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ABSTRACT

We study the problem of bribery in multiwinner elections,
for the case where the voters cast approval ballots (i.e., sets
of candidates they approve) and the bribery actions are
limited to: adding an approval to a vote, deleting an ap-
proval from a vote, or moving an approval within a vote
from one candidate to the other. We consider a num-
ber of approval-based multiwinner rules (AV, SAV, GAV,
RAV, approval-based Chamberlin–Courant, and PAV). We
find the landscape of complexity results quite rich, going
from polynomial-time algorithms through NP-hardness with
constant-factor approximations, to outright inapproximabil-
ity. Moreover, in general, our problems tend to be easier
when we limit out bribery actions on increasing the num-
ber of approvals of the candidate that we want to be in a
winning committee (i.e., adding approvals only for this pre-
ferred candidate, or moving approvals only to him or her).
We also study parameterized complexity of our problems,
with a focus on parameterizations by the numbers of voters
or candidates.
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1. INTRODUCTION
No one enjoys losing an election. Nonetheless, it is a nat-

ural part of life and instead of drowning in sorrow, a skillful
candidate (or, a rational agent in a multiagent environment)
should rather focus on learning as much as possible from the
defeat. In particular, such a candidate deserves to know how
well he or she did in the election and how close he or she
was to winning. In single-winner elections the candidates
typically receive some scores (e.g., in Plurality elections, the
most popular type of single-winner elections, these scores
are the numbers of voters that consider a given candidate as
the best one) and the highest-scoring candidate is a winner.
Then reporting the scores for all the candidates gives them
some idea of their performance.

This score-reporting approach, however, has a number of
drawbacks. First, for some rules either there are no natu-
ral notions of the score or ones that exist do not necessarily
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give a very good idea of a candidate’s level of success. For
example, under the single-winner variant of the STV rule,
the voters rank candidates from the best one to the worst
one and we keep on deleting the candidates with the lowest
Plurality score until there is only one left, the winner. On
the surface, the rule does not assign scores to the candidates.
We could, of course, define the STV score as the round num-
ber in which the candidate is eliminated, but it would not
be very useful: Even a tiny change in the votes can rad-
ically change the elimination order (see, e.g., the work of
Woodall [34]; the effect is also used in the hardness proofs
of manipulation for STV [4, 33]).

Second, this approach is quite problematic to use within
multiwinner elections, where whole committees of candi-
dates are selected. If there were m candidates and the com-
mittee size were k, then one would have to list

(

m

k

)

scores,
one for each possible committee. One possible remedy would
be to list for each candidate p the score and the contents
of the best committee that included p. Unfortunately, this
would not address the first issue, which in multiwinner elec-
tions is even more pressing than in single-winner ones and,
more importantly, would not really tell the candidate what
this candidate’s performance was, but rather would bind him
or her to some committee.

Third, the scores used by some rules may not be suffi-
ciently informative. For example, in Copeland elections the
score of candidate c is the number of candidates d for whom
a majority of voters ranks c higher than d. Yet, no one
would claim that two candidates with the same Copeland
score, where one loses his or her pairwise contests by just a
few votes each and the other loses them by a huge margin,
performed similarly.

Finally, the notion of a score may be quite arbitrary. Go-
ing back to the previous example, the Copeland score can
be defined so that a candidate receives 1 point for winning
a pairwise contest, −1 point for losing it, and 0 points for
a tie, but one may as well define it to give 1 point for a
victory, 0 points for a loss, and 0.5 points for a tie. Both
approaches are perfectly appropriate and both are used in
the literature, but when used as measures of a candidate’s
success, they need to be interpreted quite differently.

To address the issues mentioned above, we propose an
approach based on the Bribery family of problems, intro-
duced by Faliszewski et al. [17] and then studied by a number
of other authors (see the works of Elkind, Faliszewski, and
Slinko [15], Dorn and Schlotter [12], Bredereck et al. [8], and
Xia [35] as some examples; we give a more detailed discus-
sion in Section 4). In these problems we are allowed to per-
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Figure 1: Approval scores in the election from the intro-
duction, together with an illustration show how d can join
the size-2 committee by, respectively, adding, deleting, or
swapping approvals.

form some actions that modify the votes and we ask what is
the smallest number of such actions that ensure that a given
candidate is a winner of the election. The fewer actions are
necessary for a particular candidate, the better he or she did
in the election (e.g., the winners require no actions at all).

To present our ideas, we focus on approval-based multi-
winner elections. We are interested in multiwinner elections
because for them measuring the performance of losing can-
didates is far less obvious than in the single-winner case,
and we focus on approval-based rules (where each voter pro-
vides a set of candidates that he or she approves), as op-
posed to rules based on preference orders (where each voter
ranks candidates from best to worst), because Bribery-style
problems for preference-order-based rules are already quite
well-studied [19] (even in the multiwinner setting [8]).

Let us now describe our setting more precisely. We as-
sume that we are given an election, i.e., a set of candidates
and a collection of voters (each voter with a set of candi-
dates that he or she approves of), and a multiwinner voting
rule. Multiwinner rules take as input an election and a com-
mittee size k, and output a set of k candidates that form a
winning committee (formally, we assume that they output a
set of tied committees, but for now we disregard this issue).
Let us consider one of the simplest approval-based multi-
winner rules, namely Approval Voting (AV for short; we
also consider a number of other rules throughout the paper).
Under AV, a candidate receives a point for each voter that
approves him or her, and the winning committee consists
of the k highest-scoring candidates. Let us assume that
we have four candidates, a, b, c, and p, and nine voters,
v1, . . . , v9, who approve the following candidates:

v1 = {a, b, c}, v2 = {b, c}, v3 = {a},

v4 = {a, b}, v5 = {a, b}, v6 = {a, c},

v7 = {b, c, p}, v8 = {a}, v9 = {a}.

