
Abstract

This paper describes a general methodology for
automated recognition of complex human activities. The
methodology uses a context-free grammar (CFG) based
representation scheme to represent composite actions and
interactions. The CFG-based representation enables us to
formally define complex human activities based on simple
actions or movements. Human activities are classified into
three categories: atomic action, composite action, and
interaction. Our system is not only able to represent
complex human activities formally, but also able to
recognize represented actions and interactions with high
accuracy. Image sequences are processed to extract poses
and gestures. Based on gestures, the system detects actions
and interactions occurring in a sequence of image frames.
Our results show that the system is able to represent
composite actions and interactions naturally. The system
was tested to represent and recognize eight types of
interactions: approach, depart, point, shake-hands, hug,
punch, kick, and push. The experiments show that the
system can recognize sequences of represented composite
actions and interactions with a high recognition rate.

1. Introduction
High-level understanding of human activity is essential

for various applications, including surveillance systems
and human computer interactions. In particular, a human
activity recognition system may enable the detection of
abnormal activities as opposed to the normal activity of
persons using public places like airports and subway
stations. Automated human activity recognition may be
useful for real-time monitoring of the elderly people,
patients, or babies. Several researchers have worked on
human activity recognition at various levels [1]. Some
researches focus on simple tracking of persons, and others
focus on estimating the physical state of persons in the
scene. Further, various analyses on human actions have
been conducted. Most of the previous researches focused

mainly on the recognition of single (i.e. atomic) actions of
humans, not on recognition of complex composition of
multiple movements or actions [6, 7]. However, recently,
understanding semantics of composite actions is getting
more and more interest among researchers [3,4,5,9,10].

In this paper, we aim to recognize composite actions and
interactions using a context-free grammar (CFG) based
representation scheme. Our CFG representation scheme is
able to construct a concrete representation for any
composite action, and thus enables the system to recognize
the defined composite actions based on their representation.
Human actions and interactions are usually composed of
multiple sub-actions, which themselves are atomic or
composite actions. Thus, the representation for composite
actions must convey the hierarchical and repetitive nature
of the human activities. In addition, the recognition system
must be able to recognize represented actions and
interactions based on their sub-actions.

Our focus in this paper is at the semantic level, the
highest level, of the human activity recognition system. In
order to recognize composite actions and interactions, raw
pixel-level image sequences must be processed up to
semantic descriptions of human activities. We adopt
previously developed framework to extract features of
body parts from pixel-level images [8]. We discuss how
extracted features are applied to estimate poses and
gestures of persons. Finally, we present the semantic level
representation of general human actions and interactions,
and the methodology to recognize represented actions and
interactions.

Our recognition framework is composed of several
layers: the body-part extraction layer, the pose layer, the
gesture layer, and the action and interaction layer. The
body-part extraction layer, the lowest layer, estimates
numerical status of all body parts for each image frame.
Taking those numerical values as parameters, the pose
layer extracts poses for each frame. The gesture layer then
generates sequences of gestures from given sequences of
poses. A pose is the abstraction of the state of one body part,
and a gesture is the abstraction of meaningful sub-sequence
of those poses. At the highest layer, the action and
interactions layer, human activities are represented in terms

Recognition of Composite Human Activities through Context-Free Grammar
based Representation

M. S. Ryoo and J. K. Aggarwal
Computer & Vision Research Center / Department of ECE

University of Texas at Austin
{mryoo, aggarwaljk}@mail.utexas.edu

Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06)
0-7695-2597-0/06 $20.00 © 2006 IEEE

Authorized licensed use limited to: University of Central Florida. Downloaded on March 29,2022 at 03:21:43 UTC from IEEE Xplore. Restrictions apply.

of time intervals and the relationships among them. The
system detects human activities if there exists a time
interval that satisfies all conditions specified in the
representation. Various pixel-level techniques are used for
the body-part extraction layer. Bayesian networks are used
to implement the pose layer, and hidden Markov models
(HMMs) are implemented for the gesture layer. At the
highest layer, actions and interactions are represented
semantically using the context-free grammar (CFG).
Following the production rules of CFG, the system is not
only able to represent composite actions and interactions
naturally, but also able to recognize them.

