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Abstract. We consider a matching problem in a bipartite graph G = (A ∪ B,E) where each node
in A is an agent having preferences in partial order over her neighbors, while nodes in B are objects
with no preferences. The size of our matching is more important than node preferences – thus, we are
interested in maximum matchings only. Any pair of maximum matchings in G (equivalently, perfect
matchings or assignments) can be compared by holding a head-to-head election between them where
agents are voters. The goal is to compute an assignment M such that there is no better or “more
popular” assignment. This is the popular assignment problem and it generalizes the well-studied popular
matching problem (Abraham et al., 2007).

Popular assignments need not exist in every input instance. We show a polynomial-time algorithm that
decides if the given instance admits one or not, and computes one, if so. In instances with no popular
assignment, we consider the problem of finding an almost popular assignment, i.e., an assignment with
minimum unpopularity margin. We show an O∗(|E|k) time algorithm for deciding if there exists an
assignment with unpopularity margin at most k. We then show that this algorithm is essentially optimal
by proving that the problem is NP-complete and Wl[1]-hard with parameter k.

We also consider the minimum-cost popular assignment problem when there are edge costs, and show
this problem to be NP-hard. This hardness holds even when all edge costs are in {0, 1} and agents have
strict preferences. By contrast, we propose a polynomial-time algorithm to the problem of deciding if
there exists a popular assignment with a given set of forced/forbidden edges (this tractability holds
even for partially ordered preferences). Our algorithms are combinatorial and based on LP duality.
They search for an appropriate witness or dual certificate, and when a certificate cannot be found, we
prove that the desired assignment does not exist in G.

1 Introduction

We consider a matching problem in a bipartite graph G = (A ∪ B,E) with one-sided preferences.
Nodes in A, also called agents, have preferences in partial order over their neighbors while nodes
in B, also called objects, have no preferences. This model is often called the house allocation problem
as it arises in campus housing allocation in universities [1]. The fact that preferences are one-sided
here makes this model very different from the marriage problem introduced by Gale and Shapley [13]
in 1962, where all nodes have preferences over their neighbors.

Usually one seeks a matching in G that is optimal in some sense. Popularity is a well-studied
notion of optimality in the model of one-sided preferences. Any pair of matchings, say M and N ,
can be compared by holding an election between them where agents are voters. Every agent prefers
the matching where she gets assigned a more preferred partner and being unmatched is her worst
choice. Let φ(M,N) be the number of agents who prefer M to N . Then we say that M is more
popular than N if φ(M,N) > φ(N,M). Let us write ∆(M,N) = φ(M,N)− φ(N,M).

Definition 1.1. A matching M is popular if there is no matching more popular than M , i.e.,
∆(M,N) ≥ 0 for all matchings N in G.
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The popular matching problem involves deciding if G admits a popular matching, and finding
one if so. This is a well-studied problem from 2005, and there is an efficient algorithm to solve it [2].

Consider applications where the size of the matching is of primary importance. It is natural that
as many students as possible be assigned campus housing. Another application is in assigning final
year medical and nursing students to hospitals during emergencies (such as a pandemic) to overcome
staff shortage [10]. Preferences of these students are important but the size of the matching is more
important, since we want to augment human resources as much as possible. Thus what we seek
is not a popular matching but a popular maximum matching, i.e., among maximum matchings,
a best one. Our approach to prioritize the cardinality of the matching is in stark contrast with
most existing results in the area of popular matchings, where the foremost requirement is usually
popularity.

By augmenting G with dummy agents and artificial objects (see Section 3), we can assume
that G admits a perfect matching, i.e., an assignment. So our problem becomes the popular perfect
matching problem—we will call this the popular assignment problem in G. In other words, we seek an
assignment of objects to agents such that every agent is assigned an object and, roughly speaking,
there is no assignment that makes more agents happy (than it makes unhappy).

Definition 1.2. A perfect matching M is a popular assignment if there is no perfect matching
in G that is more popular than M , i.e., ∆(M,N) ≥ 0 for all perfect matchings N in G.

Thus, a popular assignment is a weak Condorcet winner [6,24] where all perfect matchings
are candidates and agents are voters. Weak Condorcet winners need not exist in a general voting
instance; in our setting as well, a popular assignment need not exist in G. Consider the following
simple example where A = {a1, a2, a3}, B = {b1, b2, b3} and G is the complete bipartite graph K3,3,
i.e., every agent and object are adjacent. Suppose every agent has the same (strict) preference
ordering: b1 � b2 � b3, i.e., bi is the i-th choice for i = 1, 2, 3. It is easy to check that for every
assignment, there is a more popular assignment; so this instance has no popular assignment.

The popular assignment problem. Given a bipartite graph G = (A ∪ B,E) where every a ∈ A has
preferences in partial order over her neighbors, does G admit a popular assignment? If so, find one.

It is easy to show instances that admit popular assignments but do not have any popular
matching (see Section 2.2). Interestingly, an algorithm for the popular assignment problem also
solves the popular matching problem. By augmenting the given instance with artificial worst-choice
objects and some dummy agents, we can construct an instance G′ on at most twice as many nodes
as in G such that G admits a popular matching if and only if G′ admits a popular assignment
(this simple reduction is given in Section 2.3). Thus, the popular assignment problem generalizes
the popular matching problem.

By adjusting the usage of worst-choice objects appropriately, an algorithm for popular assignment
can solve the following more general variant of both the popular matching problem and the popular
assignment problem, and thus opens possibilities to a wide spectrum of applications.

Popularity with diversity. Consider instances G = (A∪B,E) where every agent has one of k colors
associated with it, and we are interested in only those (not necessarily perfect) matchings that match
for every i ∈ {1, . . . , k}, ci agents of color i, where si ≤ ci ≤ ti for some given bounds si and ti,
i.e., only those matchings that satisfy these lower and upper bounds for every color are admissible.
We seek a matching that is popular within the set of admissible matchings (see Section 2.3 for a
reduction to popular assignment).
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Public housing programs constitute an application where such problems arise. For example,
in Singapore, 70% of the residential real estate is managed by a public housing program which
promotes ethnic diversity by imposing quotas on each housing block and ethnic group. Motivated
by this market, Benabbou et al. [3] study a similar model with cardinal utilities.

Our contribution. Our first result is that the popular assignment problem can be solved in poly-
nomial time. Let |A| = |B| = n and |E| = m.

Theorem 1.1. The popular assignment problem in G = (A ∪ B,E) can be solved in O(m · n5/2)
time.

When a popular assignment does not exist in G, a natural extension is to ask for an almost
popular assignment, i.e., an assignment with low unpopularity. How do we measure the unpop-
ularity of an assignment? A well-known measure is the unpopularity margin [21] defined for any
assignment M as µ(M) = maxN (φ(N,M) − φ(M,N)) = maxN ∆(N,M), where the maximum is
taken over all assignments, that is, all perfect matchings N in G. Thus µ(M) is the maximum
margin by which another assignment defeats M .

An assignment M is popular if and only if µ(M) = 0. Let the k-unpopularity margin problem
be the problem of deciding if G admits an assignment with unpopularity margin at most k. We
generalize Theorem 1.1 to show the following result.

Theorem 1.2. For any k ∈ Z≥0, the k-unpopularity margin problem in G = (A ∪ B,E) can be
solved in O(mk+1 · n5/2) time.

Rather than the exponential dependency on the parameter k in Theorem 1.2, can we solve
the k-unpopularity margin problem in polynomial time? Or at least can we achieve a running time
f(k)poly(m,n) for some function f so that the degree of the polynomial is independent of k? That
is, can we get a fixed-parameter tractable algorithm with parameter k? The following hardness
result shows that the algorithm of Theorem 1.2 is essentially optimal for the k-unpopularity margin
problem. See Section 6.2 for the definition of Wl[1]-hardness.

Theorem 1.3. The k-unpopularity margin problem is Wl[1]-hard with parameter k when agents’
preferences are weak rankings, and it is NP-complete even if preferences are strict rankings.

We next consider the minimum-cost popular assignment problem in G. So there is a cost function
c : E → R on the edges and a budget β and we want to know if G admits a popular assignment
whose sum of edge costs is at most β. Computing a minimum-cost popular assignment efficiently
would also imply an efficient algorithm for finding a popular assignment with forced/forbidden
edges. We show the following hardness result.

Theorem 1.4. The minimum-cost popular assignment problem is NP-complete, even if each edge
cost is in {0, 1} and agents have strict preferences.

Interestingly, in spite of the above hardness result, the popular assignment problem with partial
order preferences and forced/forbidden edges is tractable. Note that the assignment M must be pop-
ular among all assignments, not only those adhering to the forced and forbidden edge constraints.
We show the following positive result.
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Theorem 1.5. Given a set F+ ⊆ E of forced edges and another set F− ⊆ E of forbidden edges,
we can determine in polynomial time if there exists a popular assignment M in G = (A ∪ B,E)
such that F+ ⊆M and F− ∩M = ∅.

Thus the popular assignment problem is reminiscent of the well-known stable roommates prob-
lem7; in a roommates instance, finding a stable matching can be solved in polynomial time [15] even
with forced/forbidden edges [12], however finding a minimum-cost stable matching is NP-hard [11].

1.1 Background

The notion of popularity in a marriage instance (where preferences are two-sided and strict) was
introduced by Gärdenfors [14] in 1975. Popular matchings always exist in such an instance, since
any stable matching is popular [14]. When preferences are one-sided, popular matchings need not
exist. A simple and clean combinatorial characterization of popular matchings (see Section 2.1)
was given in [2], leading to an O(m

√
n) time algorithm [2] for the popular matching problem.

By contrast, a combinatorial characterization of popular assignments remains elusive. Finding a
minimum unpopularity margin matching was proved to be NP-hard [21].

In the last fifteen years, popularity has been a widely studied concept. Researchers have consid-
ered extensions of the popular matching problem where one aims for a popular matching satisfying
some additional optimality criteria such as rank-maximality or fairness [20,22], or where the notion
of popularity is adjusted to incorporate capacitated objects or weighted agents [23,26]. Another
variant of the popular matching problem was considered in [8] where nodes in A have strict prefer-
ences and nodes in B, i.e., objects, have no preferences, however each object cares to be matched
to any of its neighbors. We refer to [7] for a survey on results in this area.

Among the literature on popular matchings, only a few studies have considered a setting that
focuses on popularity within a restricted set of admissible solutions. The paper that comes closest to
our work is [16] which considered the popular maximum matching problem in a marriage instance
(where preferences are two-sided and strict). It was shown there that a popular maximum matching
always exists in a marriage instance and one such matching can be computed in O(mn) time. Very
recently, it was shown in [18] that a minimum-cost popular maximum matching in a marriage
instance can be computed in polynomial time. These results use the rich machinery of stable
matchings in a marriage instance [13,25]. In contrast to these positive results for popular maximum
matchings, computing an almost-stable maximum matching (one with the least number of blocking
edges) in a marriage instance is NP-hard [4].