The scores of a, b, c, and p, are, respectively, 7, 5, 4, and 1.
(See Figure 1 for a graphical presentation.) For size two, the
winning committee is {a, b}. We analyze the performance of
p by considering the following three types of bribery actions:

Adding Approvals. In this case, we are allowed to add candi-
dates to the voters’ sets of approved candidates, paying
a unit price for each addition. In our example it suf-
fices to add four approvals for p (let us assume that we
break ties in favor of p). Indeed, for the case of AV,
this number is the difference between the scores of p
and the lowest scoring committee member.

Deleting Approvals. In this case we are allowed to remove
approvals. In our example one has to remove seven

approvals. While deleting approvals may not seem an
intuitively good measure of candidate’s performance,
in fact it behaves quite interestingly. As opposed to
adding approvals, not only does it measure how many
points a candidate is missing to join the committee,
but also it accounts for the number of committee non-
members that did better than p.

Swapping Approvals. Here we are allowed to move approvals
between candidates within each vote. In our example it
suffices to move three approvals (two from b to p, e.g.,
in the votes v1 and v2, and one from c to p, e.g., in
v6). This measure seems to be somewhere between the
previous two. It takes into account the score difference
between the lowest-scoring committee member and p,
the number of candidates with scores in between, and
how the approvals are distributed between the votes
(within a single vote, we can swap only one approval
to p).

Indeed, the above interpretations are particularly easy and
natural for AV, but the numbers of approvals that one has
to add, delete, or swap to ensure a particular candidate’s
victory are useful measures for other rules as well.

Unfortunately, many bribery problems are known to
be NP-hard. In this paper we study the complexity of
our three variants of bribery under approval-based rules
(AddApprovals-Bribery, DeleteApprovals-Bribery,
and SwapApprovals-Bribery) in the following settings:
Either each bribery action comes at unit price (as in the
examples above) or each bribery action has a separate price
(this can be used, e.g., to model certain knowledge about
some voters, such as the fact that some voters would never
approve our candidate, or would never delete any approvals),
and either we allow all possible actions, or only those that
increase the number of approvals of our preferred candidate
(this restriction does not apply to the case of deleting ap-
provals). We obtain the following results:

1. Most of our problems turn out to be NP-hard for most
of our rules (the exceptions include AV in most set-
tings, and GAV and RAV when adding unit-cost ap-
provals for the preferred candidate).

2. Problems where bribery actions are focused on the pre-
ferred candidate tend to be easier than the unrestricted
ones (e.g., we sometimes obtain 2-approximation algo-
rithms instead of inapproximability results, or FPT al-
gorithms instead of XP ones). Focusing on unit prices
has a similar effect.

3. Most of our problems are in FPT parameterized either
by the number of candidates or the number of voters.

Due to space restrictions, we omit many of the proofs
(available upon request). We included proofs that we felt
were most illustrative of the techniques used, and were not
based on those already in the literature. We discuss related
literature in Section 4.

2. PRELIMINARIES
An approval-based election (C, V ) consists of a set C of

candidates and a collection V = (v1, . . . , vn) of voters. Each
voter has a set of candidates that he or she approves, and—
by a slight abuse of notation—we refer to these sets through



the voters’ names (e.g., we write v1 = {a, b} to indicate that
voter v1 approves candidates a and b).

A multiwinner voting rule is a function R that given an
election E = (C, V ) and a number k (1 ≤ k ≤ |C|) returns
a nonempty family of committees (i.e., size-k subsets of C).
We treat each committee in R(E, k) as tied for winning.
(Tie-breaking can sometimes affect the complexity of voting
problems [11, 29, 28]; our approach is frequently taken in
the literature as a simplifying assumption [19]).

Approval-Based Rules. Let (C, V ) be an election and let
k be the desired committee size. Following Aziz et al. [3,
2], we consider the following six rules (unless we mention
otherwise, for each rule described below there is a simple,
natural polynomial-time winner determination algorithm):

Approval Voting (AV). Under the AV rule, the score of each
candidate is the number of voters that approve him
or her. Winning committees are those that contain k
candidates with highest scores.

Satisfaction Approval Voting (SAV). Under the SAV rule,
each voter vi gives

1
|vi|

points to each of his or her ap-

proved candidates (i.e., each voter is given one point
that he or she distributes equally among the approved
candidates). Winning committees consist of k candi-
dates with highest total scores.

Chamberlin–Courant Approval Voting (CCAV). We say
that a voter approves a given committee if he or
she approves at least one member of this committee.
CCAV selects those committees that are approved by
the largest number of voters. (One interpretation is
that voters get representatives from the committee; a
voter who approves the committee can be represented
well). Unfortunately, computing a winning committee
under CCAV is NP-hard [30, 5].