2. Related works
Park and Aggarwal [6, 7] presented a hierarchical

framework to recognize human actions and interactions
from pixel level images. The framework abstracts image
sequence into poses, gestures, actions, and interactions.
Their system uses extracted body part knowledge to
estimate poses for each frame, and then estimates one most
dominant gesture based on sequence of poses. A gesture
recognized through HMMs is directly converted into a
single action, represented as the operation triplet. Two
operation triplets of different persons are combined to form
interactions, and two interactions might be combined to
present the cause and effect of interactions. Similarly,
Nguyen et al. [4] used hierarchical HMMs in order to
recognize two levels of actions.

Ivanov and Bobick [3] presented a hierarchical approach
using a stochastic context-free grammar (SCFG) at the
highest level. Their work divided recognition into
two-levels. At the lower level, HMMs were used to
recognize primitive trajectories. The primitive trajectories
were treated as terminals for SCFG at the higher level.
Their SCFG directly generates the sequence of terminals,
i.e. primitives, with defined grammar. Language parsing
techniques were used to detect events generated through
SCFG. The main disadvantage of this approach was that the
user must provide all possible production rules for all
possible events, even for large domains. Shi et al. [10] tried
to overcome the disadvantage of SCFG through using
propagation networks as a representation of actions.

In addition, there is research on event definition and
inference in traditional AI fields. Allen and Ferguson [2]
presented a definition of temporal intervals, and defined
events using interval temporal logic. We adopt their
concept on events, defining actions and interactions in
terms of time intervals. Furthermore, we explicitly define
temporal intervals hierarchically, extending the concept of
Allen’s event representation.

Nevatia et al. [5] constructed a representation language
for general events, following modified Allen’s temporal
logic. Their representation provided promising results on
recognition of composite events. They not only provided

representation scheme, but also illustrated initial results of
recognition system using their representation. However,
there are two major limitations in their representation
language. First, their single-thread composite event
corresponds only to a consecutive occurrence of multiple
primitive actions. However, it is unlikely in case of single-
person human activities, since multiple body parts involve
single-person human activities. Secondly, their hierarchy
of events is strictly fixed to three levels, and higher-level
events can be only composed of lower-level events. This
limits constructing high-level composite actions from
smaller composite actions, and high-level interactions from
smaller interactions.

3. Body-part layer and pose layer
The body-part layer contains pixel-level, blob-level, and

object-level processing to extract meaningful information
from a sequence of raw images. We use a hierarchical
mechanism developed by Park and Aggarwal [8], in order
to construct quantitative image features from one input
frame. Their system parameterized the state of three body
parts (head, upper-body, and lower-body) in terms of
ellipses and convex hulls. Maintaining the overall structure
of the system, we re-implemented the framework to make it
more robust. In addition, our new program explicitly tracks
the hand position, extracting additional important features.

In the pose layer, a pose for each body part is estimated
based on features extracted by the system’s body-part layer.
A pose is the abstraction of the body part’s static state in
one image frame. For each image frame, the pose that best
describes instantaneous configuration of the body part is
selected based on parameters from the body-part layer. We
constructed one-dimensional states for a head pose,
describing the torso direction. Upper-body and lower-body

Figure 1: Figure of the Bayesian network and explanation of
meaning of nodes. The Bayesian network estimates the state of
hidden nodes (i.e. poses), based on observations. The Bayesian
network reduces dimensions from twelve into five.

Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06)
0-7695-2597-0/06 $20.00 © 2006 IEEE

Authorized licensed use limited to: University of Central Florida. Downloaded on March 29,2022 at 03:21:43 UTC from IEEE Xplore. Restrictions apply.

poses have two-dimensional structure, each corresponding
to vertical and horizontal positions of a hand and a leg. For
example, assume that a person is standing still, facing left
with arm fully raised and stretched. Then, his/her head pose
will be ‘left’, upper-body pose will be ‘<high, stretched>’,
and lower-body pose will be ‘<low, withdrawn>’.

Extending Park and Aggarwal’s work [6], Bayesian
networks are implemented to estimate pose for each body
part in each frame. The body-part parameters, estimated
from the lower-layer, are converted into discrete values and
are treated as observations produced by a specific pose.
Bayesian networks estimate the pose for each frame, from
the given observation and probabilities in the network.
Figure 1 illustrates the structure of the Bayesian network,
and possible states for pose of each body part, which is a
final output of the pose layer. Note that new features, hand
positions, are added. As a result of the pose layer, an input
image sequence is converted into a sequence of poses.