1.2 Techniques

Our popular assignment algorithm is based on LP duality. We show that a matching M is a
popular assignment if and only if it has a dual certificate ~α ∈ {0,±1, . . . ,±(n − 1)}2n fulfilling
certain constraints induced by the matching M . Our algorithm (see Section 4) can be viewed as a
search for such a dual certificate. It associates a level `(b) with every b ∈ B. This level function `
guides us in constructing a subgraph G` of G. If G` contains a perfect matching, then this matching
is a popular assignment in G and the levels determine a corresponding dual certificate. If G` has
no perfect matching, then we increase some `-values and update G` accordingly, until eventually

7 This problem asks for a stable matching in a general graph (which need not be bipartite) with strict preferences.
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G` contains a perfect matching or the level of an object increases beyond the permitted range, in
which case we prove that no popular assignment exists.

The LP method for popular matchings was introduced in [19] and dual certificates for popular
matchings/maximum matchings in marriage instances were shown in [17,18]. However, dual certifi-
cates for popular matchings in instances with one-sided preferences have not been investigated so
far. The existence of simple dual certificates for popular assignments is easy to show (see Section 3),
but this does not automatically imply polynomial-time solvability. Our main novelty lies in showing
a combinatorial algorithm to search for dual certificates in an instance G and in using this approach
to solve the popular assignment problem in polynomial time.

Our other results. Our algorithm for the popular assignment problem with forced/forbidden edges
(see Section 5) is a natural extension of the above algorithm where certain edges are excluded. The
k-unpopularity margin algorithm (see Section 6) associates a load with every edge such that the total
load is at most k and the overloaded edges are treated as forced edges. Our Wl[1]-hardness result
shows that this O∗(mk) algorithm for the k-unpopularity margin problem is essentially optimal, i.e., it
is highly unlikely that this problem admits an f(k)mo(k) algorithm for any computable function f .
The NP-hardness for the minimum-cost popular assignment problem (see Section 7) implies that
given a set of desired edges, it is NP-hard (even for strict preferences) to find a popular assignment
that contains the maximum number of desired edges. Thus, although the forced edges variant is
easy, the desired edges variant is hard.

2 Preliminaries

For any v ∈ A ∪ B, let NbrG(v) denote the set of neighbors of v in G, and δ(v) the set of edges
incident to v. For any X ⊆ A ∪ B, we let NbrG(X) = ∪v∈XNbrG(v); we may omit the subscript G
if it is clear from the context. For any set X of vertices (or edges) in G, let G−X be the subgraph
of G obtained by deleting the vertices (or edges, respectively) of X from G. For a matching M in G
and a node v matched in M , we denote the partner of v by M(v).

The preferences of node a ∈ A on its neighbors are given by a strict partial order �a, so b �a b′
means that a prefers b to b′. We use b ∼a b′ to denote that a is indifferent between b and b′, i.e.,
neither b �a b′ nor b′ �a b holds. The relation �a is a weak ranking if ∼a is transitive. In this
case, ∼a is an equivalence relation and there is a strict order on the equivalence classes. When each
equivalence class has size 1, we call it a strict ranking or a strict preference.

2.1 A characterization of popular matchings from [2]

In order to characterize popular matchings, as done in [2], it will be convenient to add artificial
worst-choice or last resort objects to the given instance G = (A∪B,E). So B = B∪{l(a) : a ∈ A},
i.e., corresponding to each a ∈ A, a node l(a) gets added to B and we set this node l(a) as the
worst-choice object for a. Thus we have E = E ∪ {(a, l(a)) : a ∈ A}.

Let E1 = {(a, b) ∈ E : b is a top-choice object for a}. Call an object b critical if every maximum
matching in G1 = (A ∪B,E1) matches b, call b non-critical otherwise.

Theorem 2.1 ([2]). A matching M in G = (A ∪ B,E) is popular if and only if M matches all
critical objects and every agent a is matched to either one of her top-choice objects or one of her
most preferred non-critical objects.
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2.2 An instance without popular matchings that admits a popular assignment

We describe a simple example that does not admit any popular matching, but admits a popular
assignment. Let G = (A ∪ B,E) where A = {a1, a2, a3} and B = {b1, b2, b3} and the preference
order of both a1 and a2 is b1 � b2 while the preference order of a3 is b1 � b2 � b3.

It follows from the characterization of popular matchings from [2] that a popular matching M
has to match each of a1, a2, a3 to either b1 or b2. Since this is not possible, this instance has no
popular matching. It is easy to check that M∗ = {(a1, b1), (a2, b2), (a3, b3)} is a popular assignment
in G.

2.3 Some simple reductions to the popular assignment problem

We will first show a reduction from the popular matching problem to the popular assignment problem.
Let G = (A ∪ B,E) be an instance of the popular matching problem. Let B′ = B ∪ {l(a) : a ∈ A}.
That is, corresponding to each a ∈ A, an object l(a) (the last resort of a) is in B′ and we set this
object l(a) as the worst-choice of a. Let A′ = A ∪ {d1, . . . , d|B|}, i.e., there are |B| many dummy
agents in A′. Each dummy agent di is adjacent to all objects in B′ and is indifferent between any
two of them.

It is easy to see that every matching M in G can be extended to a perfect matching M ′ in
this new graph G′ = (A′ ∪ B′, E′) and conversely, every perfect matching M ′ in G′ projects to a
matching M in G. For any pair of matchings M and N in G, observe that ∆(M,N) = ∆(M ′, N ′).
Thus an algorithm that finds a popular assignment in G′ solves the popular matching problem in G.

Popularity with diversity. Recall this problem defined in Section 1 where every agent in an in-
stance G = (A ∪ B,E) has one of k colors associated with it, and admissible matchings are those
that for every i ∈ {1, . . . , k} match ci agents of color i where si ≤ ci ≤ ti for some given bounds si
and ti. We seek a matching that is popular within the set of admissible matchings.

We augment B by adding ni − si artificial objects for each i, where ni is the number of agents
colored i. For each i, these ni − si objects are tied as the worst-choices of all agents colored i. Let
A′ = A ∪ {d1, . . . , dn′}, where n′ = |B| −∑i si. Every dummy agent d ∈ {d1, . . . , dn′} is adjacent
to all objects in B and for each color i some fixed ti − si artificial objects meant for color class i
introduced above—as before, d is indifferent between any two of its neighbors. So for each i, there
are ni − ti artificial objects not adjacent to any dummy agent. Let G′ be the new instance. It is
easy to see that an algorithm that finds a popular assignment in G′ solves our problem in G.

3 Dual Certificates for Popular Assignments

Let G = (A ∪ B,E) be an input instance and let ν be the size of a maximum matching in G. Let
us augment G with |B| − ν dummy agents that are adjacent to all objects in B (and indifferent
among them), along with |A| − ν artificial objects that are tied as the worst-choice neighbors of all
non-dummy agents. Any maximum matching M in the original graph extends to a perfect matching
(i.e., assignment) M ′ in the augmented graph; moreover, ∆(M,N) = ∆(M ′, N ′) for any pair of
maximum matchings M and N in G. Thus, we can assume without loss of generality that the input
instance G admits a perfect matching.
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Let |A| = |B| = n and |E| = m. Let M be any perfect matching in G. The following edge weight
function wtM in G will be useful. For any (a, b) ∈ E

let wtM (a, b) =





1 if a prefers b to M(a);

−1 if a prefers M(a) to b;

0 otherwise, i.e., if b ∼a M(a).

Let wtM (N) =
∑

e∈N wtM (e) for any edge setN ⊆ E. Consider the following linear program LP1
and its dual LP2.

max
∑
e∈E

wtM (e) · xe (LP1)

s.t.
∑
e∈δ(u)

xe = 1 ∀u ∈ A ∪B

xe ≥ 0 ∀ e ∈ E.

min
∑

u∈A∪B

yu (LP2)

s.t. ya + yb ≥ wtM (a, b) ∀ (a, b) ∈ E.

LP1 is well-known to be integral, and hence its optimal value is maxN wtM (N) where N is
a perfect matching in G. The definition of wtM implies that wtM (N) = ∆(N,M); recall that
∆(N,M) = φ(N,M) − φ(M,N). So M is a popular assignment if and only if the optimal value
of LP1 is at most 0. In fact, the optimal value of LP1 is then exactly 0, by ∆(M,M) = 0. Hence
for a popular assignment M , the edge incidence vector of M is an optimal solution to LP1.

Theorem 3.1 gives a useful characterization of popular assignments. The proof of Theorem 3.1
is given in Section 6 along with the proof of a related result (Theorem 6.1). A dual certificate of a
popular assignment M is an optimal solution ~α to LP2 as given in Theorem 3.1.

Theorem 3.1. M is a popular assignment if and only if there exists an optimal solution ~α to LP2
such that αa ∈ {0, 1, 2, . . . , (n− 1)} for all a ∈ A, αb ∈ {0,−1,−2, . . . ,−(n− 1)} for all b ∈ B, and∑

u∈A∪B αu = 0.

4 The Popular Assignment Algorithm

The goal of our algorithm is to construct a perfect matching M in G along with a dual certificate ~α.
Every b ∈ B will have an associated level `(b) in this algorithm and the α-value of b will be −`(b),
i.e., we set αb = −`(b).

Given a function ` : B → N called a level function, for any a ∈ A let `∗(a) = maxb∈Nbr(a) `(b)
be the highest level at which agent a has neighbors. Now we define the subgraph G` = (A∪B,E`)
induced by levels `(·) by putting an edge (a, b) ∈ E into E` if and only if

(i) b has level `∗(a), and a has no neighbor in level `∗(a) that she prefers to b, or
(ii) b has level `∗(a) − 1, and a prefers b to each of her neighbors in level `∗(a), and moreover, a

prefers none of her neighbors in level `∗(a)− 1 to b.

Thus in the subgraph G`, every agent has edges to her favorite highest-level neighbors and to her
favorite neighbors one level below, provided these neighbors are preferred to all of her highest-level
neighbors (see Fig. 1 for an illustration). The following lemma will be very useful.
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a1

a2

2

1

0

0

2
31

2 1
1

Fig. 1. Illustration of the subgraph G` of G for an in-
stance with weak rankings and a level function `. Cir-
cles indicate agents and squares objects; the `-level
of each object is written inside the square depicting
it. Numbers on the edges indicate the agents’ weak
rankings. Bold edges are included in G` and dashed
edges are not. All but two agents were omitted.

a0

at−1

at

b0

bt−1

bt

. . .