Greedy Approval Voting (GAV). GAV was considered by Lu
and Boutlier [25] as an approximation algorithm for
CCAV, but it turned out to be an interesting rule on
its own [14, 2].1 GAV starts with an empty committee
W and executes k rounds, where in each round it adds
to W a candidate that maximizes the number of voters
who approve at least one member ofW (in case of a tie,
we assume that there is a fixed tie-breaking rule; thus
GAV always returns a single committee). If a winning
committee under CCAV is approved by OPT voters,
then the committee produced by GAV is approved by
at least (1− 1/e)OPT voters [25].

Proportional Approval Voting (PAV). Under PAV, voter vi
assigns to committee W score

∑|W∩vi|
t=1

1
t
. PAV out-

puts those committees that receive the highest total
score from the voters. The rule is NP-hard to com-
pute [31, 3], but—as shown by Aziz et al. [2]—satisfies
strong axiomatic properties, making it well-suited for
choosing representative bodies (e.g., parliaments, uni-
versity senates, etc.; GAV and CCAV satisfy weaker
variants of these properties).

1Strictly speaking, Lu and Boutilier [25] and Elkind et
al. [14] discuss a variant of the algorithm that uses pref-
erence orders and Borda scores. Nonetheless, their main
conclusions transfer to the approval-based case.

Reweighted Approval Voting (RAV). RAV relates to PAV in
the same way as GAV relates to CCAV. It starts with
an empty committee W and proceeds in k rounds, in
each adding to the committee a candidate that maxi-
mizes the PAV score of the committee. It guarantees
finding a committee whose score is at least a (1− 1/e)
fraction of that of a PAV winning committee.

Naturally, the above rules have different strengths and
weaknesses, and should be applied in different settings [2,
14, 31]. We provide more pointers regarding their properties
and history in Section 4.

Bribery Problems. We are interested in bribery problems
where we can perform the following types of operations:

AddApprovals: A single operation means adding an ap-
proval for a given candidate in a given vote.

DeleteApprovals: A single operation means removing an
approval from a given candidate in a given vote.

SwapApprovals: A single operation means moving an ap-
proval from a given candidate in a given vote to an-
other candidate—originally not approved—within the
same vote.

In the basic variant of our problems, each operation comes
with the same, unit price.

Definition 1. Let R be an approval-based multiwinner
rule and let Op be one of AddApprovals, DeleteAp-
provals, or SwapApprovals. In the R-Op-Bribery prob-
lem, we are given an election (C, V ), a preferred candidate
p ∈ C, and two integers, the committee size k and the budget
b. We ask whether it is possible to ensure that p belongs to
at least one R-winning committee of size k by applying at
most b operations of type Op to election (C, V ).

We follow Bredereck et al. [8] in that it suffices for p to be-
long to just one of the winning committees. (The approach
where p should belong to every winning committee—as in
the work of Meir et al. [27]—would be as natural.)

While Definition 1 gives the baseline variants of our prob-
lems, we also consider two modifications. In the priced vari-
ant (denoted by operations $AddApprovals, $DeleteAp-
provals, and $SwapApprovals), we assume that each pos-
sible operation comes with a distinct price (that depends
both on the voter and on the candidate(s) to which it ap-
plies; e.g., adding an approval for p to some vote v could cost
10 units, whereas adding an approval for some other candi-
date c to the same vote v could cost 2 units). That is, our
problems are closer to Swap Bribery and Shift Bribery
of Elkind et al. [15, 13] than to Bribery and $Bribery of
Faliszewski et al. [17] (where upon paying a voter’s price,
one can modify the vote arbitrarily).

We also distinguish variants of the ($)AddApprovals
and ($)SwapApprovals operations where one is limited to,
respectively, adding approvals only for p or swapping ap-
provals only to p. These problems model natural, positive
scenarios, where we want to find out what support candidate
p should have garnered to win the election.

3. RESULTS
For all our rules and settings, we seek results of three

kinds. First, we check whether the problem is polynomial-
time solvable (few rare cases) or is NP-hard (typical). Then,



operation Adding Approvals Deleting Approvals Swapping Approvals
restriction (for p) (none) (for p) (none)

prices (unit) (any) (unit) (any) (unit) (any) (unit) (any) (unit) (any)

AV P P P P

NP-hard

P

NP-hard
inapprox. inapprox.
FPT(m) FPT(m)
FPT(n) XP(n)

SAV

NP-hard NP-hard NP-hard NP-hard NP-hard
2-approx. 2-approx. inapprox. inapprox. inapprox. ? inapprox.
FPT(m) FPT(m) FPT(m) FPT(m) XP(m) FPT(m) XP(m)
FPT(n) FPT(n) XP(n) XP(n) FPT(n) FPT(n) XP(n)

GAV P

NP-hard NP-hard NP-hard NP-hard
inapprox. inapprox. inapprox. inapprox.
FPT(m) FPT(m) FPT(m) XP(m) FPT(m) XP(m)
FPT(n) FPT(n) FPT(n) FPT(n) XP(n)

RAV P

? NP-hard NP-hard NP-hard NP-hard
PTAS inapprox. inapprox. inapprox. inapprox.

