest) fixed point of a monotone function.
2. For games with continuous box strategy spaces, Πk

i=1[1, N ]di , and Lipschitz continuous utility
functions with Lipschitz constant K, the problem of computing an ε-approximate Nash equilibrium
reduces to exact fixed point computation point for a monotone function with a discrete finite domain
[NK/ε]d.

Proof. 1. Follows from the monotonicity of β̄(·) and β(·). If s is fixed point of β̄(·), then si =
supβi(s−i) is a best response to s−i for all i (since supβi(s−i) ∈ βi(s−i)), therefore s is a Nash
equilibrium of the game. The GFP of β̄(·) is the highest Nash equilibrium. Similarly, every fixed
point of β(·) is an equilibrium of the game, and the LFP of β(·) is the lowest equilibrium.

2. Suppose that the utility functions are Lipschitz continuous with Lipschitz constant K. To
compute an ε-approximate Nash equilibrium of the game, it suffices to find a ε/K-approximate
fixed point of the function β̄(·). For, if s is such an approximate fixed point and s′ = β̄(s), then
|s′ − s| ≤ ε/K in every coordinate. Hence |ui(si, s−i)− ui(s′i, s−i)| ≤ ε, and s′i is a best response to
s−i, hence s is an ε-approximate equilibrium. Computing an ε/K-approximate fixed point of the
function β̄(·) on the continuous domain, reduces by Proposition 2.2 to the exact fixed point problem
for the discrete domain [NK/ε]d.

Not every monotone function can be the (sup or inf) best response function of a game. In
particular, a best response function has the property that the output values for the components
corresponding to a player depend only on the input values for the other components corresponding
to the other players. Thus, for example, for two one-dimensional players, if the function f(x, y)
is the best response function of a game, it must satisfy f1(x, y) = f1(x′, y) for all x, x′, y, and
f2(x, y) = f2(x, y′) for all x, y, y′. This property helps somewhat in improving the time needed to
find a fixed point, and thus an equilibrium of the game, as noted below. For example, in the case
of two one-dimensional players, an equilibrium can be computed in O(logN) time, instead of the
Ω(log2N) time needed to find a fixed point of a general monotone function in two dimensions.

Theorem 5.3. Given a supermodular game with two players with discrete strategy spaces [N ]di ,
i = 1, 2 with access to the sup (or inf) best response function β̄(·) (or β(·)), we can compute an
equilibrium in time O((logN)min(d1,d2)). More generally, for k players with dimensions d1, . . . , dk,
an equilibrium can be computed in time O((logN)d

′
), where d′ =

∑
i di −maxi di.

8Whenever we speak of finding a Nash Equilibrium (NE) for a supermodular game, we mean a pure NE, as we
know that these exists.
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Proof. Suppose that we have access to the sup best response β̄(·). Assume without loss of generality
that the first player has the maximum dimension, d1 = maxi di. We apply the divide-and-conquer
algorithm, but take advantage of the property of the monotone function β̄ that the first d1 com-
ponents of β̄(x) do not depend on the first d1 coordinates of x. As a consequence, for any fixed
assignment to the other coordinates, i.e. choice of a strategy profile s−1 for all the players except
the first player, the induced function on the first d1 coordinates maps every point to the best re-
sponse β̄1(s−1) of player 1. Thus the fixed point of the induced function is simply β̄1(s−1), it can be
computed with one call to β̄, and there is no need to recurse on the first d1 coordinates. It follows
that the algorithm takes time at most O((logN)d

′
), where d′ =

∑
i di −maxi di.

Conversely, we can reduce the fixed point computation problem for an arbitrary monotone
function to the equilibrium computation problem for a supermodular game with two players.

Theorem 5.4. 1. Given a monotone function f on [N ]d (resp. [1, N ]d) we can construct a super-
modular game G with two players, each with strategy space [N ]d (resp. [1, N ]d), so that the equilibria
of G correspond to the fixed points of f .

2. More generally, the fixed point problem for a monotone function f in d dimensions can be
reduced to the equilibrium problem for a supermodular game with any number k ≥ 2 of players with
any dimensions d1, . . . , dk, provided that

∑
i di ≥ 2d and

∑
i di −maxi di ≥ d.