4. Gesture layer
A gesture is an elementary movement of a body part.

Taking the sequence of poses for each body part as an input,
the gesture layer detects possible gestures occurring along
the sequence. Essentially, gestures are sub-sequences of
whole sequence of poses. The objective of the gesture layer
is to recognize a set of all occurring gestures. Each
occurring gesture has its starting time and ending time,
which might overlap with other gestures.

We construct hidden Markov models (HMMs) to detect
the gestures occurring inside the sequence of frames. In
order to recognize a sequence of gestures for each body
part, we constructed one HMM per gesture. Types of
gestures which our system is recognizing in this paper are
similar to those in the paper presented by Park and
Aggarwal [7]. These include elementary human gestures
such as ‘arm stretching’, ‘arm withdrawing’, and so on.
Each of these HMMs runs in parallel measuring the
likelihood of the corresponding gesture based on input. The
objective of the gesture layer is to detect which HMM
created the sequence of poses and at what point. This is the
traditional evaluation problem of the HMM. More
specifically, the evaluation problem of the HMM is to
determine the probability that a particular sequence of
visible states, i.e. poses in our case, was generated by a
corresponding model.

Additionally, for each body part, the ‘noise HMM’ was
constructed to cover input sequences that are not related to
any gesture we defined. The ‘noise HMM’ tends to have
the highest likelihood for meaningless sequences, making
all gestures not to be detected for those sequences.

We use the backward-looking forward algorithm to
calculate the likelihood for each HMM. This works same as
forward algorithm until detecting the ending point of the
gesture. If likelihood of some HMM exceeds the

probability threshold at frame t, we assume that the gesture
corresponding to the HMM occurred, and the ending time
of that gesture is t. Once the ending time of the gesture is
detected, then the algorithm runs a backward algorithm to
find the starting point of the gesture. After detecting the
starting time and ending time of the gesture correctly, the
algorithm proceeds to frame t+1. As a result of the gesture
layer, a set of gestures labeled with starting and ending
times is created for each body part. Input noises and
miscalculation from lower layers are handled in this layer
through HMM.

5. Time intervals and predicates
In this section, we discuss the overall structure of the

general events, before constructing a specific
representation for human actions and interactions. We
adopt the concept of interval representation of time
presented by Allen and Ferguson [2], in order to construct
the representation for general events. We start from
associating time intervals with the occurring events. Also,
we define temporal, spatial, and logical predicates, which
are used to describe relationships among time intervals.

5.1. Structure of the time interval
A time interval intuitively is the time associated with an

occurring event. Time intervals we discuss throughout this
paper are always associated with designated actions or
interactions that we are interested in. In Allen’s interval
temporal logic [2], a time interval is defined in the linear
time line, with a fixed starting point and ending point. They
attempted to represent an event by presenting necessary
conditions for the event’s time interval. Our system follows
their approach, but tries to represent hierarchical event
explicitly. Since human activities are usually composed of
multiple sub-events, the relationships among sub-events’
time intervals are the key for the represent of an event.

In Figure 3, relationship among time intervals ‘i’, ‘j’, ‘k’,
and ‘this’ are present to describe the event, ‘point’
interaction. Each time interval ‘i’, ‘j’, and ‘k’ corresponds

Figure 2: Structure of ‘noise HMM’ and other HMMs. For each
gesture to be recognized, one HMM will be constructed in order
to recognize corresponding gestures. Additionally, for each body
part, one noise HMM will be created. Probability aij corresponds
to the transition probability from state wi to wj. Probability bjk
corresponds to the probability of observing k, when the real state
of model is wj.

Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06)
0-7695-2597-0/06 $20.00 © 2006 IEEE

Authorized licensed use limited to: University of Central Florida. Downloaded on March 29,2022 at 03:21:43 UTC from IEEE Xplore. Restrictions apply.

to a smaller event. The variable ‘this’ is a special variable,
always indicating the time interval of the defining action
itself. (i) Time interval ‘this’, assigned for point interaction
itself, must start with time interval ‘i’ and finish with time
interval ‘j’, each assigned for arm stretching event and
staying arm stretched event of person1. (ii) Time interval
‘i’ and ‘j’ must happen consecutively, and ‘i’ must be
before ‘j’. Furthermore, at the same time, (iii) person2 must
stay stationary while all these events are occurring.