FPT(m) FPT(m) FPT(m) FPT(m) XP(m) FPT(m) XP(m)
FPT(n) FPT(n) XP(n) XP(n) FPT(n) FPT(n) XP(n)

CCAV
FPT(m) FPT(m) FPT(m) FPT(m) XP(m) FPT(m) XP(m)
FPT(n) FPT(n) FPT(n) FPT(n) FPT(n) XP(n)

PAV
FPT(m) FPT(m) FPT(m) FPT(m) XP(m) FPT(m) XP(m)
FPT(n) FPT(n) XP(n) XP(n) FPT(n) FPT(n) XP(n)

Table 1: Results for all our rules and all variants of the problems. For each rule and each scenario we report four entries: (1)
is the problem in P or is it NP-hard, (2) what is the best known approximation algorithm, (3 and 4) what are the best known
parameterized algorithm for parameterization by the number of candidates (m) and the number of voters (n), respectively.
Each cell in the table is divided into two columns, one for the unpriced variant of the problem and one for the the priced
variant. When a result for both columns is the same, we write it in the middle of the cell.

to deal with NP-hardness, we seek approximation and FPT
algorithms. Unfortunately, in most cases we show that our
problems are hard to approximate in polynomial time within
any constant factor. For the case of parameterized complex-
ity, we show that all of our problems are fixed-parameter
tractable (in FPT), provided that we consider unit prices
and take as the parameter either the number of candidates
or the number of voters. For the case of priced elections, we
still get a fairly comprehensive set of FPT algorithms, but
we do miss some cases (and we resort to XP algorithms then;
nonetheless, we strongly believe that new proof techniques
would lead to FPT results for all our cases).

We summarize our results in Table 1. Below we first study
our polynomial-time computable rules (AV, SAV, GAV, and
RAV), for which we prove P-membership, NP-hardness, and
(in)approximability results, and then move on to parameter-
ized complexity, where we consider all the rules.

3.1 The Easy Case: Approval Voting
For AV, almost all our problems can be solved in polyno-

mial time using simple greedy algorithms.

Theorem 1. Let Op be one of ($)AddApprovals,
($)DeleteApprovals, and SwapApprovals. AV-Op-
Bribery is in P (also for the cases where we can add/swap
approvals only to p).

Proof sketch. Let (C,V ) be the input election, p be
the preferred candidate, k be the committee size, and b be
the budget. For the case of (priced) bribery by adding ap-
provals, it suffices to keep on adding approvals for p in the
order of nondecreasing price of this operation, until either p
becomes a member of some winning committee or we exceed
the budget (adding approvals for others is never beneficial).

For the case of (priced) bribery by deleting approvals, if p
is not a winner already then we proceed as follows. Let C′

be the set of candidates that have more approvals than p.
By “bringing a candidate c ∈ C′ down” we mean the cheap-
est sequence of approval-deletions that ensures that c has the
same number of approvals as p has (we refer to the total cost
of this sequence as the cost of bringing c down). We keep
on bringing candidates from C′ down (in the order of non-
decreasing cost of this operation) until p becomes a member
of some winning committee or we exceed the budget.

For the case of (unpriced) bribery by swapping approvals,
we first guess a threshold T (0 ≤ T ≤ |V |) and then repeat
the following steps until either p belongs to some winning
committee or we exceed the budget (if we exceed the budget
for every choice of T , then we reject): We let C′ be the
set of candidates who have more approvals than p, except
the k − 1 candidates approved by most voters (with ties
broken arbitrarily, but in the same way in each iteration;
this works since we consider unit prices). We remove from
C′ those candidates who are approved by at most T voters.
Then, if C′ is nonempty, we move an approval from some
c ∈ C′ to p (there is a vote where it is possible because c has
more approvals than p). If C′ is empty, then we move an
approval to p from some arbitrarily chosen candidate in some
arbitrarily chosen vote. Intuitively, in this algorithm we
guess the score T that we promise p will have upon entering
the winning committee, and we keep on moving approvals
from “the most fragile” opponents to p, so their scores drop
to T , whereas p’s score increases to T .

Unfortunately, AV-$SwapApprovals-Bribery is NP-
hard and hard to approximate within any constant factor.
This hardness comes from the fact that when swaps have



prices, then it does not suffice to simply know that there
will be some swap to perform (as in the algorithm above)
and one cheap swap may prevent another, more useful, one.

Theorem 2. AV-$SwapApprovals-Bribery is NP-
hard, even if we are allowed to swap approvals to the
preferred candidate only.

Proof. We reduce from the Independent Set problem,
where we are given a graph G and an integer h, and we ask
if there is a set of h pairwise non-adjacent vertices in G.
Independent Set is known to be NP-hard even on cubic
graphs, i.e., graphs with vertices of degree three [21].

Let (G,h) be an instance of Independent Set, where G
is a cubic graph with n vertices. We construct an instance
for AV-$SwapApprovals-Bribery, as follows. We let the
candidate set be C = {p} ∪ {cv | v is a vertex of G}, where
p is the preferred candidate. For each edge e = {u, v} in G,
we introduce a voter ve who approves the candidates cu and
cv . For each of these edge voters, each approval swap has
unit cost. We introduce further 3h voters, each approving
all the vertex candidates; all the swaps for these voters cost
3h+ 1. Finally, we set the committee size to k = n− h+ 1
and the budget to b = 3h. This completes the construction
which can be computed in polynomial time.

Prior to any approval swaps, p has score zero and every
other candidate has score 3 + 3h (each vertex touches three
edges, and we get 3h points from the second group of voters).