Proof. 1. We will define the utility functions ui so that the best responses βi of both players are
functions (i.e. are unique). For player 1, the best response will be β1(y) = y, for all y ∈ [N ]d, and
for player 2, the best response will be β2(x) = f(x), for all x ∈ [N ]d. If x is a fixed point of f ,
then (x, x) is an equilibrium of the game, since β(x, x) = (x, f(x)) = (x, x). Conversely, if (x, y) is
an equilibrium of the game, then β(x, y) = (x, y), therefore x = y and y = f(x), hence x = f(x).
Thus, the set of equilibria of G is {(x, x)|x ∈ Fix(f)}.

The utility function for player 1 is set to u1(x, y) = −(x− y)2 = −
∑d

j=1(xj − yj)2. The utility
function for player 2 is u2(x, y) = −(f(x)−y)2 = −

∑d
j=1(fj(x)−yj)2. Obviously, the best response

functions are as stated above, β1(y) = y and β2(x) = f(x).
The utility functions u1, u2 satisfy condition C2 with equality. For example, to check u2 (u1

is similar), fix a x and consider two values y, y′. For every j = 1, . . . , d, we have −(fj(x) −
yj)

2 − (fj(x)− y′j)2 = −(fj(x)−max(yj , y
′
j))

2 − (fj(x)−min(yj , y
′
j))

2. Summing over all j yields:
−(f(x)− y)2 − (f(x)− y′)2 = −(f(x)−max(y, y′))2 − (fj(x)−min(y, y′))2.

To verify condition C3 for u2, consider any x′ ≥ x and y′ ≥ y. We have u2(x′, y′)− u2(x, y′)−
(u2(x′, y)−u2(x, y)) = −

∑d
j=1(fj(x

′)−y′j)2+
∑d

j=1(fj(x)−y′j)2+
∑d

j=1(fj(x
′)−yj)2−

∑d
j=1(fj(x)−

yj)
2 =

∑d
j=1 2(y′j − yj)(fj(x′) − fj(x)) ≥ 0, where the last inequality holds because y′ ≥ y and

f(x′) ≥ f(x) since x′ ≥ x and f is monotone. Similarly, condition C3 can be verified for u1.
2. Order the players in increasing order of their dimension, let T be the ordering of all the∑k
i=1 di coordinates consisting first of the set Co(1) of coordinates of player 1 (in any order), then

the set Co(2) of coordinates of player 2, and so forth. Number the coordinates in the order T from
1 to

∑k
i=1 di, and label them cyclically with the labels 1, . . . , d.

We define the (unique) best response function β as follows. For every coordinate j ≤ d (in the
ordering T ), we set βj(x) = fj(x

′), where x′ is a subvector of x with d coordinates that have distinct
labels 1, . . . , d and which belong to different players than coordinate j. The subvector x′ is defined
as follows. Suppose that coordinate j belongs to player r (j ∈ Co(r)), and let t =

∑r−1
i=1 di. If

dr ≤ d, then x′ is the subvector of x that consists of the first t coordinates (in the order T ) and the
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coordinates t + 1 + d, . . . , 2d; note that all these coordinates do not belong to player r. If dr > d,
then r < k (since

∑
i di − maxi di ≥ d). In this case, let x′ be the subvector of x consisting of

the last d coordinates (in T ); all of these belong to player k 6= r. For coordinates j > d, we set
βj(x) = xj′ , where j′ ∈ [d] is equal to j mod d, unless j′ belongs to the same player r as j, in which
case dr > d, hence r 6= k; in this case we set βj(x) = xj” for some (any) coordinate j” of the last
player k that is labeled j′.

We define the utility functions of the players so that they yield the above best response function
β. Namely, we define the utility function of player i to be ui(x) = −

∑
j∈Co(i)(xj − βj(x))2. It can

be verified as in part 1 that the utility functions satisfy conditions C2 and C3. It can be easily seen
also that at any equilibrium of the game, all coordinates with the same label must have the same
value, and the corresponding d-vector x is a fixed point of f . Conversely, for any fixed point x of
f , the corresponding strategy profile of the game is an equilibrium.

Since the 2-dimensional monotone fixed point problem requires Ω(log2N) queries by Theorem
4.1, it follows that the equilibrium problem for two 2-dimensional players also requires Ω(log2N)
queries, which is tight because it can be also solved in O(log2N) time by Theorem 5.3. Similarly,
for higher dimensions d, if the monotone fixed point problem requires Ω(logdN) queries then the
equilibrium problem for two d-dimensional players is also Θ(logdN).

