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Abstract

This thesis is an introduction to the area of weighted automata; what they
are, how they work and how they can be defined on the basis of semirings.
Besides that, it goes into the determinism of weighted automata, which is not
equivalent to non-determinism for this kind of automata. A pumping lemma
that can be used to prove the non-determinism of a weighted language is
given and applied to the language generating the Fibonacci sequence.
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Chapter 1

Introduction

Automata theory is a discipline in theoretical computing science that deals
with the study of automata and formal languages, as well as with problems
these automata can solve. This discipline is an important tool for comput-
ability and complexity theory, but it also finds practical application in the
design of parsers, compliers and programming languages. An introduction
to automata theory and formal languages, can be found in the paper of
Hopcroft et al [5].

In regular automata theory we can use an automaton to check if a certain
word is in a given language. There are multiple kinds of automata known
in this area, but they all have the same property: they only have a binary
check to show if words are accepted by a language or not.

To expand the use of automata theory, we can also look into weighted
automata. Unlike the automata of regular automata theory, with weighted
automata we do not only look at if a word is part of a certain language,
but we also assign a specific weight to that word. Using weights is useful
to check not only if a word can be read, but for example also in how many
manners, what the shortest path will cost or to compute what the chances
are for that word to be read.

Already in 1961, Schützenberger introduced weighted automata [9]. After
that, multiple papers have been written on this topic. In 2009, the Hand-
book of weighted automata was published [2], which covered most of the
findings of this research field until then.

We can see that this area has already been studied for quite some years.
Unfortunately, most of the information that can be found on his topic is
still on a highly technical, and specifically mathematical, level. Therefore,
we will use this thesis to make this topic more accessible for an audience
that does know about basic automata theory, but is not into the details of
weighted automata yet.
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Besides introducing weighted automata, we will also dive into some
pumping lemmas. In 2020, Chattopadhyay et al published a paper introdu-
cing pumping lemmas for weighted automata [1]. We will expand on their
work by formulating a new pumping lemma. For this lemma we will look
into the determinism of weighted automata, something Mohri also worked on
in 2009 [8]. Our lemma can be used to show the non-determinism of a given
weighted language. This means that in weighted automata theory determ-
inism and non-determinism are fundamentally different, in contradiction to
regular automata theory.

To finish off, we will use our new pumping lemma to prove that the
weighted language generating the Fibonacci sequence, which we will intro-
duce when explaining what weighted automata are, can not be given by a
deterministic weighted automaton.
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Chapter 2

What are weighted
automata?

To get a more intuitive understanding of weighted automata, we start with a
few basic examples. Without going into the formal definitions of Chapter 4
yet, we examine how they work and discuss various ways on how to determine
their output. After that, we will look at how using a different type of algebra
changes their behaviour.

2.1 Simple example

The functioning of weighted automata is best shown through a basic ex-
ample. Figure 2.1 shows a weighted automaton that takes a word and cal-
culates the number of a’s that the word ends with.

σ/0 τ/1
a, 1

a, 1
b, 1 a, 1

Figure 2.1: Simple weighted automaton calculating largest suffix of a’s.

To show how the weighted automaton of Figure 2.1 processes a word,
we consider the sample word ‘abaaa’. Like a regular automaton, we must
find a path that matches this word. That is, we start in the initial state, in
this case σ, which is indicated by the arrow coming in from outside. Then
we follow an arrow with the letter ‘a’, then an arrow for ‘b’, and three more
arrows for ‘a’. In basic automata theory, we need to end in an accepting
state, often indicated by a double circle. Weighted automata do not have
such types of accepting states, instead all states have a certain weight. In
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this scenario, all states with a non-zero weight can be seen as accepting. For
the example of Figure 2.1 that is only state τ .

To compute the output of a weighted automaton for a certain word, we
must follow the following steps:

• Find all possible paths of that word.

• For every path: multiply the weights of the transitions with each other
and multiply that with the weight of the state the path ends in.

• To get the total weight of a word, we sum up the weight of all its
paths.