If there is a set IS of h pairwise non-adjacent vertices
of G, then we can ensure that p belongs to some winning
committee: It suffices that for each vertex v ∈ IS , we move
the approval from cv to p for the three edge voters that
correspond to the edges touching v (this is possible because
IS is an independent set). As a result, p’s score increases
to 3h, the scores of the h candidates corresponding to the
vertices from IS drop to 3h, and so C \ {cv | v ∈ IS} is a
winning committee (and contains p).

For the other direction, note that (1) the score needed for
p is 3h, (2) this score is achieved only if we swap for p in
each swap operation, and (3) if p is to be a member of some
winning committee then at least h candidates have to lose at
least three approvals each. It follows that these h candidates
have to form an independent set because otherwise we would
not be able to perform all the approval swaps.

Inapproximability results follow by similar proofs.

Theorem 3. For each α > 1, if P 6= NP then there
is no polynomial-time α-approximation algorithm for AV-
$SwapApprovals-Bribery (even if we focus on swapping
approvals to p only).

3.2 Chance for Approximation: SAV
On the surface, SAV is very similar to AV. Yet, the fact

that adding or deleting a single approval can affect many
candidates at the same time (by decreasing or increasing
their share of a voter’s point) can be leveraged to show NP-
hardness of all our problems.

Theorem 4. Let Op be one of ($)AddApprovals,
($)DeleteApprovals, and ($)SwapApprovals. SAV-
Op-Bribery is NP-hard (also for the cases where we can
add/swap approvals only to p).

Fortunately, not all is lost. Using the general technique of
Elkind et al. [13, 15], we obtain a 2-approximation algorithm
for the (priced) variant of adding approvals for p only. To
employ the approach of Elkind et al. [13, 15], it must be the
case that (1) after each bribery action, each non-preferred
candidate c loses at most as many points as the preferred
one gains, (2) there is a pseudo-polynomial time algorithm
that computes a bribery action maximizing the score of p
for a given budget, and (c) if X and Y are two sets of legal
bribery actions (i.e., all bribery actions from X can be exe-
cuted jointly, and all actions from Y can be executed jointly,)
thenX∪Y also is a legal set of bribery actions. These condi-
tions hold for SAV-($)AddApprovals-Bribery (for adding
approvals to p only) and we get the following result.

Theorem 5. There is a 2-approximation polynomial-
time algorithm for SAV-($)AddApprovals-Bribery for
the case where we add approvals to p only.

The theorem also works for SAV-AddApprovals-
Bribery (i.e., for the unrestricted, unpriced case) because
if there is a solution that adds approvals to some candidates
other than p, then there is also one with the same cost or
lower that adds approvals to p only. (If we add an approval
for some candidate c, c 6= p, in a vote where p is not ap-
proved, then it is better to add the approval to p. If we add
an approval in a vote where p already is approved, then it
is better to not make this addition.)

On the other hand, the above technique does not apply
to SAV-$AddApprovals-Bribery (e.g., there are bribery
actions that do not increase the score of the preferred can-
didate but decrease the scores of others, which breaks con-
dition (1) above) and, indeed, we obtain inapproximability.

Theorem 6. For each α > 1, if P 6= NP then there
is no polynomial-time α-approximation algorithm for SAV-
$AddApprovals-Bribery.

The proof follows by noting that the classic SetCover
problem (which is not approximable within any constant
factor when P 6= NP) can be embedded within SAV-
$AddApprovals-Bribery. The key idea is to model each
set from a SetCover instance as a voter. Due to the na-
ture of SAV, as soon as we add an approval to a vote, the
scores of all the previously approved candidates (who corre-
spond to elements) decrease. Our construction guarantees
that to make p winner, one needs to decrease the score of all
element-candidates and, thus, adding an approval to a “set
voter” can be viewed as covering the elements from the cor-
responding set. It is possible to provide such construction
which preserves the inapproximability bound of SetCover.

The proof for SAV-($)DeleteApprovals-Bribery relies
on similar tricks, but is far more involved (again, we cannot
use the 2-approximation technique because deleting an ap-
proval for a candidate decreases his or her score more than
it increases the score of the preferred candidate).

Theorem 7. For each α > 1, if P 6= NP then there
is no polynomial-time α-approximation algorithm for SAV-
$DeleteApprovals-Bribery.

The case of swapping approvals is more tricky. We can-
not use the 2-approximation trick, because if X and Y are
two sets of approval-swaps to perform (each possible to ex-
ecute) then X ∪ Y may be impossible to perform (e.g., it



may require to move an approval to the preferred candidate
within some vote from two different candidates). In fact, for
the case where we only move approvals to the preferred can-
didate, we obtain outright inapproximability result (which
immediately translates to the unrestricted, priced setting;
with high prices we can enforce approval-swaps to p only).
The general result for unit-price swaps remains elusive.

Theorem 8. For each α > 1, if P 6= NP then there
is no polynomial-time α-approximation algorithm for SAV-
($)SwapApprovals-Bribery for the case where we only
move approvals to p.

Proof. Let us fix α to be a positive integer, α ≥ 1.
We will give a reduction f from a restricted variant of
the X3C problem to SAV-SwapApprovals-Bribery (for
the case where we can move approvals to p only) and ar-
gue that an α-approximation algorithm for the latter would
have to decide the former. In our Restricted X3C we
are given a set X = {x1, . . . , x3n} of elements and a family
S = {S1, . . . , S3n} of sets, such that (a) each set contains ex-
actly three elements, and (b) each element belongs to exactly
three sets. We ask if there is a family of n sets from S whose
union is exactly X. This variant remains NP-hard [22].