6∈ E`
. . .

Fig. 2. An illustration of the M -augmenting path P
within the proof of Lemma 4.2. Solid edges are in M
and dashed edges are in M?. The edge (at, bt) is not
contained in E`.

Lemma 4.1. A matching M in G is a popular assignment if and only if there exists a level func-
tion ` such that M is a perfect matching in G`. Further, this happens if and only if there is a
level function ` and a dual certificate ~α for M where `(b) = |αb| for all b ∈ B and M is a perfect
matching in G`.

Proof. Let us first show that if there exists a level function ` such that M is a perfect matching
in G`, then M is a popular assignment in G. We construct a dual certificate for M as follows. Let
αb = −`(b) for all b ∈ B and αa = `(M(a)) for all a ∈ A. Note that

∑
v∈A∪B αv =

∑
a∈A(αa +

αM(a)) = 0 =
∑

e∈M wtM (e). Thus ~α is optimal for LP2 if it is feasible. It remains to show that
αa + αb ≥ wtM (a, b) for every (a, b) ∈ E.

So let (a, b) ∈ E and let b′ := M(a). Note that αa+αb = `(b′)−`(b). We show that `(b′)−`(b) ≥
wtM (a, b). Because (a, b′) ∈ E`, one of the following cases holds:

– Case (i): `(b′) = `∗(a), so a prefers no neighbor of hers in level `∗(a) to b′. We have two subcases:
• If `(b) = `∗(a), then a does not prefer b to b′ and hence wtM (a, b) ≤ 0 = `(b′)− `(b).
• If `(b) < `∗(a), then `(b′)− `(b) ≥ 1 ≥ wtM (a, b).

– Case (ii): `(b′) = `∗(a)− 1, so a prefers b′ to each of her neighbors in level `∗(a), and a prefers
none of her neighbors in level `∗(a)− 1 to b′. We have three subcases:
• If `(b) = `∗(a), then a prefers b′ to b and hence wtM (a, b) = −1 = `(b′)− `(b).
• If `(b) = `∗(a)− 1, then a does not prefer b to b′ and hence wtM (a, b) ≤ 0 = `(b′)− `(b).
• If `(b) < `∗(a)− 1, then `(b′)− `(b) ≥ 1 ≥ wtM (a, b).

Thus in each of these cases wtM (a, b) ≤ `(b′)− `(b) = αa + αb. Hence α is a dual certificate for M ,
and thus M is a popular assignment by Theorem 3.1.

We will now show the converse. Let M be a popular assignment in G and let ~α be a dual
certificate for M . We claim that M is a matching in the graph G`α induced by levels `~α with
`~α(b) = |αb| for all b ∈ B. To prove this, we use that αa+αb ≥ wtM (a, b) for every (a, b) ∈ E. First,
because the incidence vector of M and ~α are optimal solutions to LP1 and LP2, respectively, we get
αa+αM(a) = 0 for each a ∈ A by complementary slackness. This implies αa = −αM(a) = `~α(M(a)).
Therefore, `~α(M(a)) ≥ `~α(b) + wtM (a, b) for all (a, b) ∈ E.

Since wtM (e) ≥ −1 for all edges e, any agent a has to be matched in M to either (i) an
undominated neighbor in level `∗~α(a) (i.e., a prefers none of her neighbors in this level to M(a)) or
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(ii) an undominated neighbor in level `∗~α(a)−1 which, moreover, has to dominate (i.e., be preferred
by a to) all of a’s neighbors in level `∗~α(a). So M is a perfect matching in G`~α . ut

The algorithm. Consider Algorithm 1 on input G = (A∪B,E). In the search for a dual certificate,
this algorithm will maintain a level `(b) for every b ∈ B. Initially, `(b) = 0 for every b ∈ B.

Our algorithm checks whether there exists a popular assignment by computing a perfect match-
ing in the graph G`. If no such matching exists, the levels of unmatched objects are increased, the
graph G` is updated accordingly, and the search continues.

Eventually, either a perfect matching in G` is found, or the level of an object exceeds n− 1. In
the latter case we can conclude that no popular assignment exists, as we will show below.

Algorithm 1 Finding a popular assignment
1: for all b ∈ B do `(b) = 0.

2: while `(b) < n for all b ∈ B do
3: Construct the graph G` and compute a maximum matching M in G`.
4: if M is a perfect matching then return M .

5: for all b ∈ B unmatched in M do `(b) = `(b) + 1.

6: return “G has no popular assignment”.

Running time. Computing a maximum matching in G` takes O(m
√
n) time. In every iteration of

the algorithm, the value
∑

b∈B `(b) increases. So the number of iterations is at most n2. Hence the

running time of our algorithm is O(m · n5/2).

Theorem 4.1. If our algorithm returns a matching M , then M is a popular assignment in G.

Theorem 4.1 follows immediately from Lemma 4.1. The more difficult part in our proof of
correctness is to show that whenever our algorithm says that G has no popular assignment, the
instance G indeed has no popular assignment. This is implied by Theorem 4.2.

Theorem 4.2. Let M? be a popular assignment in G and let ~α be a dual certificate of M?. Then
for every b ∈ B, we have |αb| ≥ `(b), where `(b) is the level of b when our algorithm terminates.

If our algorithm terminates because `(b) = n for some b ∈ B, then |αb| ≥ n for any dual
certificate ~α by Theorem 4.2. However |αb| ≤ n − 1 by definition, a contradiction. So G has no
popular assignment.

The following lemma is crucial for proving Theorem 4.2. It guarantees that when the algorithm
increases `(b) for some unmatched object b ∈ B, then the new level function does not exceed |αb|.

Lemma 4.2. Let M? be a popular assignment, let ~α be a dual certificate of M?, and let ` : B → N
be such that `(b) ≤ |αb| for all b ∈ B. Let M be a maximum matching in G` and let b0 ∈ B be an
object that is left unmatched in M . Then `(b0) < |αb0 |.

Before we turn to the proof of Lemma 4.2, we point out that Theorem 4.2 follows from this
lemma by a simple induction.

Proof (of Theorem 4.2). Let `i be the level function on the set B at the start of the i-th iteration
of our algorithm. We are going to show by induction that for every i we have |αb| ≥ `i(b) for
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all b ∈ B. This is true for i = 1, since `1(b) = 0 for all b ∈ B. Now suppose that |αb| ≥ `i(b)
for all b ∈ B. Let b0 ∈ B. If b0 is matched in the maximum matching M in G`i , then we know
`i+1(b0) = `i(b0) ≤ |αb0 |. If b0 is left unmatched in M , then `i+1(b0) = `i(b0) + 1 and `i(b0) < |αb0 |
by Lemma 4.2. Thus `i+1(b0) ≤ |αb0 | in either case, completing the induction. ut

Proof (of Lemma 4.2). By Lemma 4.1, M? is a perfect matching in G`~α where `~α(b) = |αb| for b ∈ B.
Thus, the symmetric difference M ⊕M? in G contains an M -augmenting path P starting at b0.
However, as M is of maximum size in G`, the path P must contain an edge that is not in E`.

Let (b0, a0, b1, a1, . . . , bt, at) be any prefix of P such that (at, bt) /∈ E` (see Fig. 2). Note that
(a0, b0) and (at, bt) are in M?, since M leaves b0 unmatched and M ⊆ E`. Thus (ah, bh) ∈M? ⊆ E`~α
for all h ∈ {0, . . . , t} and (ah, bh+1) ∈ M ⊆ E` for all h ∈ {0, . . . , t − 1}. We will show that
`(bh) < `~α(bh) for all h ∈ {0, . . . , t}, and thus in particular, `(b0) < `~α(b0) = |αb0 |.

We first show that `(bt) < `~α(bt). Assume for contradiction that `(bt) = `~α(bt). Using the fact
that (at, bt) /∈ E`, one of the following cases must hold:

• at has a neighbor in level at least `(bt) + 2, or

• at has a neighbor in level `(bt) + 1 that is not dominated by bt, or

• at has a neighbor in level `(bt) that is preferred to bt.

As `~α(bt) = `(bt) and `~α(b) ≥ `(b) for all b ∈ B, in each case we get (at, bt) /∈ E`~α , a contradiction.

Now suppose there is h ∈ {0, . . . , t− 1} with `(bh+1) < `~α(bh+1) but `(bh) = `~α(bh). Recall that
(ah, bh+1) ∈M ⊆ E`, which leaves us with the following possibilities:

• `(bh+1) ≥ `(bh) + 1: then `~α(bh+1) ≥ `~α(bh) + 2;

• `(bh+1) = `(bh): then ah does not prefer bh to bh+1, but `~α(bh+1) ≥ `~α(bh) + 1;

• `(bh+1) = `(bh)− 1: then ah prefers bh+1 to bh, but `~α(bh+1) ≥ `~α(bh).

In each of these cases, we get (ah, bh) /∈ E`~α by the definition of G`~α , again a contradiction. ut

We remark that if a popular assignment exists, then the algorithm returns a popular assign-
ment M and a corresponding dual certificate ~α such that `~α ≤ `~α′ for any dual certificate ~α′ of any
popular assignment M ′. This shows that there is a unique minimal dual certificate in this sense.

We close this section by pointing out a generalization of Lemma 4.2 that encapsulates the main
argument of the preceding proof. This insight will be useful for generalizing our algorithmic result
in the next two sections.

Lemma 4.3. Let `, `′ : B → N be such that `(b) ≤ `′(b) for all b ∈ B. Let M and M ′ be matchings
in G` and G`′, respectively. Let b0 ∈ B be an object that is matched in M ′ but not in M . Let P be
the path in M ⊕M ′ containing b0. If P contains an edge not in E`, then `(b0) < `′(b0).

5 Finding a Popular Assignment with Forced/Forbidden Edges

In this section we consider a variant of the popular assignment problem where, in addition to our
instance, we are given a set F+ of forced edges and a set F− of forbidden edges, and we are looking
for a popular assignment that contains F+ and is disjoint from F−. Observe that it is sufficient to
deal with forbidden edges, since putting an edge (a, b) into F+ is the same as putting all the edges
in the set {(a, b′) : b′ ∈ Nbr(a) and b′ 6= b} into F−.
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The popular assignment with forbidden edges problem. Given a bipartite graph G = (A ∪ B,E)
where every a ∈ A has preferences in partial order over her neighbors, together with a set F ⊆ E
of forbidden edges, does G admit a popular assignment M avoiding F , i.e., one where M ∩ F = ∅?