The same reduction from monotone functions to supermodular games of Theorem 5.4, combined
with Proposition 2.1 implies the hardness of computing the highest and lowest equilibrium.

Corollary 5.5. It is NP-hard to compute the highest and lowest equilibrium of a supermodular
game with two 1-dimensional players with explicitly given polynomial-time best response (and utility)
functions.

6 Condon’s and Shapley’s stochastic games reduce to Tarski

In this section we show that computing the exact (rational) value of Condon’s simple stochastic
games ([4]), as well as computing the (irrational) value of Shapley’s more general (stopping/discounted)
stochastic games [21] to within a given desired error ε > 0 (given in binary), are both polynomial
time reducible to Tarski.

6.1 Condon’s simple stochastic games reduce to Tarski

Recall that a simple stochastic game9 (SSG) is a 2-player zero-sum game, played on the vertices of
an edge-labeled directed graph, specified by G = (V, V0, V1, V2, δ), whose vertices V = {v1, . . . , vn}
include two special sink vertices, a 0-sink, vn−1, and a 1-sink, vn, and where the rest of the vertices
V \ {vn−1, vn} = {v1, . . . , vn−2} are partitioned into three disjoint sets V0 (random), V1 (max), and
V2 (min). The labeled directed edge relation is δ ⊆ (V \ {vn−1, vn}) × ((0, 1] ∪ ⊥) × V . For each
“random” node u ∈ V0, every outgoing edge (u, pu,v, v) ∈ δ is labeled by a positive probability
pu,v ∈ (0, 1], such that these probabilities sum to 1, i.e.,

∑
{v∈V |(u,pu,v ,v)∈δ} pu,v = 1. We assume,

9The definition we give here for SSGs is slightly more general than Condon’s original definition in [4]. Specifically,
Condon allows edge probabilities of 1/2 only, and also assumed that the game is a “stopping game”, meaning it halts
with probability 1, regardless of the strategies of the two players. It is well known that our more general definition
does not alter the difficulty of computing the game value and optimal strategies: solving general SSGs can be reduced
in P-time to solving SSGs in Condon’s more restricted form.
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for computational purposes, that the probabilities pu,v are rational numbers (given as part of the
input, with numerator and denominator given in binary). The outgoing edges from “max” (V1) and
“min” (V2) nodes have an empty label, “⊥”. We assume each vertex u ∈ V \ {vn−1, vn} has at least
one outgoing edge. Thus in particular, for any node u ∈ V1 ∪ V2 there exists an outgoing edge
(u,⊥, v) ∈ δ for some v ∈ V . Finally, there is a designated start vertex s ∈ V .

A play of the game transpires as follows: a token is initially placed on s, the start node.
Thereafter, during each “turn”, when the token is currently on a node u ∈ V , unless u is already a
sink node (in which case the game halts), the token is moved across an outgoing edge of u to the
next node by whoever “controls” u. For a random node u ∈ V0, which is controlled by “nature”, the
outgoing edge is chosen randomly according to the probabilities (pu,v)v∈V . For u ∈ V1, the outgoing
edge is chosen by player 1, the max player, who aims to maximize the probability that the token
will eventually reach the 1-sink. For u ∈ V2, the outgoing edge is chosen by player 2, the min player,
who aims to minimize the probability that the token will eventually reach the 1-sink. The game
halts if the token ever reaches either of the two sink nodes.

For every possible start node s = vi ∈ V , this zero-sum game has a well defined value, q∗i ∈ [0, 1].
This is, by definition, a probability such that player 1, the max player (and, respectively, player 2,
the min player) has a strategy to “force” reaching the 1-sink with probability at least (respectively,
at most) q∗i , irrespective of what the other player’s strategy is. In other words, these games are
determined. Moreover q∗i is a rational value whose encoding size, with numerator and denominator
in binary, is polynomial in the bit encoding size of the SSG ([4]). Furthermore, both players have
deterministic, memoryless (a.k.a., pure, positional) optimal strategies in the game (which do not
depend on the specific start node s), in which for each vertex u ∈ V1 (or u ∈ V2) the max player
(respectively the min player) chooses the same specific outgoing edge every time the token visits
vertex u, regardless of the prior history of play prior to that visit to u.