Let I be an instance of Restricted X3C (with input
as described above). We set N = 27(αn + 1) (intuitively,
N is simply a value much larger than n) and we form an
instance of our problem as follows. We let the candidate
set be C = S ∪ D ∪ {p}, where D = {d1, . . . , dN} is a set
of dummy candidates needed for our construction, and we
introduce the following voters:

1. For each element xi ∈ X, we introduce one voter vi
that approves the three set-candidates Sj′ , Sj′′ , Sj′′′

that correspond to the sets that contain xi. We refer
to these voters as element voters.

2. We introduce n·(N+3n)−1 voters, each approving all
the candidates from S and D. We write V ′ to denote
the set of these voters.

3. We introduce 10nN voters, each approving all the can-
didates in D. We denote the set of these voters by V ′′.

Prior to bribery, p has score 0, each set candidate has score
1+n− 1

N+3n
, and each dummy candidate has score at least

10n. We set the committee size to k = N + 2n+ 1, and the
budget to b = 3n.

If I is a “yes”-instance, then it is possible to ensure that
p belongs to some winning committee using at most 3n ap-
proval swaps: For each set Sj from the exact cover we take
all voters corresponding to elements covered by Sj and for
these voters we move approvals from Sj to p. Consequently,
p is approved by all the voters corresponding to elements of
X and obtains 1/3 · 3n = n points. Since the score of each
of the sets from the exact cover drops to n − 1/N+3n < n,
there are n candidates with score lower than p. In effect, p
belongs to a winning committee.

Now, consider what happens if I is a “no”-instance. After
3αn swaps, the score of p can be at most n+ (3αn−3n)/N <
n+ 1/9 (at best, we can get n points from the element voters
using 3n swaps, and use the remaining 3αn − 3n swaps for
voters in V ′′). Since there is no exact cover, after executing
all the swaps there are at most n−1 set candidates such that
no element voter approves them. Every other set candidate

is approved by at least one element voter and at least n·(N+
3n) − 1− 3αn voters from V ′. The score of such candidate
is, thus, at least:

1/3 +
(

n · (N + 3n)− 1− 3αn
)

· 1
N+3n

≥

1/3 + n− 3αn+1
N

≥ n+ 1/3 − 1/9 > n+ 1/9.

The candidates from D have even higher scores. Conse-
quently, at most n− 1 candidates have scores lower than p
and so p cannot be a member of a winning committee.

Thus, if there were a polynomial-time α-approximation
algorithm for our problem, then we could use it to decide
the NP-hard Restricted X3C problem.

3.3 Mostly Hard Cases: GAV and RAV
Unfortunately, for GAV and RAV we obtain an almost

uniform set of NP-hardness and inapproximability results.
The only exception regards (priced) adding approvals for
the preferred candidate.

Theorem 9. Let R be one of GAV and RAV, and let
Op be one of ($)AddApprovals, ($)DeleteApprovals,
and ($)SwapApprovals. For each α > 1, if P 6= NP then
there is no polynomial-time α-approximation algorithm for
R-Op-Bribery. This also holds for ($)SwapApprovals
when we can move approvals only to the preferred candidate.

The somewhat involved proof of this theorem is inspired
by a related result of Bredereck et al [8], for the case of
ordinal elections.

Nonetheless, the case of adding approvals for the preferred
candidate only is easy for both GAV and PAV (although for
PAV in the priced variant we only obtain a PTAS, i.e., a
polynomial-time approximation scheme).

Theorem 10. When restricted to adding approvals to the
preferred candidate only, {GAV,RAV}-AddApprovals-
Bribery is in P. For GAV, the priced variant of this prob-
lem is also in P, whereas for RAV there is a PTAS for it.

Proof sketch. Let (C,V ) be an election, let p be the
approved candidate, let k be the committee size, and let b
be the budget. We consider GAV first. Since it proceeds
in k iterations, to ensure that p is selected, we first guess
the iteration ℓ in which we plan for p to be added to the
committee. We execute GAV until the ℓ’th round. Then
we execute the following operation until either p is to be
selected in the ℓ’th round2 or we exceed the budget (in which
case, we try a different guess for ℓ, or reject, if we ran out of
possible guesses): We find a voter who does not approve any
candidate in the so-far-selected committee and for whom the
price for adding approval for p is lowest; we add approval for
p for this voter. Simple analysis confirms the running time
and correctness of the algorithm.

The algorithm for RAV is very similar: We also guess a
round number where we plan for p to be selected, and after
simulating the algorithm until this round, we add the cheap-
est set of approvals guaranteeing that p would be selected
in this (or earlier) round. The only difference is that for
the priced variant, this involves solving an instance of the
Knapsack problem (each voter has a price for adding ap-
proval for p and the number of points that we obtain by this

2Technically, it is possible that by our actions p would be
selected in an earlier round, but it does not affect the cor-
rectness of the algorithm.



approval, which is of the form 1/t, for some t ∈ {1, . . . , ℓ}).
We can use a classic Knapsack PTAS for this task.

Whether RAV-$AddApprovals-Bribery is NP-hard
when we can add approvals for the preferred candidate only
remains open (however, we suspect that it does).