We will show that in order to deal with forbidden edges, it suffices to modify our algorithm in
Section 4 as follows; see Algorithm 2. The only difference from the earlier algorithm is that we find
a maximum matching in the subgraph G` − F , i.e., on the edge set E` \ F .

Algorithm 2 Finding a popular assignment with forbidden edges
1: for all b ∈ B do `(b) = 0.

2: while `(b) < n for all b ∈ B do
3: Construct the graph G` = (A ∪B,E`) and find a maximum matching M in G` − F .
4: if M is a perfect matching then return M .

5: for all b ∈ B unmatched in M do `(b) = `(b) + 1.

6: return “G has no popular assignment with forbidden set F”.

Theorem 5.1. The above algorithm outputs a popular assignment avoiding F , if such an assign-
ment exists in G.

Proof. Recall that any perfect matching in G` is a popular assignment in G by Lemma 4.1. It
is therefore immediate that if the above algorithm outputs a matching M , then M is a popular
assignment in G that avoids F .

Let us now prove that if there exists a popular assignment M? avoiding F , then our algorithm
outputs such an assignment. Let ~α be a dual certificate for M?. Let `i denote the level function at
the beginning of iteration i of the algorithm. As in the proof of Theorem 4.2, we show by induction
that `i(b) ≤ |αb| for all b ∈ B for any iteration i.

This is clearly true initially with `1(b) = 0 for all b ∈ B. To complete the induction, it suffices
to show that `i(b0) < |αb0 | for all b0 ∈ B that are unmatched by any maximum matching M in G`i .
Since M? is a perfect matching, the symmetric difference M ⊕ M? contains an M -augmenting
path P starting at b0. However, because M has maximum size in G`i −F , the path P must contain
an edge e /∈ E`i \F . We have (M ∪M?)∩F = ∅, thus we obtain e /∈ F and therefore e /∈ E`i . Note
that Lemma 4.1 implies M? ⊆ E`~α (recall that `~α(b) = |αb| for all b ∈ B). Furthermore, `i(b) ≤ `~α(b)
for all b ∈ B by our induction hypothesis. We can thus apply Lemma 4.3 with M ′ = M? and `′ = `~α
to obtain `i(b0) < `~α(b0) = |αb0 |, which completes the induction step. ut

6 Finding an Assignment with Minimum Unpopularity Margin

In this section we consider the k-unpopularity-margin problem in G. Section 6.1 has our algorithmic
result and Section 6.2 and Section 6.3 contain our hardness results.

6.1 Our algorithm

For any assignment M , recall that the optimal value of LP1 is maxN ∆(N,M) = µ(M), where the
maximum is taken over all assignments N in G. Consequently, µ(M) equals the optimal value of
the dual linear program LP2 as well. Therefore, µ(M) = k if and only if there exists an optimal
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solution ~α to LP2 for which
∑

u∈A∪B αu = k. This leads us to a characterization of assignments
with a bounded unpopularity margin that is a direct analog of Theorem 3.1.

Theorem 6.1. M is an assignment with µ(M) ≤ k if and only if there exists a solution ~α
to LP2 such that αa ∈ {0, 1, . . . , n} for all a ∈ A, αb ∈ {0,−1, . . . ,−(n − 1)} for all b ∈ B,
and

∑
u∈A∪B αu ≤ k.

Proof. (Proof of Theorems 3.1 and 6.1) If there exists an optimal solution ~α to LP2 such that∑
u∈A∪B αu = 0, then the optimal value of LP2 is 0 and hence by LP-duality, the optimal value

of LP1 is also 0. Thus ∆(N,M) ≤ 0 for any perfect matching N ; in other words, M is a popular
assignment. Similarly, if there is an optimal solution ~α to LP2 such that

∑
u∈A∪B αu ≤ k, then

∆(N,M) ≤ k for any perfect matching N , so µ(M) ≤ k.

We will now show the converse. Let M be a perfect matching with µ(M) = k; there exists a
dual optimal solution ~α such that

∑
u∈A∪B αu = k. Moreover, we can assume ~α ∈ Z2n due to the

total unimodularity of the constraint matrix. We can also assume αb ≤ 0 for all b ∈ B, because
feasibility and optimality are preserved if we decrease αb for all b ∈ B and increase αa for all a ∈ A
by the same amount.

Let us choose ~α such that
∑

b∈B αb is maximal subject to the above assumptions. We claim that
if there is no b ∈ B with αb = −r for some r ∈ N, then there is no b ∈ B with αb ≤ −(r+1). Suppose
the contrary, and let B′ = {b ∈ B : αb < −r} and A′ = {M(b) : b ∈ B′}. Since αa + αb ≥ 0 for
every (a, b) ∈M , we have αa ≥ r+ 1 for every a ∈ A′. Let ~α′ be obtained by decreasing αa by 1 for
all a ∈ A′ and increasing αb by 1 for all b ∈ B′. The dual feasibility constraints α′a+α′b ≥ wtM (a, b)
can only be violated if a ∈ A′, b /∈ B′, and αa + αb = wtM (a, b). But this would imply αa ≥ r + 1,
αb ≥ −r + 1 (since b /∈ B′ and αb cannot be −r), and αa + αb = wtM (a, b) ≤ 1, a contradiction.
Thus, ~α′ is also an optimal dual solution, and

∑
b∈B α

′
b >

∑
b∈B αb, contradicting the choice of ~α.

We have shown that the values that ~α takes on B are consecutive integers, so we obtain that
αb ∈ {0,−1,−2, . . . ,−(n−1)} for all b ∈ B. Since αa+αb ≥ 0 for every (a, b) ∈M , we have αa ≥ 0
for every a ∈ A′.

To conclude the proof of Theorem 3.1, observe that M is an optimal primal solution when k = 0,
so αa + αb = 0 for every (a, b) ∈M . This implies that αa ∈ {0, 1, 2, . . . , n− 1} for all a ∈ A. As for
Theorem 6.1, let N be a perfect matching that is optimal for LP1; then αa + αb = wtM (a, b) ≤ 1
for every (a, b) ∈ N by complementary slackness, and therefore αa ≤ n for all a ∈ A. ut

Generalizing the notion that we already used for popular assignments, we define a dual certificate
for an assignment M with unpopularity margin k as a solution ~α to LP2 with properties as described
in Theorem 6.1. So let us suppose that M is an assignment with µ(M) = k and ~α is a dual certificate
for M . We define the load of (a, b) ∈ M as αa + αb, and we will say that an edge (a, b) ∈ M is
overloaded (with respect to ~α), if it has a positive load, that is, αa +αb > 0. Clearly, the total load
of all edges in M is at most k, moreover αa +αb ≥ wtM (a, b) = 0 for every (a, b) ∈M , so there are
at most k overloaded edges in M .

Given a level function ` : B → N and an integer λ ∈ N, we say that edge (a, b) is λ-feasible, if

(i) b has level at least `∗(a)− λ+ 1 where `∗(a) = maxb∈Nbr(a) `(b), or

(ii) b has level `∗(a)− λ and a has no neighbor in level `∗(a) that she prefers to b, or

(iii) b has level `∗(a) − λ − 1, a prefers b to each of her neighbors in level `∗(a), and moreover, a
prefers none of her neighbors in level `∗(a)− 1 to b.
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Note that 0-feasible edges are exactly those contained in the graph G` induced by levels `(·), as
defined in Section 4. The following observation follows directly from the constraints of LP2.

Proposition 6.1. Consider the level function `~α where the level of any b ∈ B is `~α(b) = −αb.
Then any edge e ∈M with load λ is λ-feasible.

Given a level function ` : B → N and a load capacity function λ : E → N, we define the graph
G`,λ = (A∪B,E`,λ) induced by levels `(·) and load capacities λ(·) by putting an edge e into E`,λ if
and only if e is λ(e)-feasible.

We are now ready to describe an algorithm for finding an assignment M with µ(M) ≤ k if such
an assignment exists. Algorithm 3 starts by guessing the load λ(e) for each edge e of E. Then we
use a variant of the algorithm for Theorem 5.1 that enables each edge e with λ(e) > 0 to have
positive load (so G`,λ will be used instead of G`), and treats the overloaded edges as forced edges.

Algorithm 3 Finding a popular assignment with unpopularity margin at most k
1: for all functions λ : E → N with

∑
e∈E λ(e) ≤ k do

2: Set K = {e ∈ E : λ(e) > 0} as the edges which we will overload.
3: Set F = {(a, b′) ∈ E : (a, b) ∈ K, b′ 6= b} as the set of forbidden edges.
4: for all b ∈ B do `(b) = 0.

5: while `(b) < n for all b ∈ B do
6: Construct the graph G`,λ and find a maximum matching M in G`,λ − F .
7: if M is a perfect matching then return M .

8: for all b ∈ B unmatched in M do `(b) = `(b) + 1.

9: return “G has no assignment M with µ(M) ≤ k”.

Observe that there are at most mk ways to choose the load capacity function λ, where m = |E|,
by the bound

∑
e∈E λ(e) ≤ k. Each iteration of the while-loop takes O(m

√
n) time and there are

at most mk · n2 such iterations. Thus the running time of the above algorithm is O(mk+1 · n5/2).
Proof of Theorem 1.2. First, suppose that Algorithm 3 outputs an assignment M . Consider the
values of λ(·) and `(·) at the moment the algorithm outputs M . Set αb = −`(b) for each object,
and αa = −αb + λ(a, b) for each edge (a, b) ∈M . From the definition of G`,λ and λ-feasibility, such
a vector ~α fulfills all constraints in LP2. Hence, by

∑
u∈A∪B αu =

∑
(a,b)∈M λ(a, b) ≤ k, we get that

µ(M) ≤ k.

Second, assume that G admits an assignment M? with µ(M?) ≤ k, and let ~α be a dual certificate
for M?. We need to show that our algorithm will produce an output. Consider those iterations where
λ(e) equals the load of each edge e ∈ M?; we call this the significant branch of the algorithm. We
claim that |αb| ≥ `(b) holds throughout the run of the significant branch.

To prove our claim, we use the same approach as in the proof of Theorem 5.1, based on induction.
Clearly, the claim holds at the beginning of the branch; we need to show that `(b) is increased only
if |αb| > `(b). So let |αb| ≥ `(b) for each b ∈ B at the beginning of an iteration (steps (6)–(8)), and
consider an object b whose value is increased at the end of the iteration.