Given an SSG, the goal is to compute the value of the game (starting at each vertex). Condon
([4]) already showed that the problem of deciding whether the value is > 1/2 is in NP ∩ co-NP,
and it is a long-standing open problem whether this is in P-time. Moreover, the search problem of
computing the value for an SSG is known to be in both PLS and PPAD (see, e.g., [26] and [11]).

Proposition 6.1. The following total search problem is polynomial-time reducible to Tarski: Given
an instance G of Condon’s simple stochastic game, and given a start vertex s = vi ∈ V , computing
the exact (rational) value q∗i of the game.

Proof. Let x = (x1, . . . , xn) be an n-vector of variables. The n-vector q∗ of values, q∗i , of the SSG
starting at each vertex vi, is given by the least fixed point (LFP) solution of the following monotone
min-max-linear system of n equations in n unknowns:

xi =



∑
{vj∈V |(vi,pvi,vj ,vj)∈δ}

pvi,vjxj if vi ∈ V0

max{xj | (vi,⊥, vj) ∈ δ} if vi ∈ V1

min{xj | (vi,⊥, vj) ∈ δ} if vi ∈ V2

0 if vi = vn−1 is the 0-sink
1 if vi = vn is the 1-sink

We denote this system of equations by x = F (x). Note that F (x) defines a monotone map
F : [0, 1]n → [0, 1]n mapping the complete lattice [0, 1]n (under coordinate-wise order) to itself.
Thus by Tarski’s theorem it has a least (as well as greatest) fixed point. It is well known that the
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least fixed point (LFP) is q∗.10

Consider now the “β-discounted” (or “β-stopping”) version of these equations, x = (1− β)F (x).
where each equation now has the form xi = (1− β)Fi(x), for a given discount value β ∈ (0, 1). We
can also view these equations as corresponding to a modified β-stopping version, Gβ , of the original
SSG, G, where at each vertex there is a direct probability β of immediately transitioning to the
0-sink; and with the remaining probability, (1 − β), there remain exactly the same possibilities as
before in G.)

Letting F β(x) := (1−β)F (x), note that F β : [0, 1]n → [0, 1]n defines both a monotone map and
a contraction map with respect to the l∞ norm. Specifically, for x, y ∈ [0, 1]n, ‖F β(x)−F β(y)‖∞ ≤
(1 − β)‖x − y‖∞. Hence, by Banach’s fixed point theorem, x = F β(x) has a unique fixed point
solution, qβ ∈ [0, 1]n (which is also both the least and greatest fixed point of x = F β(x) in [0, 1]n).
The vector qβ corresponds to the game values of the β-stopping game Gβ , starting at each vertex.

Let |G| denote the bit encoding size of the given SSG, G. There is a fixed polynomial, h() such
that for any SSG, G, the denominator of the rational values q∗i is at most 2h(|G|). If we apply this
to the already β-discounted SSG, Gβ , then this says that the denominators of the values qβi are at
most 2h(|G|+log(1/β)).

Moreover, for any SSG G, there is also a fixed polynomial, r(x), such that given a rational vector
q′ ∈ [0, 1]n, such that ‖q∗ − q′‖∞ < 2−r(|G|), the closest rational number to q′i with denominator at
most 2h(|G|) is q∗i .

It is also known (see, e.g., Lemma 8 in [4])11 that there is some fixed polynomial t(·), such that
if β = ε2−t(|G|), for any ε ∈ (0, 1), then ‖q∗ − qβ‖∞ < ε/2.

Thus if we let ε = 2−r(|G|), and β = ε2−t(|G|), then not only do we have ‖q∗ − qβ‖∞ < 2−r(|G|),
but we also have that, for all i ∈ [n], the closest rational number to qβi with denominator at most
2h(|G|) is q∗i .

Next we note that for β = 2−w(|G|), where w(x) := r(x) + t(x) is a polynomial, the map
F β : [0, 1]n → [0, 1]n defines a polynomially contracting function, as defined in [11], because for all
x, y ∈ [0, 1]n, ‖F β(x)−F β(y)‖∞ < (1− β)‖x− y‖∞. In other words, the Lipschitz constant for the
contraction map has the form (1 − 1

2poly(|I|) ), where |I| denotes the bit encoding size of the input
I that describes the map. Hence, it follows from Proposition 2.2, part (3.) of [11] that in order
to compute some q′ ∈ [0, 1]n such that ‖qβ − q′‖∞ < ε/2, for some desired ε ∈ (0, 1), it suffices to
compute some q′ ∈ [0, 1]n such that ‖F β(q′)− q′‖∞ < (ε/2)β.