3.4 FPT Algorithms
While for several important special cases we either ob-

tained direct polynomial-time algorithms or polynomial-
time approximation algorithms, most of our problems are
NP-hard and hard to approximate within any constant fac-
tor. Fortunately, if either the number of candidates or the
number of voters is considered as the parameter (i.e., can be
assumed to be small), we have many FPT algorithms.

Indeed, for the unpriced setting and the parameterization
by the number of candidates all our problems are in FPT.
This follows by the classic approach of formulating problems
as integer linear programs (ILPs) and applying Lenstra’s
algorithm [24]. Using the approach of Bredereck et al. [7]
that combines Lenstra’s algorithm with mixed integer linear
programming, we also obtain FPT algorithms for the priced
cases of adding and deleting approvals.

Theorem 11. For each R in {AV, SAV, GAV, RAV,
CCAV, PAV}, R-($)AddApprovals-Bribery (also when
we only add approvals for the preferred candidate), R-
($)DeleteApprovals-Bribery, and R-SwapApprovals-
Bribery are in FPT when parameterized by the number of
candidates.

The reason why we do not obtain the result for $Swap-
Approvals is that the technique of Bredereck et al. [7] re-
quires that for each set of candidates A, and for each possible
set of bribery actions that can be applied to votes approv-
ing exactly A—denote such votes as VA—we have to be able
to precompute the cheapest cost of applying these actions
to exactly one vote from VA, to exactly two votes from VA,
etc. This is easy to do for (priced) adding and deleting ap-
provals because bribery actions are independent from each
other. Yet, this is impossible for priced approval swaps as
the lowest cost of moving an approval from some candidate
c to some candidate d, within a vote from VA may depend
on what other swaps were performed before on votes from
VA. Nonetheless, we can handle AV-$SwapApprovals-
Bribery: In this case it suffices to guess the winning com-
mittee and score T of its lowest-scoring member; then com-
puting a bribery that ensure that each member of the com-
mittee has score at least T and each non-member has score
at most T is easy though a min-cost/max-flow argument.

Proposition 12. AV-$SwapApprovals-Bribery is in
FPT when parameterized by the number of candidates.

For the parameterization by the number of voters, we use
a more varied set of approaches. For the case where we add
approvals for the preferred candidate only, a simple exhaus-
tive search algorithm is sufficient, even for arbitrary prices.
Specifically, it suffices to guess for which voters we add an
approval for p, check that it is within the budget, and that
p is then selected for some winning committee. Recall that
for the parameterization by the number of voters, winner de-
termination is in FPT for all our rules; for PAV and CCAV
this follows from the proof of Theorem 15 of Faliszewski et

al. [20]. To simplify notation, we will say that a rule has
FPT(n) winner determination if there is an FPT algorithm
(parameterized by the number of voters) that checks if a
given candidate belongs to some winning committee.

Theorem 13. For each rule R with FPT(n) winner de-
termination, R-($)AddApprovals-Bribery for the case
where we add approvals for the preferred candidate only is
in FPT when parameterized by the number of voters.

There are also general algorithms for the case of unpriced
adding or swapping approvals (not necessarily for p). A
unanimous voting rule is a voting rule for which if there is
a candidate which is approved by all the voters, then this
candidate is in some winning committee. (Note that all our
rules are unanimous.) A rule is symmetric if it treats all
candidates and voters in a uniform way (i.e., the results
do not change if we permute the collection of voters, and
if we permute the set of candidates, then this analogously
permutes the candidates in the winning committees). We
say that two candidates are of the same type if they are
approved by the same voters; there are at most 2n candidate
types in an election with n voters (this idea of candidate
types was previously used by Chen et al. [10]).

Theorem 14. For each symmetric, unanimous rule R
with FPT(n) winner determination, R-AddApprovals-
Bribery and R-SwapApprovals-Bribery are in FPT
when parameterized by the number of voters.

Proof. Consider an instance of our problem with n vot-
ers, where p is the preferred candidate. If the budget is at
least n, then we accept because we can ensure that every
voter approves p, and p is selected for some winning com-
mittee by unanimity. So we assume that the budget is less
than n. We (arbitrarily) select n candidates of each can-
didate type present in the election (or all candidates of a
given type, if there are fewer than n of them). These at
most n · 2n candidates are the only ones which we allow to
add (for R-AddApprovals-Bribery) or to swap between
(for R-SwapApprovals-Bribery). We can now check all
possibilities of adding or swapping these candidates, and we
accept if at least one leads to p belonging to a winning com-
mittee and is within the budget.

A similar technique works for $SwapApprovals, for the
case where we are allowed to move approvals to the preferred
candidate only. However, this time we cannot arbitrarily
choose n candidates of each type, because we might choose
candidates for whom moving the approvals is too expensive.

Theorem 15. For each symmetric, unanimous rule R
with FPT(n) winner determination, R-$SwapApprovals-
Bribery (for the case where we are allowed to move ap-
provals to the preferred candidate only) is in FPT when pa-
rameterized by the number of voters.

Proof. Consider an instance of our problem with n vot-
ers, where p is the preferred candidate. Since we can move
approvals to p only, it follows that we cannot operate twice
on the same voter and the number of operations in every so-
lution is at most n. Further, in a solution we might change at
most n candidates from their original types to some other
types. Consider two types, σ and σ′, and note that, as a
corollary to the above observation, we have that at most n



candidates of type σ might change to type σ′ in the solution.
Therefore, for each pair of types σ and σ′, we select at most
n candidates of type σ which are the cheapest to change
to type σ′. These at most n · 22n candidates are the only
ones which we allow to operate on. We can now check all
possible sets of move-approval-to-p bribery actions on these
candidates, and we accept if at least one leads to p belonging
to a winning committee and is within the budget.