We should note that time intervals of smaller events are
used when representing the relationships. This enables the
system to use already defined events to define new
higher-level events, providing a concept of hierarchical
event representation. We denote all events included in the
relationships as ‘sub-events’ of defining event. That is,
event Stretch(person1, arm), Stay_Stretched(person1, arm),
and Stay_Stationary(person2) are sub-events of event
‘point interaction’ in this example.

The concrete definition for the time interval ‘this’ is the
key for hierarchical event representation. Once the time
interval ‘this’ for the corresponding event is correctly
represented, the event can be used as a sub-event for other
higher-level events.

5.2. Predicates
In the above example, all necessary conditions and

relationships for the event are explained in English. We
represent those relationships more formally, using three
categories of predicates: temporal, spatial, and logical
predicates. Temporal and spatial predicates are extremely
important when describing human actions and interactions.
Temporal predicates express the relationship among time
intervals of sub-events. Spatial predicates, on the other
hand, describe the relationship between persons involved in
the interactions. Logical predicates, ‘and’, ‘or’, and ‘not’,
concatenate multiple temporal and spatial predicates to
construct overall representation for the event description.

Temporal predicates. Temporal relationships are
extremely important when describing human actions and
interactions. Usually, actions and interactions of human
consist of sequences of sub-events. Temporal predicates
not only provide us a mechanism to define such sequential
relations, but also help us to provide restricting conditions

for the actions and interactions. We directly adopt the
temporal relations among time intervals introduced in
Allen’s interval temporal logic [2]. ‘before’, ‘meets’,
‘overlaps’, ‘starts’, ‘during’, and ‘finishes’ are the
predicates defined in Allen’s interval temporal logic. Each
predicate takes two time intervals as a parameter for the
predicates, and decides whether they are true or false. Let a
and b be the time intervals, (astart, aend) and (bstart, bend).

before(a, b) <=> aend < bstart
meets(a, b) <=> aend = bstart
overlaps(a, b) <=> astart < bstart < aend
starts(a, b) <=> astart = bstart and aend < bend
during(a, b) <=> astart > bstart and aend < bend
finishes(a, b) <=> aend = bend and astart > bstart

Spatial predicates. Spatial predicates define the spatial
relationship between two agents or objects. Thus, they can
be defined only in terms of interactions. If any interaction
contains some spatial predicates, and t is the satisfying time
interval of that event, those spatial predicates will always
be true in the time interval t.

We designed two spatial predicates: ‘near’ and ‘touch’.
The ‘near’ predicate provides us information on whether
two persons are closer than a given relative distance value
or not. The distance between two persons is divided by the
mean of their heights, producing the relative distance. The
‘touch’ predicate is true if and only if the boundary ratio
that two persons share is greater than the threshold
parameter.

near(person i, person j, threshold) <=>
(Relative distance between i and j) < threshold

touch(person i, person j, threshold) <=>
(Overlapping boundary ratio of i and j) > threshold

Logical predicates. Logical predicates includes ‘and’, ‘or’,
and ‘not’ predicate. These are elementary logical predicates.
All these predicates can take any relationships as a
parameter. The ‘and’, ‘or’, and ‘not’ predicates are defined
in an obvious manner. That is, logical predicates can
concatenate temporal and spatial predicates to express
relationships. The predicate ‘and’ holds if and only if
relations described in all two parameters are satisfied. The
predicate ‘or’ holds if more than one of two parameters is
satisfied. We say that the ‘not’ of a relationship is satisfied
if and only if the relationship parameter is false.

6. Atomic actions
Atomic actions are the most elementary component of

human activities, which may not be divided into smaller
meaningful movements. Atomic components of human
actions and interactions are the gestures, recognized
through lower-level systems. Therefore, we can construct
one atomic action from one gesture. However, gestures
solely are insufficient to represent the actions. In order to

this==Point_interactions(person1,person2)

i=Stretch(person1,arm) j=Stay_Stretched(person1,arm)

k =Stay_Stationary(person2)

Figure 3: Example of necessary relationship among time intervals
for interaction ‘point’.

Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06)
0-7695-2597-0/06 $20.00 © 2006 IEEE

Authorized licensed use limited to: University of Central Florida. Downloaded on March 29,2022 at 03:21:43 UTC from IEEE Xplore. Restrictions apply.

represent actions, the system needs to explicitly specify the
subject and object of the actions. Following the linguistic
theory of ‘verb argument structure’, we represent atomic
actions as <agent-motion-target>, following Park’s
operation triplet [7]. Putting subject and object information
together with the gesture, we construct the operation triplet.