Combining the above facts together it follows that, given an SSG, G, computing its vector of
values q∗ is P-time reducible to computing a vector q′ ∈ [0, 1]n such that ‖F β(q′) − q′| < 1

2z(|G|)
,

where β = 2−w(|G|), and where z(x) := w(x) + r(x) = t(x) + 2 · r(x), is a fixed polynomial.
We next show that, given G, the problem of computing such a vector q′ ∈ [0, 1]n is reducible

to Tarski. Note, firstly, that for β = 2−w(|G|), F β(x) is polynomial-time computable, given the
rational vector y ∈ [0, 1]n, and given the underlying SSG G.

We now define a discrete monotone function H : [M ]n → [M ]n, such that H() is a discretization
of the monotone contraction map F β(), where β = 2−w(|G|), such that any fixed point of H directly
yields (via rescaling) a vector q′ ∈ [0, 1]n such that ‖F β(q′)− q′| < 2−z(|G|).

10This is not stated explicitly in [4], who assumes for simplicity that the SSGs are stopping games, and thus whose
equations have a unique fixed point; but it follows easily from well known facts. See, e.g., [12] for a generalization of
this fact to a much richer class of (infinite-state) stochastic games.

11Again, although Condon’s lemma is phrased assuming G is a stopping game where edge probabilities are always
1/2, essentially the same proof with minor modification can be used to establish the analogous results in the more
general setting of non-stopping SSGs with arbitrary rational edge probabilities.
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The map H() is defined as follows. We let M = 22·z(|G|). For v ∈ [M ]n, we let H(v)i = bM ·
F β(v/M)ic, for all i ∈ [n]. Clearly, H : [M ]n → [M ]n defines a monotone map which is polynomial-
time computable, given the input vector v ∈ [M ]n and given the SSG, G. Moreover, if we find
some fixed point v∗ ∈ [M ]n such that v∗ = H(v∗), then ‖F β(v∗/M)− v∗/M‖∞ < 2−z(|G|). Hence,
a fixed point v∗ of H immediately yields a vector q′ ∈ [0, 1]n such that ‖F β(q′) − q′‖∞ < 2−z(|G|),
given which we know we can compute q∗ in P-time. We have therefore shown that the problem of
computing the vector q∗ ∈ [0, 1]n of values for a given SSG, G, is P-time reducible to Tarski.

6.2 Shapley’s stochastic games reduce to Tarski

We now consider the original stochastic games introduced by Shapley in [21], which are more general
than Condon’s games, and show that approximating the value of such a game (which is in general
irrational, even when the input data associated with the game consists of rational numbers), to
within any given desired accuracy, ε > 0 (given in binary as part of the input), is polynomial time
reducible to Tarski.

Shapley’s games are a class of two-player zero-sum “stopping”, or equivalently “discounted”,
stochastic games. An instance of Shapley’s stochastic game is given by G = (V,A, P, s), where
V = {v1, . . . , vn} is a set of n vertices (or “states”). For each vertex, vi ∈ V , there is an associated
mi×ni reward matrix, Ai, where mi and ni are positive integers denoting, respectively, the number
of distinct “actions” available to player 1 (the maximizer) and player 2 (the minimizer) at vertex
vi, and where for each pair of such actions, j ∈ [mi] and k ∈ [ni], Aij,k ∈ Q is a reward for player
1 (which we assume, for computational purposes, is a rational number given as input by giving
its numerator and denominator in binary). Furthermore, for each vertex vi ∈ V , and each pair of
actions j ∈ [mi] and k ∈ [ni], P ij,k ∈ [0, 1]n is a vector of probabilities on the vertices V , such that
0 ≤ P ij,k(r), and

∑n
r=1 P

i
j,k(r) < 1, i.e., the probabilities sum to strictly less than 1. Again, we

assume each such probability P ij,k(r) ∈ Q is a rational number given as input in binary. Finally, the
game specifies a designated start vertex s ∈ V .