First, assume that b is incident to some overloaded edge (a, b) of M? with load λ(a, b). Since
b is not matched in a maximum matching in G`,λ − F , we know that the edge (a, b) ∈ K is not
λ-feasible with respect to `(·). However, by Proposition 6.1, (a, b) is λ(a, b)-feasible with respect to
the level function `~α where `~α(b) = |αb|. Recall that by our induction hypothesis, the `~α-level of
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any object is at least its `-level. Moreover, increasing the level of any object other than b cannot
result in making the edge (a, b) a λ(a, b)-feasible edge. It follows that `~α(b) = |αb| > `(b) must hold.

Second, assume that b is not incident to any overloaded edge. Consider the path P in M ⊕M?

on which b lies. Notice that, since the edges of F are treated as forbidden edges, M assigns each
agent incident to some edge in K either the object assigned to it by M?, or does not assign any
object to it. Therefore, no such agent lies on the path P . Consequently, we can apply Lemma 4.3 to
the matchings M ∩ P ⊆ E` and M? ∩ P ⊆ E`~α . This yields |αb| = `~α(b) > `(b), proving our claim.

Finally, note that in the significant branch, no object may have `-level higher than n − 1, as
implied by the properties of ~α stated in Theorem 6.1. ut

6.2 Hardness results

We now contrast Theorem 1.2 with Theorem 1.3 which states that finding an assignment with min-
imum unpopularity margin is NP-hard and Wl[1]-hard with respect to the parameter k, our bound
on the unpopularity margin. A parameterized problem Q is Wl[1]-hard if there exists a linear FPT-
reduction from the weighted antimonotone cnf 2-sat (or wcnf 2sat−) problem8 to Q [5]. Since wcnf
2sat− is a W[1]-complete problem [9], Wl[1]-hardness implies W[1]-hardness. While W[1]-hardness
of k-unpopularity margin shows that it cannot be solved in time f(k)|I|O(1) for any computable
function f unless W [1] = FPT (where |I| denotes the input length), the results of Chen et al. [5]
enable us to obtain a tighter lower bound: the Wl[1]-hardness of k-unpopularity margin implies that
it cannot even be solved in f(k)|I|o(k) time for any computable function f , unless all problems
in SNP are solvable in subexponential time – a possibility widely considered unlikely. Therefore,
Theorem 1.3 shows that our algorithm for Theorem 1.2 is essentially optimal.

Note that the unpopularity margin of any assignment M can be computed efficiently by deter-
mining the optimal value of LP1, so the k-unpopularity margin problem is in NP. In the remainder
of this section, we present a linear FPT-reduction from the Clique problem to the k-unpopularity
margin problem where agents’ preferences are weak rankings. By the work of Chen et al. [5], the
Wl[1]-hardness of k-unpopularity margin follows. Our reduction is a polynomial-time reduction as
well, implying NP-hardness for the case of weak rankings; note that this also follows easily from
the NP-hardness of finding a matching (not necessarily an assignment) with minimum unpopular-
ity margin [21], using our reduction from the popular matching problem to the popular assignment
problem. Both the reduction presented in this section and the reduction from popular matching in
Section 2.3 use weak rankings. However, we prove the NP-hardness of k-unpopularity margin for
strict rankings by reducing the problem with weak rankings to the case with strict rankings in
Lemma 6.7 in Section 6.3.9

Instead of giving a direct reduction from Clique, we will use an intermediate problem that we call
CliqueHog. Given a graph H, we define a cliquehog of size k as a pair (C,F ) such that C ⊆ V (H)
is a clique of size k, and F ⊆ E(H) is a set of edges that contains exactly two edges connecting c
to V (H) \ C, for each c ∈ C. The input of the CliqueHog problem is a graph H and an integer k,
and it asks whether H contains a cliquehog of size k.

8 The input to this problem is a propositional formula ϕ in conjunctive normal form with only negative literals and
clauses of size two, together with an integer parameter k; the question is whether the formula can be satisfied by
a variable assignment that sets exactly k variables to true.

9 The reduction from weak to strict rankings increases the parameter k by a non-constant term. Thus Wl[1]-hardness
does not carry over and the parameterized complexity of k-unpopularity margin with strict rankings is still open;
see the related open question in Section 8.
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Lemma 6.1. The CliqueHog problem is NP-hard and Wl[1]-hard with parameter k.

Proof. We reduce from the Clique problem. Given a graph H = (V,E) and an integer k, we construct
a graph H ′ by adding 2|V | edges and 2|V | vertices to H as follows: for each vertex v of H we
introduce two new vertices v′ and v′′, together with the edges (v, v′) and (v, v′′). It is then easy to
see that H contains a clique of size k if and only if H ′ contains a cliquehog of size k. The reduction
is a linear FPT-reduction with parameter k, as well as a polynomial-time reduction. ut

Let us now prove Theorem 1.3 by presenting a reduction from the CliqueHog problem.

Construction. Let H = (V,E) and k be our input for CliqueHog. We construct an instance G
of the k-unpopularity margin problem, with a set A of agents and a set B of objects as follows.
For each v ∈ V , we define a vertex gadget Gv containing agents a0v and a1v and objects b0v and b1v.
For each e ∈ E, we define an agent ae and an object be. Furthermore, we will use a set AD
of |E| −

(
k
2

)
− 2k dummy agents, and a set BD of |E| −

(
k
2

)
− 2k artificial objects. We define

AV = {aiv : v ∈ V, i ∈ {0, 1}}, BV = {biv : v ∈ V, i ∈ {0, 1}}, AE = {Ae : e ∈ E}, and
BE = {be : e ∈ E}. We set A = AV ∪ AE ∪ AD and B = BV ∪ BE ∪ BD. The preferences of the
agents in G are as follows (ties are simply indicated by including them as a set in the preference
list):

aiv : {be : e is incident to v in H} � b0v � b1v for each v ∈ V and i ∈ {0, 1};
ae : be � BD ∪ {b0x, b0y} � {b1x, b1y} for each e = (x, y) ∈ E;

ad : BE for each ad ∈ AD.

We finish the construction by setting the bound for the unpopularity margin of the desired
assignment as k. Clearly, this is a polynomial-time reduction, and also a linear FPT-reduction with
parameter k, so it remains to prove that H contains a cliquehog of size k if and only if G admits
an assignment M with unpopularity margin at most k.

Lemma 6.2. If (C,F ) is a cliquehog in H of size k, then G admits an assignment M with unpop-
ularity margin at most k.

Proof. Let f0c and f1c denote the two edges of F connecting c to V \ C in H (in any fixed order),
and we set F i = {f ic : c ∈ C} for i ∈ {0, 1}.

We define an assignment M as follows; see Fig. 3 as an illustration. First, let us assign the
|E| −

(
k
2

)
− 2k objects in {be : e /∈ E[C] ∪ F} to the dummy agents (where E[C] denotes the set

of those edges of E whose both endpoints are in C). Second, we assign the artificial objects to the
|E| −

(
k
2

)
− 2k agents in {ae : e /∈ E[C]∪F}. To define M on the remaining objects and agents, let

M(aiv) = biv for each v ∈ V \ C and i ∈ {0, 1};
M(aiv) = bf iv for each v ∈ C and i ∈ {0, 1};
M(ae) = be for each e ∈ E[C];
M(af ) = biv for each f ∈ F where f = f iv.

Observe that M indeed assigns exactly one object to each agent. To show that µ(M) ≤ k, we
define a dual certificate ~α for M :
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Fig. 3. Illustration for the construction in the proof of Theorem 1.3. The assignment M defined in Lemma 6.2 is
indicated by bold lines. Red, black, and blue edges have weight +1, 0, and −1, respectively, according to wtM (·). The
values of the dual certificate ~α for M are indicated by numbers within the circle (square) corresponding to the given
agent (object, respectively). For some edges (ae, be) in G we indicate only the corresponding edge e of H (see (u, v),
(v, x) and (v, y)). The figure assumes v ∈ C but x, y /∈ C; note that the edge (a(v,y), b

1
v) is overloaded in M .

αad = 0 for each ad ∈ AD; αbd = −1 for each bd ∈ BD;
αa0v = 1 for each v ∈ V \ C; αb0v = −1 for each v ∈ V \ C;

αa1v = 2 for each v ∈ V \ C; αb1v = −2 for each v ∈ V \ C;

αaiv = 0 for each v ∈ C and i ∈ {0, 1}; αbiv = −1 for each v ∈ C and i ∈ {0, 1};
αae = 1 for each e ∈ E \ (F 1 ∪ E[C]); αbe = 0 for each e ∈ E;
αae = 2 for each e ∈ F 1;
αae = 0 for each e ∈ E[C].

It is straightforward to check that ~α is indeed a dual certificate, that is, it satisfies the constraints
of LP2. Since

∑
u∈A∪B αu = k, assignment M indeed has unpopularity margin at most k. ut

We now show that any assignment inG with unpopularity margin at most k implies the existence
of a cliquehog of size k in H. We first establish a useful assumption that we will show is without
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loss of generality. We say that an assignment M has a nice structure, if for each e ∈ E one of the
following cases holds true:

• M(ae) = be, or

• M(ae) = bix and M(aix) = be for some endpoint x of edge e in H and i ∈ {0, 1}, or

• M(ae) ∈ BD and M(be) ∈ AD.

Lemma 6.3. If there exists an assignment in G with unpopularity margin at most k, then there
exists an assignment in G with unpopularity margin at most k that has a nice structure.

Proof. Let M ′ be any assignment in G. By switching the names of the identical agents a0x and a1x
wherever necessary, we can assume that M ′(aix) ∈ {bix} ∪ BE for all x ∈ V and i ∈ {0, 1}. We
construct a new assignment M as follows: For each e ∈ E, let M(ae) = M ′(ae). For each x ∈ V
and each i ∈ {0, 1}, if M ′(bix) = ae for some e ∈ E, then let M(aix) = be; otherwise let M(aix) = bix.
Assign the unmatched objects in BE arbitrarily to the dummy agents in AD. Note that for every
agent a ∈ A, we have M(a) = M ′(a) or M(a) and M ′(a) are both in BE . Since every agent is
indifferent between all her neighbors in BE , the assignment M has the same unpopularity margin
as M ′. ut

In what follows, let M be an assignment in G with unpopularity margin at most k and a nice
structure, and let ~α be a dual certificate for M . We will construct a cliquehog of size k in H.

We define a partition (E0, E1, E2) of those edges e in E for which M(ae) /∈ BD. For any
edge e ∈ E, we decide which set of the partition e belongs to using the following procedure.