For example, ‘person 1 stretched his hand to the person
2’s head’ is an atomic action, because only one gesture is
involved in the action. Gesture ‘Stretch’ is the motion of
this atomic action. In the operation triplet, ‘person 1’s
hand’ is the agent and ‘person 2’s head’ is the target.

Atomic actions follow the structure of events defined in
section 5. When the atomic action is recognized, its
corresponding time interval will be equivalent to that of
gesture specified in the operation triplet. Since other events
cannot affect atomic actions by definition, no other
temporal-spatial relationships exist for atomic actions. As a
result, the operation triplets are the necessary and sufficient
representation of atomic actions.

7. Composite actions
If an action contains two or more atomic actions, it is

classified as a composite action. Sub-events of composite
actions can be atomic actions, or even other composite
actions. The only constraint when constructing composite
actions is that only the actions of the same person can
become the sub-events. Otherwise, it becomes an
interaction, rather than a composite action.

Composite actions follow the structure defined for
general events in section 5. The Figure 4 illustrates the time
intervals and their relationships for a composite action,
‘shake-hands action’. The ‘shake-hands action’ represents
an action that a person is performing in the hand shake
interaction. That is, the person stretches one’s arm, stays
stretched for some period, and then withdraws it. There are
three sub-events participating in ‘shake-hands action’:
‘Stretch’, ‘Stay_Stretched’, and ‘Withdraw’. Each
sub-event has associated variable: ‘x’, ‘y’, and ‘z’.

7.1. Representation
The representation for composite actions must consist of

two parts: a list of variables corresponding to time intervals
associated with designated sub-events, and the
relationships among those variables. The first component
can be represented by associating one symbol name with
one sub-event. The second component, which represents
necessary conditions for composite actions, is defined
through predicates mentioned in section 5. Variables
defined and the special variable ‘this’, representing
defining action itself, are used in order to specify the
relationships. Therefore, we are able to represent a
composite action in terms of the relationship between ‘this’
and other time interval variables ‘t1’, ‘t2’, ..., which are

satisfying time intervals of sub-events.
As a format of the representation scheme, we use a

context-free grammar (CFG). CFG naturally leads the
representation to use concepts recursively, enabling the
action to be defined based on sub-events. In our
representation, atomic actions serve as terminals. On the
other hand, composite actions are treated as non-terminals.
These non-terminals can be converted to terminals
recursively, using production rules.

Our CFG does not generate sequences of poses or
gestures directly. Rather, we construct a representation of
composite actions using the CFG. A representation built
through the CFG describes all participating sub-events, and
their relationships. Sub-events can either be atomic actions
or other already represented composite actions. Even
though the CFG does not create the sequences of poses or
gestures directly, we will be able to recognize composite
actions through detecting sequences that satisfy the
representation constructed with our CFG. With our CFG,
we are able to represent any actions if their relationship can
be described in terms of the predicates we have defined.

Therefore, the general representation of composite
actions can be described using the following
context-free-grammar. Non-terminal Action(i) indicates
action of person i. Action(i) can be either an atomic action,
or a composite action defined with two components:
ActionDefs(i,var) and ActionRelationship(var). The first
component, ActionDefs(i,var), defines the variables for
corresponding time intervals of sub-events. Parameter var
is defined to be the list of variables associated with
sub-events. ActionDefs(i,var) is the list of several
def(c,Action(i)), and this defines the contents of list var.
Statement def(c,Action(i)) associates some variable c with
the time interval of a denoted sub-event. As a result, list var
contains a list of variables associated with time intervals of
corresponding composing events.

The second component is ActionRelationship(var). With
temporal and logical predicates, ActionRelationship(var)
defines the all necessary conditions for the action using all
variables in var and special variable ‘this’. A combination
of any temporal predicates presented in section 5.2 can be
used to define ActionRelationship(var). The time interval
‘this’ satisfying all necessary conditions will be the
corresponding time interval for the action.

this=ShakeHands_action(person1)

x=Stretch(p1, arm) z=Withdraw(p1, arm)

y=Stay_Stretched(p1, arm)

Figure 4: Example illustrating the atomic actions’ time intervals
and their relationships needed for the composite action,
‘shake-hands action’.

Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06)
0-7695-2597-0/06 $20.00 © 2006 IEEE

Authorized licensed use limited to: University of Central Florida. Downloaded on March 29,2022 at 03:21:43 UTC from IEEE Xplore. Restrictions apply.