A play of Shapley’s game transpires as follows: a token is initially placed on s, the start node.
Thereafter, during each “round” of play, if the token is currently on some node vi ∈ V , both
players simultaneously and independently choose respective actions j ∈ [mi] and k ∈ [ni], and
player 1 then receives the corresponding reward Aij,k from player 2; thereafter, for each r ∈ [n] with
probability P ij,k(r) the token is moved from node vi to node vr, and with the remaining positive
probability qij,k = 1 −

∑n
r=1 P

i
j,k(r) > 0, the game “halts”. Let q = min{qij,k | i, j, k} > 0 be the

minimum such halting probability at any state, and under any pair of actions. Since q is positive,
i.e., since there is positive probability ≥ q > 0 of halting after each round, a play of the game
eventually halts with probability 1. The goal of player 1 (player 2) is to maximize (minimize,
respectively) the expected total reward that player 1 receives from player 2 during the entire play.
A strategy for each player specifies, based in principle on the entire history of play thusfar, a
probability distribution on the actions available at the current token location. Given strategies σ1

and σ2 for player 1 and 2, respectively, let ri(σ1, σ2) denote the expected total payoff to player
1, starting at node s = vi ∈ V . Shapley [21] showed that these games have a value, meaning
that supσ1

infσ2 ri(σ1, σ2) = infσ2 supσ1
ri(σ1, σ2). In fact, Shapley showed that both players have

optimal stationary (but randomized) strategies in such games, i.e., optimal strategies that only
depend on the current node where the token is located, not the prior history of play, but where
players can randomize on their choice of actions at each node.
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Let r∗i = supσ1
infσ2 ri(σ1, σ2) denote the game value starting at vertex s = vi ∈ V .12

Proposition 6.2. The following total search problem is polynomial-time reducible to Tarski: Given
an instance G of Shapley’s stochastic game, and given ε > 0 (in binary), compute a vector r′ ∈ Qn

such that ‖r∗ − r′‖∞ < ε.

Proof. For a matrix B ∈ Rmi×ni , let Val(B) denote the von Neumann minimax value of the cor-
responding 2-player zero-sum (one-shot) matrix game defined by B. Shapley showed that for an
instance G of his stochastic game, the n-vector r∗ ∈ Rn of values starting at each vertex is the
unique solution to the following system of n equations in n unknowns x = (x1, . . . , xn). For each
vertex vi ∈ V , define themi×ni matrix Bi(x) whose (j, k)-entry is Bi(x)j,k = Aij,k+

∑n
r=1 P

i
j,k(r)xr.

The equations are given by:

xi = Val(Bi(x)) for all i ∈ [n]

Denote this system of equations by x = F (x). If we letM = maxi,j,k|Aij,k| denote the maximum
absolute value reward, then it is easy to observe that F (x) defines a map

F :

[
−M
q
,
M

q

]n
→
[
−M
q
,
M

q

]n
from

[
−M
q , Mq

]n
to itself, and moreover, as Shapley observed, F (x) is a contraction map with respect

to the l∞ norm. Specifically, for any x, y ∈
[
−M
q , Mq

]n
, ‖F (x) − F (y)‖∞ ≤ (1 − q)‖x − y‖∞. In

other words, the Lipschitz constant of the contraction map is (1−q). (Hence, F (x) is a polynomially
contracting function, as defined in [11].)

Hence, by Banach’s fixed point theorem, F (x) has a unique fixed point in
[
−M
q , Mq

]n
. Shapley

showed that the unique fixed point is indeed the vector of game values r∗, i.e., that r∗ = F (r∗) and
r∗ ∈

[
−M
q , Mq

]n
. Furthermore, F (x) is also clearly a monotone function, even when the rewards

Aij,k can take on negative values.13 This is because the rewards only play an additive role in the
entries Bi(x)j,k = Aij,k +

∑n
r=1 P

i
j,k(r)xr of the matrices Bi(x), and the coefficient P ii,k(r) of each

variable xr is non-negative (it is a probability), and because the minimax value operator Val(·) is
a monotone operator. In other words, for any two matrices B,B′ ∈ Rmi×ni , if B ≤ B′ (entry-wise
inequality), then clearly Val(B) ≤ Val(B′).