1. If M(ae) = be and αae + αbe > 0, then we put e into E0.

2. If M(ae) = be and αae + αbe = 0, then we put e into E1.

3. If M(ae) is an object in Gx or Gy where e = (x, y), then we put e into E2.

We also define S as the set of those vertices v ∈ V for which the vertex gadget Gv contains an
agent or object that is incident to an overloaded edge of M . Note that since no agent in a vertex
gadget is connected to an object in another vertex gadget, and moreover, the overloaded edges
of M corresponding to edges in E0 are not incident to any vertex gadget, we know that

|S|+ |E0| ≤ µ(M) ≤ k. (1)

We will show that (S,E2) is a cliquehog of size k. To do so, we first establish two helpful lemmas.
The first shows that S contains all nodes x ∈ V for which at least one of the objects b0x and b1x
is matched to an edge agent. This implies that every edge in E2 is incident to a node in S. The
second lemma shows that all endpoints of edges in E1 are contained in S.

Lemma 6.4. Let x ∈ V . If M(b0x) ∈ AE or M(b1x) ∈ AE, then x ∈ S.

Proof. We distinguish two cases. First, suppose that M(b0x) = ae for some e ∈ E. Recall that
this implies M(a0x) = be, because M has a nice structure. From the preferences of agents and
the feasibility of ~α, we obtain the three inequalities αa0x + αb1x ≥ −1 and αM(b1x)

+ αb0x ≥ 1 and
αae + αbe ≥ 1. Adding these inequalities, we observe that at least one of the sums αa0x + αbe
or αb1x + αM(b1x)

or αae + αb0x must be positive, and thus the corresponding edge in M must be
overloaded.
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Second, suppose that M(b0x) /∈ AE but M(b1x) = ae for some e ∈ E. Recall that this implies
M(a0x) = b0x and M(a1x) = be, because M has a nice structure. Again from the preferences of
agents and the feasibility of ~α, we obtain the three inequalities αae + αb0x ≥ 1 and αa0x + αbe ≥ 1
and αa1x + αb1x ≥ −1. Adding these inequalities, we see that at least one of the sums αae + αb1x or
αa0x+αb0x or αa1x+αbe must be positive, and so the corresponding edge in M must be overloaded. ut

Lemma 6.5. If e = (x, y) ∈ E1, then {x, y} ⊆ S.

Proof. We only show that x ∈ S. The proof for y ∈ S follows by symmetry. If M(b0x) ∈ AE or
M(b1x) ∈ AE , Lemma 6.4 implies that x ∈ S. So we can assume that M(b0x) = a0x and M(b1x) = a1x
by the nice structure of M . By the preferences of agents and feasibility of ~α, we obtain the three
inequalities αa0x +αbe ≥ 1 and αa1x +αb0x ≥ 1 and αae +αb1x ≥ −1. Adding up these inequalities, we
observe that at least one of the sums αa0x +αb0x or αa1x +αb1x or αae +αbe must be positive. Because
e ∈ E1, the third expression is equal to 0, and so one of the former two has to be positive. This
implies that at least one of the two corresponding edges of M in Gx is overloaded. ut

We are now ready to prove Lemma 6.6, which together with Lemma 6.2 proves Theorem 1.3.

Lemma 6.6. If the constructed instance G admits an assignment M with unpopularity margin at
most k, then H contains a cliquehog of size k.

Proof. By Lemma 6.5 we know that any edge e ∈ E1 must have both of its endpoints in S, yielding

|E1| ≤
(|S|

2

)
. (2)

By Lemma 6.4, each edge e ∈ E2 must have its agent ae assigned to an object in a vertex gadget Gv
for some v ∈ S. By Inequality (1) there are at most 2|S| such objects, so we obtain

|E2| ≤ 2|S|. (3)

Recall that by construction of G and the definition of the partition (E0, E1, E2), we know
(
k

2

)
+ 2k = |E| − |BD| = |E1|+ |E2|+ |E0| ≤

(|S|
2

)
+ |S|+ k

where the inequality follows from combining Inequalities (1), (2), and (3). Hence, by |S| ≤ k we
obtain |S| = k. Moreover, every inequality we used must hold with equality. In particular, this
implies |E1| =

(
k
2

)
, which can only happen if there are

(
k
2

)
edges in H (namely, those in E1) with

both of their endpoints in S. In other words, S forms a clique in H. Additionally, (3) must also
hold with equality, so |E2| = 2|S| = 2k. Since every edge in E2 is incident to a vertex of S by
Lemma 6.4, but is not contained in E[S] (because E[S] = E1 ⊆ E \E2), and any x ∈ S is incident
to at most two edges of E2 (by the definition of E2), we can conclude that (S,E2) is a cliquehog of
size k. ut

6.3 A reduction from weak rankings to strict for the k-unpopularity margin problem

Lemma 6.7. Let G be an instance with weak rankings and n agents. Then we can compute in
polynomial time an instance G′ with strict rankings and an integer q ∈ O(n) such that G admits an
assignment with unpopularity margin k if and only if G′ admits an assignment with unpopularity
margin k + q for any k ∈ [n].
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Proof. Let G be an instance with weak rankings. We divide the proof into two parts. In the first part
we show that we can assume without loss of generality that the set of agents in G can be partitioned
into two groups, A� and A∼, where agents in A� have strict preferences over the objects in their
neighborhood and agents in A∼ are indifferent among all their neighboring objects. Starting from
such an instance, we then prove the lemma.

Part I. Starting from a graph G with weak rankings, we create a graph Ĝ and preferences

as follows: For every agent v in G, let B
(1)
v � · · · � B

(rv)
v , rv ∈ {1, . . . ,m} be the weak ranking

over its neighboring objects. We add agent v to Ĝ, and for each i ∈ {1, . . . , rv} we further add

a new agent a
(i)
v and a new object b

(i)
v to Ĝ. The new agent a

(i)
v is connected to—and defined to

be indifferent among—all objects in B
(i)
v ∪ {b(i)v }. Lastly, we introduce edges from v to all objects

in
⋃rv
i=1 b

(i)
v , with preferences b

(1)
v � b

(2)
v � · · · � b

(rv)
v . In Ĝ we can partition the set of nodes

into A�, containing copies of agents in G, and A∼, containing the newly introduced agents. Agents
in A� have strict preferences and all agents in A∼ are indifferent among all their neighbors. Below,
we show that the two instances are essentially equivalent.

v

1
1

2 2
2

B
(2)
v

B
(1)
vG

v

b
(1)
v a

(1)
v

b
(2)
v

a
(2)
v

1

2

Ĝ

Fig. 4. Illustration of the first part of the proof of Lemma 6.7. The left side illustrates the neighborhood of a fixed
node v within the original graph G. The right side illustrates the corresponding situation within the graph Ĝ. Agents
are depicted by circles and objects by squares. Labels of the edges indicate the rank of the edge within the ranking
of the incident agent. Agents a

(1)
v and a

(2)
v are indifferent among all their neighbors, hence, their labels are omitted.

More precisely, we show that there exists a bijection f mapping assignments in G to assignments
in Ĝ such that ∆(N,M) = ∆(f(N), f(M)) for any two assignments M and N in G. Let M be an
assignment in G. We start with f(M) = ∅. For every edge (v, w) ∈ M we do the following: Let

B
(1)
v � · · · � B

(rv)
v be the preferences of v and let i ∈ {1, . . . , rv} be such that w ∈ B(i)

v . Then, we

add the edges (v, b
(i)
v ) and (a

(i)
v , w) to f(M). Moreover, for all indices j ∈ {1, . . . , rv} \ {i} we add

the edge (a
(j)
v , b

(j)
v ) to f(M). It is easy to see that this is a bijection.

Since for every agent in A� the rank of its partner in M equals the rank of its partner in f(M)
and agents in A∼ are indifferent among all their neighbors, we get ∆(N,M) = ∆(f(N), f(M)).

Part II. Due to part I, we can assume that the agents in G are partitioned into sets A� and A∼
such that agents in A� have strict preferences over objects and the agents in A∼ are indifferent
among all their neighboring objects. Starting from the graph G, we create a graph G′ with strict
rankings as follows. We first copy all agents and objects to G′. Then for each a ∈ A∼ we introduce
two new agents a′ and a′′ and two new objects b′a and b′′a. We add all possible edges from {a, a′, a′′}
to NbrG(a) ∪ {b′a, b′′a}. The preferences of agents a, a′, and a′′ are identical, namely, b′a is their first
choice, b′′a their second choice, followed by all objects in NbrG(a) in arbitrary order.
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We define a function f which maps assignments in G′ to assignments in G. Let M ′ be an
assignment in G′. For each (a, b) ∈ M ′ where a ∈ A�, we add the edge (a, b) to f(M ′). Now,
observe that for every a ∈ A∼, exactly one of the nodes a, a′, a′′ is matched to a node of the original
neighborhood, i.e., NbrG(a). Let b be the assigned object. Then we add (a, b) to f(M ′). It is easy
to see that f(M ′) is then an assignment in G. We continue by observing that

(i) f is surjective, and

(ii) for all a ∈ A� and two assignment M ′, N ′ in G′: M ′ �a N ′ if and only if f(M ′) �a f(N ′).

For (i), note that for every assignment M in G we can create an assignment M ′ in G such that
f(M ′) = M holds, as follows: Copy all edges from M to M ′ and then add for every a ∈ A∼ the
edges (a′, b′a) and (a′′, b′′a). Clearly, f(M ′) = M . For (ii) observe that for all assignments M ′ in G′,
agents in A� have the same assigned object in M ′ as in f(M ′).

We define q = |A∼| and show that G admits an assignment with unpopularity margin at most k
if and only if G′ admits an assignment with unpopularity margin at most k + q, for any k ∈ N.

NbrG(a)

a
1
1
1

1

G G′ a

a′

a′′

b′a

b′′a

1

1

1

2

2

2

Fig. 5. Illustration of the second part of the proof of Lemma 6.7. The left side illustrates the neighborhood of an
agent a, indifferent among all its neighbors, within the graph G. The right side captures the corresponding gadget
in the graph G′. Labels on the edges indicate the preferences of agents. The ranks of edges between {a, a′, a′′} and
NbrG(a) can be chosen arbitrarily (but need to be larger than 2), hence, these labels are omitted.

Direction “⇒”. Assume that G admits an assignment M with unpopularity margin at most k.
Choose an assignment M ′ from G′ such that f(M ′) = M holds (such an M ′ is guaranteed to
exist by (i)). Let N ′ be an assignment in G′ maximizing ∆(N ′,M ′), so µ(M ′) = ∆(N ′,M ′). Since
∆(f(N ′), f(M ′)) ≤ maxN ∆(N,M) = k, we know by (ii) that agents in A� contribute at most k
to ∆(N ′,M ′). Moreover, we claim that agents not in A� contribute at most q to ∆(N ′,M ′). To
see this, consider the gadget for some agent a ∈ A∼. We distinguish two cases. First, assume that
the agent from {a, a′, a′′} which is assigned an object in NbrG(a) is the same in assignments M ′

and N ′; w.l.o.g. we assume it is agent a. Then a′ and a′′ together contribute 0, and a at most 1
to ∆(N ′,M ′). Second, assume w.l.o.g. that a is assigned some object in NbrG(a) by M ′, while a′ is
assigned some object in NbrG(a) by N ′. Then a and a′ together contribute 0,and a′′ at most 1. As
this holds for every gadget belonging to agents in A∼, this proves ∆(N ′,M ′) ≤ k + q.