Action(i)
->(ActionDefs(i,var), ActionRelationship(var))

 -> atomic_action(operation triplet)
ActionDefs(i, var)

-> list(def(c, Action(i)), ActionDefs(i, var-c))
 -> def(c, Action(i))
ActionRelationship(var)

-> Logical-Predicate(ActionRelationship(var),
ActionRelationship(var))

 -> Temporal-Predicate(‘this’, var(a))
 -> Temporal-Predicate(var(a), var(b))

For example, let’s look into the composite action ‘shake-
hands action’ again. As we informally defined previously
in Figure 4, we associate variable ‘x’, ‘y’, and ‘z’ with
sub-events ‘Stretch’, ‘Stay_Stretched’, and ‘Withdraw’.
Then, relationships are represented in terms of predicates:
meets(x, y), meets(y, z), starts(x, this), and finishes(z, this).
Therefore, formal representation of ‘shake-hands action’ is
defined through our CFG scheme as follows.

Stretch_hand(i) =
atomic_action(<person i’s hand, stretch, other person>)

Stay_Stretched_hand(i) = atomic_action
(<person i’s hand, stay stretched, other person’s hand>)

Withdraw_hand(i) =
atomic_action(<person i’s hand, withdraw, null>)

SHActionDefs(i, var) = list(
 def(‘x’, Stretch_hand(i)),
 list(
 def(‘y’, Stay_Stretched_hand(i)),
 def(‘z’, Withdraw_hand(i)))
)

SHActionRelationship(var) =
and(meets(‘x’, ‘y’),

 and(
 meets(‘y’, ‘z’),
 and(starts(‘x’, ‘this’), finishes(‘z’, ‘this’))
)
)

ShakeHands_action(i) =
(SHActionDefs(i, var), SHActionRelationship(var))

8. Interactions
Interactions are composed of the actions and/or

interactions of two persons. In the case of actions, actions
were classified into atomic actions and composite actions.
However, all interactions have composite characteristics.
Therefore, except for the fact that sub-events of
interactions can be actions of both persons, the CFG
production rule, i.e. representation scheme, of interactions
is almost identical to that of composite actions. Further,
spatial predicates also can be used to describe relationships
for interactions.

Interaction(i, j) ->
(InteractionDefs(i, j, var), InteractionRelationship(i, j, var))
InteractionDefs(i, j, var)

-> list(def(c, Interaction(i, j)),
InteractionDefs(i, j, var-c))

-> list(def(c, Action(i or j)), InteractionDefs(i, j, var-c))
-> def(c, Action(i or j))
-> null

InteractionRelationship(i, j, var)
-> Logical-Predicate(InteractionRelationship(i, j, var),
 InteractionRelationship(i, j, var))
-> Temporal-Predicate(‘this’, var(a))
-> Temporal-Predicate(var(a), var(b))
-> Spatial-Predicate(person i, person j, threshold)

The following example shows how a ‘hand-shake’
interaction can be represented by following our CFG
scheme. Already defined composite actions, ‘shake-hands
action’ of two persons, are used as sub-events of the
interaction ‘shake-hands interaction’. If person i and j do
the action ‘shake-hands action’ concurrently, and their
hands touch, we regard it as a hand shake interaction.

Touching_interaction(i, j) = (null, touch(i, j, 0))
ShakeHandsDef(i, j, var) = list(

def(‘x’, ShakeHands_action(i)),
list(def(‘y’, ShakeHands_action(j)),

def(‘z’, Touching_interaction(i, j))
)

)
ShakeHandsRelationship(i, j, var) =

 and(
and(during(‘z’, ‘x’), during(‘z’, ‘y’)),

 and(
 starts(‘x’, ‘this’),
 finishes(‘x’, ‘this’))

)
ShakeHands_interactions(i, j) =

(ShakeHandsDef(i,j,var), ShakeHandsRelationship(i,j))

9. Recognition
Detecting time intervals in which an action or interaction

occurred is significant part of the recognition. If an action’s
time interval satisfies all temporal relationships specified in
the representation, and participating persons satisfies all
spatial relationships in that time interval, then we conclude
that the action or interaction is recognized. Time intervals
for atomic action can be directly detected through finding
time intervals of the gesture specified in operation triplet.
For composite actions, an occurring time interval can be
detected through finding time intervals that satisfy all
temporal relationships needed for variable ‘this’. In case of
interactions, spatial relationships between two persons also
need to be satisfied in the time interval.

Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06)
0-7695-2597-0/06 $20.00 © 2006 IEEE

Authorized licensed use limited to: University of Central Florida. Downloaded on March 29,2022 at 03:21:43 UTC from IEEE Xplore. Restrictions apply.

9.1. Atomic actions
An atomic action is represented in terms of operation

triplet. By definition, an occurring time interval of an
atomic action is that of a gesture specified through the
motion term in operation triplet <agent, motion, target>. If
the gesture layer recognized a gesture specified in motion
term of the triplet, and its subject and object corresponds to
the agent and target term of operation triplet, the system
concludes that the atomic action is recognized in that time
interval.

9.2. Composite actions and interactions
Representation of composite actions and interactions has

two components: variable definition and their relationships.
In order to recognize a composite action or an interaction,
the system first detects all possible time intervals for each
variable in a variable list. Since each action or each
interaction can occur multiple times, each variable can
correspond to multiple time intervals. Finding time
intervals for each variable is equivalent to recognizing the
corresponding action or interaction for that variable.

Once the time intervals for variables in a variable list are
found, the system needs to check whether any combination
of the time intervals satisfies all relationships. If there are n
variables and m1, m2, …, mn number of time intervals for
each variables, then there exist i=0 to n mi possible
combinations of (variable, time interval) pairs. This is a
traditional constraint satisfaction problem. The system
must find a specific combination of (variable, time interval)
pairs that satisfies relationships, among all possible
combinations.

Since our representation for actions and interactions has
a hierarchical structure, i.e. one action or interaction has
multiple sub-events, our action and interaction recognition
is done in hierarchical way. If a composite action or an
interaction A has action B and C in its variable list, i.e. B
and C are sub-events of A, then the recognition system first
recognize action B and C. If B and C are composites
themselves, they again trigger recognition of their
sub-events in the variable list. At some point, all the
sub-events will be atomic actions, which the system
recognizes using the algorithm described in 9.1. This is
similar to tree traversal where actions and interactions are
nodes, variable lists specify edges, and atomic actions are
leaves. In order to recognize the root action or interaction,
the system must recognize its child. This process continues
until the system reaches the leaves. Once the system
reaches leaves, the system is able to compute time intervals
of composite actions or interactions that have atomic
actions as sub-events. The system traverses back to the root,
recognizing all internal nodes from leaves to the root.

The constraint satisfaction problem is a NP-hard
problem, which requires O(i=0 to n mi * t2) time complexity

in our case, where t is the total number of frames. Focusing
on linear characteristics of actions and interactions, and
forcing additional constraints on relationships and time
intervals, the time complexity can be reduced to O(t * r),
where r is the number of relationships per action.

10. Experimental results
We recognized the following eight two-person

interactions through our system: approach, depart, point,
shake-hands, hug, punch, kick, and push. Interaction
videos taken by Sony Handy Cam were converted into
sequences of image frames with 320*240 pixel resolution,
obtained at a rate of 15 frames per sec. Six pairs of persons
participated in the experiment and 24 sequences were
obtained. In each sequence, participants were asked to

Figure 6: Outputs of the pose layer, the gesture layer, and the
actions and interaction layer. Time intervals of atomic actions
and interactions are presented.

Figure 5: Fig (a) shows sequences of raw images of consecutive
three interactions: shake hands, point, and hug. Fig (b) illustrates
processed sequence of images by body-part layer.

Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06)
0-7695-2597-0/06 $20.00 © 2006 IEEE

Authorized licensed use limited to: University of Central Florida. Downloaded on March 29,2022 at 03:21:43 UTC from IEEE Xplore. Restrictions apply.

perform a number of above interactions consecutively and
continuously. Overall, each interaction was performed 12
times total throughout all sequences.

The representations for the eight interactions were
constructed manually using our CFG-based representation
scheme. Usually, a composite action is first defined in order
to represent meaningful one-person movement in the
interaction. For example, in the previous sections, the
composite action ‘shake-hands action’ was defined first in
order to represent interaction ‘shake-hands interaction’.
The composite action ‘shake-hands action’ and the
interaction ‘touching’ were sub-events.