Thus r∗ is both the unique fixed point solutions of the polynomially contracting map F (x), as well
as the (least and greatest) fixed point solution of the monotone (Tarski) map F (x). Furthermore,
F (x) is a polynomial-time computable map: given the input game G, and given a rational vector
b ∈ Qn (with entries encoded in binary), we can compute F (b) in time polynomial in the total bit
encoding size of G and b.

Thus, just as in the case of the functions F β(x) that arose for showing that computing the value
of Condon’s stochastic games reduces to Tarski, it follows from the from [11] (Proposition 2.2, part
(3.)), that in order to compute a vector r′ ∈

[
−M
q , Mq

]n
, such that ‖r∗ − r′‖∞ < ε, it suffices to

compute r′ such that ‖F (r′)− r′‖∞ < ε · q.
12 Note that we could also define r∗i as r∗i = maxσ1 minσ2 ri(σ1, σ2), due to the existence of optimal strategies.
13 The monotonicity of these maps was not explicitly noted by Shapley in [21], since his proofs did not require the

fact that the maps are monotonic, only that they are contraction maps.
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Hence, again as in the proof for Condon’s game, this allows us to “discretize” the monotone
function F (), to turn the problem of computing such a vector r′ into an instance of Tarski. Specif-
ically, for a positive integer K, let 〈K〉 = {−K,−K + 1, . . . , 1, 0, 1, . . . ,K − 1,K}. We construct
a discrete monotone map, H ′ : 〈M ′〉n → 〈M ′〉n, where M ′ = 4M/(ε · q). For v ∈ 〈M ′〉n, we let
H ′(v)i = bM ′ · F (v/M ′)ic, for all i ∈ [n]. H ′ defines a monotone map which is polynomial-time
computable, given the input vector v ∈ 〈M ′〉n, given the instance G of Shapley’s stochastic game,
and given the desired error ε > 0 (in binary). Moreover (again, as in the case for Condon’s game),
if we find a fixed point v∗ ∈ 〈M ′〉n such that v∗ = H ′(v∗), then ‖F (v∗/M ′)− v∗/M ′‖∞ ≤ ε · q, and
hence ‖r∗ − v∗/M ′‖∞ < ε.

Hence we have shown that approximating the value vector r∗, for a given instance G of Shapley’s
stochastic game, within a given desired additive error ε > 0 (given in binary), is polynomial-time
reducible to Tarski.

7 Conclusions

We have studied the complexity of computing a Tarski fixed point for a monotone function over
a finite discrete Euclidean grid, and we have shown that this problem essentially captures the
complexity of computing a (ε-approximate) pure Nash equilibrium of a supermodular game. We
have also shown that computing the value of Condon’s and Shapley’s stochastic games reduces to
this Tarski fixed point problem, where the monotone function is given succinctly (by a boolean
circuit).

We have provided several upper bounds for the Tarski problem, showing that it is contained in
both PLS and PPAD. On the other hand, in the oracle model, for 2-dimensional monotone functions
f : [N ]2 → [N ]2, we have shown a Ω(log2N) lower bound for the (expected) number of (randomized)
queries required to find a Tarski fixed point, which matches the O(logdN) upper bound for d = 2.

A key question left open by our work is to improve the lower bounds in the oracle model to
higher dimensions. It is tempting to conjecture that for any dimension d < logN , a lower bound
close to Ω(logdN) holds. On the other hand, we know that this cannot hold for arbitrary d and N ,
because we also have the dN upper bound (which is better than logdN when d = ω(logN)).

Another interesting open question is the relationship between the Tarski problem and the total
search complexity class CLS [9], as well as the closely related recently defined class EOPL (which
stands for “End of Potential Line” [13, 14]). EOPL is contained in CLS, which is contained in both
PLS and PPAD. Is Tarski in CLS (or in EOPL)? That would be remarkable, as the proof that it is in
PPAD is currently quite indirect. Conversely, can Tarski be proved to be CLS-hard (EOPL-hard)?
(Recall from the previous section that some key problems in CLS related to stochastic games do
reduce to Tarski.)

Another question worth considering is the complexity of the unique-Tarski problem, where the
monotone function is further assumed (promised) to have a unique fixed point. Is unique-Tarski
easier than Tarski? Note that our Ω(log2N) lower bound in the oracle model, in dimension d = 2,
applies on the family of “herringbone” functions which do have a unique fixed point.
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