Direction “⇐”. For the other direction, assume that G′ admits an assignment M ′ with unpopular-
ity margin at most k+q. We claim that f(M ′) has unpopularity at most k. Assume for contradiction
that there exists some assignment N in G with ∆(N, f(M ′)) > k. We construct N ′ as follows. For
every agent a ∈ A�, we let N ′(a) = N(a). Next, for every agent a ∈ A∼, let bM be its assigned
object in f(M ′) and bN be its assigned object in N . We can assume w.l.o.g. that a is matched
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to bM in M ′, a′ is matched to b′a, and a′′ is matched to b′′a. In N ′ we match a′ to bN , a′′ to b′a, and
a to b′′a. Then a, a′, and a′′ together contribute exactly 1 to ∆(N ′,M ′). Using the same argument
for all a ∈ A∼ and (ii) yields that µ(M ′) ≥ ∆(N ′,M ′) > k + q, a contradiction. ut

7 The Minimum-Cost Popular Assignment Problem

The minimum-cost popular assignment problem. Given a bipartite graph G = (A ∪ B,E) where
every agent has preferences in partial order over her adjacent objects, together with a cost function
c : E → R on the edges and a budget β ∈ R, does G admit a popular assignment of total cost at
most β?

In this section we prove Theorem 7.1 which shows the minimum-cost popular assignment problem
is NP-hard when edge costs are in {0, 1,+∞}. This is weaker than Theorem 1.4 which says this
problem is NP-hard even when edge costs are in {0, 1}. The proof of Theorem 7.1 presents the main
ideas used in the proof of Theorem 1.4; the latter is a little more involved and can be found in
Appendix A.

Theorem 7.1. The minimum-cost popular assignment problem is NP-complete, even if each edge
cost is in {0, 1,+∞} and agents have strict preferences.

Proof. Since we can check for any assignment of objects to agents, whether it is popular and its
cost is within the budget, the problem is clearly in NP. We now present a reduction from the Vertex
Cover problem, whose input is a graph H = (V,E) and an integer k, and asks whether there exists
a set S of at most k vertices in H such that each edge of E has one of its endpoints in S.

Construction. Let us construct our instance for the minimum-cost popular assignment problem;
see Fig. 6. We define the set A of agents and the set B of objects by introducing the following:

– two level-setting gadgets G0
` and G1

` , with Gi` consisting of a single edge connecting agent ai`
and object bi`, for each i ∈ {0, 1};

– a vertex gadget for each x ∈ V , consisting of a cycle of length 4, containing agents a0x and a1x,
and objects b0x and b1x;

– an edge gadget for each e ∈ E, consisting of a cycle of length 8 containing agents a0e, . . . a
3
e and

objects b0e, . . . , b
3
e.

We let AV and AE contain agents of all vertex and edge gadgets, respectively, and we define the
sets BV and BE of objects analogously. Additionally, we introduce a set F of inter-gadget edges.
First, we add edges of

F` = {(a1` , b0` ), (a0` , b1` )}
to the level-setting gadgets. Second, in order to enforce certain lower bounds on the dual certificate,
we connect some agents and objects in the level-setting gadgets with those in the vertex and edge
gadgets, by adding the edges of

Fbnd = {(a0x, b0` ) : x ∈ V } ∪ {(a0e, b1` ), (a3e, b1` ), (a1` , b1e) : e ∈ E}. (4)

Third, we encode the incidence relation in H into our instance by adding the edges of

Finc = {(a0e, b1y), (a3e, b1x) : e = (x, y)} (5)
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Fig. 6. An illustration of the instance constructed in the proof of Theorem 7.1, showing the level-setting gadgets
together with two vertex gadgets corresponding to vertices x and y in H and an edge gadget corresponding to
edge e = (x, y). Agents’ preferences are indicated by numbers on the edges. Dashed lines represent inter-gadget
edges with cost ∞, zigzagged lines represent edges with cost 1, and normal lines represent edges with cost 0. The
assignment M defined in direction “⇐” of the proof is indicated by bold lines, assuming a vertex cover S that
contains x but not y. Red, black, and blue edges have weight +1, 0, and −1, respectively, according to wtM (·). The
values of the dual certificate ~α for M are indicated by numbers within the circle (square) corresponding to the given
agent (object, respectively).

between edge and vertex gadgets. We define the set of all inter-gadget edges as F = F`∪Fbnd∪Finc.
Note that the edges of F indeed run between different gadgets.

For a set X of objects, we will write [X] in an agent’s preference list to denote an arbitrarily
ordered list containing objects in X. Then the preferences of the agents are as follows:

a0` : b0` � b1` ;
a1` : b0` � b1` � {b1e : e ∈ E};
a0x : b0` � b0x � b1x for each x ∈ V ;
a1x : b0x � b1x for each x ∈ V ;
a0e : b3e � b0e � b1` � b1y for each e = (x, y) ∈ E;

a1e : b0e � b1e for each e ∈ E;
a2e : b2e � b1e for each e ∈ E;
a3e : b3e � b2e � b1` � b1x for each e = (x, y) ∈ E;

Finally, we define the cost function: edges of F have cost +∞, the edge (a0x, b
1
x) has cost 1 for

each x ∈ V , and all remaining edges have cost 0. We set our budget to be k.

We claim that the constructed instance admits a popular assignment of cost at most k if and
only if H contains a vertex cover of size at most k.

Direction “⇒”. Let M be a popular matching of cost at most k. Since inter-gadget edges have
infinite cost, M(a) must be an object in the gadget that contains a, for any agent a. Thus, for
any x ∈ V , the cost of the edges of M within the vertex gadget corresponding to x is either 1 (in
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case M contains the edge (a0x, b
1
x)), or 0 (in case M does not contain (a0x, b

1
x)). Let S be the set

of those vertices x ∈ V for which the former holds, i.e., S = {x ∈ V : M(a0x) = b1x}; our budget
implies |S| ≤ k.

Let M admit a dual certificate ~α. Note that w.l.o.g. we can assume that αa0`
= 0, as otherwise

we can decrease the value of αa for all agents a by αa0`
and increase αb by the same amount for each

object b. Recall also that for each (a, b) ∈M complementary slackness for LP2 implies αa+αb = 0;
hence αb0`

= −αa0` = 0. Since a1` prefers b0` to M(a1` ) = b1` , we know that wtM (a1` , b
0
` ) = 1 and thus

αa1`
≥ 1 and αb1`

≤ −1. Using that wtM (a0` , b
1
` ) = −1, we obtain αa1`

= 1 and αb1`
= −1.

Consider now the edges in Fbnd. Observe that wtM (a0e, b
1
` ) = −1, wtM (a3e, b

1
` ) = −1 and

wtM (a1` , b
1
e) = −1 for any e ∈ E. Furthermore, we also have wtM (a0x, b

0
` ) = 1 for any x ∈ V .

These observations imply the following bounds:

min(αa0e , αa3e) ≥ 0 for each e ∈ E; (6)

αb1e ≥ −2 for each e ∈ E; (7)

αa0x ≥ 1 for each x ∈ V . (8)

For some v ∈ V \S, since a1v prefers b0v to M(a1v) = b1v, we know that wtM (a1v, b
0
v) = 1, implying

αb1v = −αa1v ≤ αb0v − 1 = −αa0v − 1 ≤ −2, (9)

where the last inequality follows from our bound (8).

Let us fix some edge e = (x, y) ∈ E. Let us define two matchings M e
x = {(aie, bie) : i ∈ {0, . . . , 3}}

and M e
y = {(aie, b(i−1)mod 4

e ) : i ∈ {0, . . . , 3}}. Since M does not contain any inter-gadget edges, we
know that M contains either M e

x or M e
y . Assume first that M contains M e

x; we claim that αa3e = 0.
For the sake of contradiction, assume otherwise; by (6) this implies αa3e ≥ 1. From the preferences
of agents a1e and a0e, we know wtM (a1e, b

0
e) = 1 and wtM (a0e, b

3
e) = 1. This implies

αb1e = −αa1e ≤ αb0e − 1 = −αa0e − 1 ≤ αb3e − 1− 1 = −αa3e − 2 ≤ −3, (10)

which contradicts our bound (7). Hence, αa3e = 0. By the preferences of agent a3e, we know
wtM (a3e, b

1
x) = −1, from which we get αb1x ≥ −1. Since (9) holds for every v ∈ V \ S, this im-

plies x ∈ S.

Assume now that M contains M e
y ; we claim that αa0e = 0. For the sake of contradiction,

assume otherwise; by (6) this implies αa0e ≥ 1. From the preferences of agents a2e and a3e, we know
wtM (a2e, b

2
e) = 1 and wtM (a3e, b

3
e) = 1. This implies

αb1e = −αa2e ≤ αb2e − 1 = −αa3e − 1 ≤ αb3e − 1− 1 = −αa0e − 2 ≤ −3. (11)

which contradicts our bound (7). Hence, αa0e = 0. By the preferences of agent a0e, we know
wtM (a0e, b

1
y) = −1, from which we get αb1y ≥ −1. Therefore, the bound (9) implies y ∈ S.

Thus, we have proved that x ∈ S or y ∈ S holds for any edge (x, y) ∈ E, that is, S is a vertex
cover of size at most k in H.

Direction “⇐”. For the other direction, given a vertex cover S ⊆ V of size at most k in H, we
will show that a popular assignment M of total cost exactly k exists. For each edge e ∈ E, let us
fix one of its endpoints in S, and denote it by τ(e). We may define M as follows:
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M(ai`) = bi` for any i ∈ {0, 1},
M(aix) = bix for any x ∈ V \ S and i ∈ {0, 1},
M(aix) = b1−ix for any x ∈ S and i ∈ {0, 1},
M(aie) = M e

τ(e)(a
i
e) for any e ∈ E and i ∈ {0, . . . , 3}.

It is clear that M indeed has total cost k. To show that M is popular, we define a dual certificate
for M by defining αb for each object b ∈ B as follows; we set αa = −αM(a) for each agent a ∈ A.