Figure 5 and 6 show the intermediate outputs of each
layer. In this experiment, two persons performed three
interactions consecutively: shake-hands, point, and hug.
The body-part layer extracts features for each body parts
per frame. Figure 5 shows the sequences of raw images,
and processed images for extracting body-part parameters.
Once the features for each frame are extracted, the pose
layer converts them into discrete pose for each body part.
The gesture layer converts sequences of poses into
sequences of gestures. The recognition algorithm provided
in section 9 is then used to recognize interactions based on
information from the gesture layer. Figure 6 shows the
result of the pose layer, the gesture layer, and the final
result of interaction recognitions.

Table 1 shows the performance of our recognition
system. Because of the accurate representation on
composite actions, the system is superior to all previous
systems. Moreover, the results are obtained from sequences
of consecutive interactions, not segmented manually. The
system was able to recognize sequences of actions and
interactions with high degree of accuracy.

11. Conclusion and future works
We presented the general methodology for automated

recognition of complex human actions and interactions.
The fundamental idea is to use the CFG-based
representation scheme to represent composite actions and
interactions. The CFG-based representation scheme
provides a formal method to define occurring time intervals
of composite actions and interactions. The idea of
representing complex actions and interactions as a
composition of simpler actions and interactions was the key.
Our experiments show that the system can represent and
recognize composite actions and interactions with high
recognition rate.

The novelty of our work is on the framework to represent
and recognize high-level hierarchical actions from raw
image sequence. Our representation explicitly captures the
hierarchical nature of actions and interactions. Our system
has the ability to use represented actions as sub-events of
higher-level actions, thereby minimizing the redundancy.

The potential of our work is that our system is able to

recognize even higher-level composite actions and
interactions. Our system can recognize any actions and
interactions if their time intervals can be defined properly
through our CFG-based representation scheme. Our
framework is also able to handle noisy inputs through
HMMs. However, current framework cannot process large
scale errors, such as insertion or deletion of sub-events. In
the future, we plan to take probabilistic nature of actions
into consideration. Also, we aim to develop methodology
for our system to learn activity representations based on
large training sets.

interaction total correct accuracy
approach 12 12 1.000
depart 12 12 1.000
point 12 11 0.917
shake hands 12 11 0.917
hug 12 10 0.833
punch 12 11 0.917
kick 12 10 0.833
push 12 11 0.917
total 96 88 0.917

Table 1: Recognition accuracy of the system

References
[1] J. K. Aggarwal and Q. Cai, Human Motion Analysis: A

Review, CVIU 73(3), pp. 295-304, 1999
[2] J. F. Allen and G. Ferguson, Actions and Events in Interval

Temporal Logic, Journal of Logic and Computation,
4(5):531-579, 1994.

[3] Y. A. Ivanov and A. F. Bobick, Recognition of Visual
Activities and Interactions by Stochastic Parsing, IEEE
Transactions on PAMI no. 8, pp. 852-872, August 2000.

[4] N. T. Nguyen, D. Q. Phung, S. Venkatesh, and H. Bui.
Learning and Detecting Activities from Movement
Trajectories Using the Hierarchical Hidden Markov Models,
pp. 955-960, CVPR’05 - Vol 2, 2005.

[5] R. Nevatia, T. Zhao, and S. Hongeng, Hierarchical
Language-based Representation of Events in Video Streams,
Proceedings of the Workshop on Event Mining, 2003.

[6] S. Park and J. K. Aggarwal, A Hierarchical Bayesian
Network for Event Recognition of Human Actions and
Interactions, ACM Journal of Multimedia Systems, special
issue on Video Surveillance, 10(2), pp. 164-179, 2004

[7] S. Park and J. K. Aggarwal, Semantic-level Understanding
of Human Actions and Interactions using Event Hierarchy,
IEEE Workshop on Articulated and Nonrigid Motion, 2004.

[8] S. Park and J. K. Aggarwal, Simultaneous tracking of
multiple body parts of interacting persons, CVIU 102(1), pp.
1-21, April 2006.

[9] C. Pinhanez, Representation and Recognition of Action in
Interactive Spaces, Ph.D thesis, MIT media lab, 1999.

[10] Y. Shi, Y. Huang, D. Minnen, A. Bobick, and I. Essa.
Propagation Networks for Recognition of Partially Ordered
Sequential Action, pp. 862-869, CVPR’04 – Vol 2, 2004.

Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06)
0-7695-2597-0/06 $20.00 © 2006 IEEE

Authorized licensed use limited to: University of Central Florida. Downloaded on March 29,2022 at 03:21:43 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