For CCAV and GAV, we use the fact that they operate
on candidate types. Then we provide a general XP result.

Theorem 16. If R is CCAV or GAV, then R-($)Add-
Approvals-Bribery and R-($)DeleteApprovals-Bri-
bery are in FPT (parameterized by the number of voters).

Proof. Consider some election with n voters, committee
size k, and where p is the preferred candidate. The crucial
observation is that both for CCAV and GAV, the set of
winning committees is fully determined by the candidate
types present in the election (irrespective of the number of
candidates of each type). This holds because whenever a
candidate of some type is included in the committee, then
adding another candidate of the same type will not change
the committee’s score. In consequence, we can think of a
winning committee as of a set of (at most k) candidate types.
Candidate p belongs to some winning committee if and only
if its type belongs to some winning committee.

If k ≥ n, then we accept because for each candidate type
there is a winning committee that includes it (it is always
possible to choose at most n candidate types so that the
maximum number of voters approve the committee, and
then we can add further, arbitrary candidate types).

For the case where k < n, we proceed as follows. First, we
guess candidate types that should be present in the election
after the bribery (we also guess the type that p shall have).
Second, we compute the lowest cost of obtaining an election
where exactly these candidate types are present (see below
for an algorithm). Finally, we check if this cost does not
exceed the budget and if there is a winning committee that
includes p’s type. If so, we accept, and otherwise we try
different guesses (and reject if no guess leads to acceptance).

To compute the cost of transforming an election to one
with exactly the guessed candidate types, we solve the fol-
lowing instance of the min-cost/max-flow problem [1]. For
each candidate ci from the election, we create a node ci. We
have a source node s and we connect s to each ci with an arc
of capacity 1 and cost 0. For each type σj that we guessed to
appear in the post-bribery election, we create a node σj . We
have a target node t and we connect each σj to t with an arc
of cost 0, infinite capacity, and the requirement that at least
1 unit of flow passes through this arc (this ensures that each
of the guessed types actually appears in the election after
the bribery). We connect each ci to each σj by an arc with
capacity 1 and cost equal to the price of changing the type of
ci to the type σj . (For $AddApprovals and $DeleteAp-
provals we can indeed compute these costs independently
for each candidate and each candidate type, using infinite
costs to model impossible transformations). This network
contains at most O(m+ 2n) nodes, where m is the number
of candidates and n is the number of voters. Since there is
a polynomial-time algorithm that solves the min-cost/max-
flow problem [1] (i.e., that finds a minimum-cost flow that
satisfies all the arc requirements and moves a given number

of units of flow, m in our case, from the source to the sink),
this algorithm computes the desired cost in FPT time with
respect to the number of voters.

Theorem 17. For each rule and bribery problem studied
in this paper, the problem is in XP both for the parameteri-
zation by the number of candidates and voters.

4. RELATED WORK
The bribery family of problems was introduced by Fal-

iszewski et al. [17], but in that work the authors mostly (but
not only) focused on the case where after “buying” a vote it
is possible to change it arbitrarily. Bribery problems where
each local change in a vote is accounted for separately, were
first studied by Faliszewski et al. [18] (for irrational votes)
and then by Faliszewski [16] (in particular, for the single-
winner approval setting, by allowing different costs of mov-
ing approvals between candidates) and by Elkind et al. [15,
13] (for the standard ordinal model, in the Swap Bribery
problem by assigning different costs for swapping adjacent
candidates in a preference order, and in the Shift-Bribery
problem by assigning different costs for shifting the preferred
candidate forward in preference orders). Swap Bribery and
Shift Bribery were then studied by a number of authors,
including Dorn and Schlotter [12] and Bredereck et al. [6].
Bredereck et al. [8] studied the complexity of Shift Bribery
for multiwinner elections (their paper is very close to ours).

Our work was inspired by that of Aziz et al. [3] on the
complexity of winner determination and strategic voting in
approval-based elections. In addition, Aziz et al. [2] intro-
duced the notion of justified representation and argued why
rules such as PAV, CCAV, and GAV should be very effec-
tive for achieving proportional representation or, at least,
diversity within the committee. For more details regard-
ing AV, SAV, PAV, and RAV, we point the reader to the
work of Kilgour [23]. PAV, RAV, CCAV, and GAV were
introduced in the 19th century by Thiele [32] (GAV-style
rules attracted attention after Lu and Boutilier [25] consid-
ered them in the ordinal setting). CCAV is a variant of the
Chamberlin–Courant rule [9], but for the approval setting;
studied, e.g., by Procaccia et al. [30] and Betzler et al. [5].

Other closely related papers include that of Meir et al. [27]
(on the complexity of manipulation and control for multi-
winner rules) and those of Magrino et al. [26] and Xia [35]
(on using bribery to quantify chances of election fraud; we
also use bribery for post-election analysis).

5. OUTLOOK
We believe that our most important contribution is con-

ceptual: We propose to use bribery problems to measure
how well each candidate performed in an election. While
many (yet, not all) of our results are negative, we show an
extensive set of FPT results. It is important to verify how
efficiently can our problems be solved in practice.
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