αb0`
= 0; αb1`

= −1;

αb0x = 0 for each x ∈ S; αb0e = −1 for each e ∈ E;

αb0x = −1 for each x ∈ V \ S; αb1e = −2 for each e ∈ E;

αb1x = −1 for each x ∈ S; αb2e = −1 for each e ∈ E;

αb1x = −2 for each x ∈ V \ S; αb3e = 0 for each e ∈ E.

This finishes the proof of the theorem. ut

Minimum-cost Popular Assignment vs. Popular Assignment with Forbidden Edges.
The popular assignment with forbidden edges problem can be seen as the special case of minimum-
cost popular assignment in which the popular assignment may only contain edges of cost 0, excluding
all edges of non-zero cost. In the general version of minimum-cost popular assignment, however, there
is a degree of freedom as to which non-zero cost edges are included in the assignment. Our proof of
Theorem 7.1 shows that this degree of freedom introduces an additional complexity to the problem.
Indeed, in our reduction from Vertex Cover, a set of vertices chosen as a vertex cover is encoded via
the set of cost 1 edges chosen to be included in the allocation, and explicitly forbidding all cost 1
edges would turn the constructed popular assignment with forbidden edges instance into a trivial
‘no’-instance.

8 Open Problems

We proposed a polynomial-time algorithm for computing a popular assignment in an instance
G = (A ∪ B,E) with one-sided preferences, if one exists. The running time of our algorithm is
O(m · n5/2) where |A| = |B| = n and |E| = m. Our algorithm solves O(n2) instances of the
maximum matching problem in certain subgraphs of G. It is easy to show instances where our
algorithm indeed solves Θ(n2) instances of the maximum matching problem. Can we do this more
efficiently? Is there a faster algorithm for the popular assignment problem?

Another open problem is to show a short witness that a given instance G does not admit a
popular assignment. Rather than run our algorithm and discover that G has no popular assignment,
is there a forbidden structure that causes G not to admit a popular assignment? Can we characterize
instances that admit popular assignments? Interestingly, such a result is known for the stable
roommates problem [27]; recall our discussion in Section 1 on the similarity between results for the
popular assignment problem and the stable roommates problem.

Our Wl[1]-hardness proof for the k-unpopularity margin problem with parameter k needs weak
rankings. We are able to show that this problem remains NP-hard for strict rankings (see Lemma 6.7
in Section 6.3). However, the parameterized complexity of this case is still open: is the k-unpopularity
margin problem in FPT with parameter k, if agents’ preferences are strict rankings?
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A Appendix: Proof of Theorem 1.4

We will modify the reduction presented in the proof of Theorem 7.1. Given the instance G con-
structed there, we obtain a modified instance G′ as follows; see Fig. 7 for an illustration.

Construction. We keep each vertex and edge gadget of G, but instead of the two level-setting
gadgets in G, we define a single level-setting gadget in G′, consisting of a cycle of length 4k′ where
k′ is the smallest integer with 2k′−1 > k. This gadget will contain agents ai` for i ∈ {0, . . . , 2k′−1}
together with objects bi` for i ∈ {0, . . . , 2k′ − 1}. We define the set F of inter-gadget edges by
keeping those inter-gadget edges defined in G that run between different gadgets in G′. Hence, we
let F = Fbnd ∪ Finc where Fbnd and Finc are defined as in (4) and (5), respectively.

The preferences of any agent in a vertex or edge gadget of G′ are the same as in G. We define
the preferences of the agents in the level-setting gadget as follows:

a0` : b0` � b2k
′−1

` ;
a1` : b0` � b1` � {b1e : e ∈ E};
ai` : bi−1` � bi` for each i ∈ {2, . . . , k′};
ai` : bi` � bi−1` for each i ∈ {k′ + 1, . . . , 2k′ − 1};
We set the cost of edge (ai`, b

i−1
` ) for each i ∈ {0, . . . , 2k′ − 1} as 1; we interpret superscripts of

objects belonging to the level-setting gadget modulo 2k′ (here and later). We also set the cost of
the edge (a0x, b

1
x) for each x ∈ V as 1. All remaining edges have cost 0, and we set k as our budget.

Direction “⇒”. To prove the correctness of our reduction, first we will show that the existence
of a popular assignment M of cost at most k in G′ implies a vertex cover of size at most k in H.

Excluding inter-gadget edges. We claim that M does not contain any inter-gadget edges. To
prove this, we first show that (a0` , b

0
` ) ∈M . Observe that for any i ∈ {0}∪{2, . . . , 2k′− 1}, agent ai`

can be assigned either bi` or bi−1` . Using that M assigns an object to every agent, we immediately get
that (a0` , b

0
` ) /∈M implies that M must contain all of the edges (ai`, b

i−1
` ) for i ∈ {0}∪{2, . . . , 2k′−1}.

However, these edges have total cost 2k′ − 1 > k which exceeds our budget. Hence, M contains
(a0` , b

0
` ) as well as every edge (ai`, b

i
`) for i ∈ {2, . . . , 2k′ − 1}.

Consider now the two agents in some vertex gadget: since neither of them can obtain object b0` ,
they must be assigned the two objects within their gadget.

It remains to show that (a1` , b
1
` ) ∈ M . The only other possibility is that M(a1` ) = b1e for some

edge e ∈ E. This immediately implies M(a1e) = b0e and M(a2e) = b2e. Let e = (x, y), and let us
define M e

x = {(aie, bie) : i ∈ {0, . . . , 3}} and M e
y = {(aie, bi−ie ) : i ∈ {0, . . . , 3}}. Note that the objects

available for the agents a0e and a3e are b3e and b1` (since all objects of a vertex gadget are assigned
within their gadget). Therefore, we have two cases:

a) (a0e, b
1
` ) ∈ M , implying M(a3e) = b3e. Then the assignment which uses the edges of M e

x and the
edge (a1` , b

1
` ) and otherwise coincides with M is more popular than M , a contradiction.
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Fig. 7. An illustration of the instance constructed in the proof of Theorem 1.4. As before, agents’ preferences are
indicated by numbers on the edges. Zigzagged lines represent edges with cost 1, all other edges have cost 0. Dashed
lines represent inter-gadget edges. The assignment M defined in direction “⇐” of the proof is indicated by bold
lines, assuming a vertex cover S that contains x but not y. Red, black, and blue edges have weight +1, 0, and −1,
respectively, according to wtM (·). The values of the dual certificate ~α for M are indicated by numbers within the
circle (square) corresponding to the given agent (object, respectively).

b) (a3e, b
1
` ) ∈ M , implying M(a0e) = b3e. Then the assignment which uses the edges of M e

y and the
edge (a1` , b

1
` ) and otherwise coincides with M is more popular than M , a contradiction.

Thus, we have proved (a1` , b
1
` ) ∈M , showing that M indeed avoids all inter-gadget edges.

Defining a vertex cover. We are going to define a set S the same way as we did for the instance G,
and show that S is a vertex cover in H. Hence, consider any x ∈ V . The cost of the edges of M
within the vertex gadget corresponding to x is either 1 (in case M contains the edge (a0x, b

1
x)), or 0

(in case M does not contain (a0x, b
1
x)). Let S be the set of those vertices x ∈ V for which the former

holds, i.e., S = {x ∈ V : M(a0x) = b1x}; our budget implies |S| ≤ k.

Let M admit a dual certificate ~α. Note that w.l.o.g. we can assume that αa0`
= 0, as otherwise

we can decrease the value of αa for all agents a by αa0`
and increase αb by the same amount for

each object b. Recall also that M(ai`) = bi` for each i ∈ {0, . . . , 2k′ − 1}. For each (a, b) ∈ M
complementary slackness for LP2 implies αa + αb = 0, so αbi`

= −αai`s.
Since ai` prefers bi−1` to M(ai`) = bi` for any i ∈ {1, . . . , k′}, we know wtM (ai`, b

i−1
` ) = 1. Using

this iteratively for i = 1, 2, . . . , k′ we get that αai`
≥ i and αbi`

≤ −i for any i ∈ {1, . . . , k′}. Similarly,

using iteratively that wtM (a2k
′−i+1

` , b2k
′−i

` ) = −1 for i = 1, 2, . . . , k′, we obtain that α
b2k
′−i

`

≥ −i
and α

a2k
′−i

`

≤ i. Now, considering the above two observations regarding α
ak
′
`

we can conclude that

only α
ak
′
`

= k′ is possible. Moreover, this implies that each of the above inequalities must hold with

27



equality, that is,

αai`
=

{
i if 0 ≤ i ≤ k′,
2k′ − i if k′ ≤ i ≤ 2k′ − 1.

(12)

Consider now the edges in Fbnd. Observe that wtM (a0e, b
1
` ) = −1, wtM (a3e, b

1
` ) = −1 and

wtM (a1` , b
1
e) = −1 for any e ∈ E. Furthermore, we also have wtM (a0x, b

0
` ) = 1 for any x ∈ V .

Taking into account (12), these observations yield the following bounds:

min(αa0e , αa3e) ≥ 0 for each e ∈ E; (13)

αb1e ≥ −2 for each e ∈ E; (14)

αa0x ≥ 1 for each x ∈ V . (15)

Notice that these are exactly the same bounds we obtained for the instance I in the proof of
Theorem 7.1 in Inequalities (6), (7), and (8). Therefore, using the same arguments again, we obtain
that S is a vertex cover of size at most k.

Direction “⇐”. For the other direction, given a vertex cover S ⊆ V of size at most k in H, we
will show that a popular assignment M of total cost exactly k exists in G′. For each edge e ∈ E,
let us fix one of its endpoints in S, and denote it by τ(e). We may define M as follows:

M(ai`) = bi` for any i ∈ {0, 1, . . . , 2k′ − 1},
M(aix) = bix for any x ∈ V \ S and i ∈ {0, 1},
M(aix) = b1−ix for any x ∈ S and i ∈ {0, 1},
M(aie) = M e

τ(e)(a
i
e) for any e ∈ E and i ∈ {0, . . . , 3}.

It is clear that M indeed has total cost k. To show that M is popular, we define a dual certificate
for M by defining αb for each object b ∈ B as follows; we set αa = −αM(a) for each agent a ∈ A.

αbi`
= −i for each i ∈ {0, 1, . . . , k′}; α

b2k
′−i

`

= −i for each i ∈ {1, . . . , k′ − 1};
αb0x = 0 for each x ∈ S; αb0e = −1 for each e ∈ E;

αb0x = −1 for each x ∈ V \ S; αb1e = −2 for each e ∈ E;

αb1x = −1 for each x ∈ S; αb2e = −1 for each e ∈ E;

αb1x = −2 for each x ∈ V \ S; αb3e = 0 for each e ∈ E.

This finishes the proof of the theorem. �
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