This way, we can compute the weight of our sample word ‘abaaa’.
There are four possible paths to read this word:

σ → σa → σab → σaba → σabaa → σabaaa : (1 · 1 · 1 · 1 · 1) · 0 = 0

σ → σa → σab → σaba → σabaa → τabaaa : (1 · 1 · 1 · 1 · 1) · 1 = 1

σ → σa → σab → σaba → τabaa → τabaaa : (1 · 1 · 1 · 1 · 1) · 1 = 1

σ → σa → σab → τaba → τabaa → τabaaa : (1 · 1 · 1 · 1 · 1) · 1 = 1

Summing up these weights, gives 3 as the total weight of the word ‘abaaa’
which is indeed equal to its largest suffix of a’s.

Checking that these four paths are indeed all the possible paths of our
sample word ‘abaaa’ is left as an exercise for the reader.

2.2 Determining the output

When working with weighted automata, it helps to be able to determine the
output in multiple ways. After all, in some situations one method may be
more suitable, whereas in other situations another technique could be more
appropriate.

We have already seen one method to calculate the output: find all paths,
determine their weights and add up the results. However, there is also
another way.

In this method, we initially give every state a value:
- If the state is an initial state, it has value 1. (In theory other values

are also possible, but this is not common.)
- If the state is not an initial state, it has value 0.

Then, when the weighted automaton processes a letter, all states are pro-
cessed simultaneously. This way, we only have to look at one step in the
path of the word at the time. How to update the states when reading a
letter, is best explained through an example:
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Let us use this method to calculate the weight of the word ‘abaaa’ using
the automata of Figure 2.1 again. First we take a look at the initial values
of the states, in this case 1 for state σ and 0 for state τ . Then we look at
how we can read the first letter, an a, from any state to any other state.
When first reading an a there is only one way to end in state σ, namely the
transition from that state itself. The update value of σ will be the previous
value of state σ multiplied by the value of the path, thus 1 · 1 = 1. There is
also just one way to end in state τ , namely with the path from σ. Therefore,
the update value of τ after reading the first letter a will be: 1 · 1 = 1.

Next we need to read a b. By the same reasoning as before, the updated
value of state σ is 1. Since we can not reach state τ when reading a letter
b, the value of τ becomes 0.

The next letter a follows the same pattern as the first one. It becomes
more interesting when reading the next letter a. Although we still have only
one way to reach state σ, we can reach state τ in two ways: namely from
σ and from τ . The update value of state τ becomes: the previous value of
state σ multiplied by the value of the path, plus the previous value of state
τ multiplied by the value of the other path, thus 1 · 1 + 1 · 1 = 2.

To read the last letter we repeat this idea, but now these three paths
lead to state τ . Finally, we need to multiply the values of the states after
reading the last letter with their corresponding output value. For state σ
this makes 1 · 0 = 0 and for state τ we get 3 · 1 = 3.

To keep an overview of the process we write it down as a table:

σ τ

Initial 1 0

a 1 1

b 1 0

a 1 1

a 1 2

a 1 3

Output 0 3

2.3 Fibonacci

To gain more insights into how weighted automata work, we consider another
example.

We all know the famous Fibonacci sequence. Starting with 0, 1, 1, 2, 3, 5, ...
and following the pattern in which each new number is the sum of the pre-
vious two.

In Figure 2.2 you can see a weighted automaton over the alphabet {a}.
This automaton generates the language in which the word consisting of n
a’s (also written as: an) is mapped to the n-th Fibonacci number.
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σ/0 τ/1

a, 1

a, 1

a, 1

Figure 2.2: Weighted automaton generating the Fibonacci sequence

Theorem 1. For all n ∈ N, the weight of the word an is equal to the n-th
Fibonacci number.

Proof. To prove this theorem we use natural induction on n.

Base case: For n = 0, we get the empty word. This word has a weight
of 0, since it directly is accepted in state σ.
For n = 1, we get the word ‘a’. The only possible path from the initial
state when reading ‘a’ is to state τ . Thus the weight of the word ‘a’
is 1 · 1 = 1.
Both these numbers are in line with the start of the Fibonacci se-
quence, thus the base cases hold.

Induction hypothesis: The weight of the word an+2 is equal to the
sum of the weights of the words an+1 and an.

Induction step: We assume the IH holds for n = k as well as for
n = k + 1 for some k ∈ N. Now we will prove the claim also holds
for n = k + 2. Please note that since all weights are either zero or
one, the weight of a path can also only be zero or one, by the rules of
multiplication. To be more precise: all paths ending in state σ have a
value of zero, all paths ending in state τ have a value of one. Therefore,
σ can be seen as a non-accepting state.

There are three possibilities for the last transition (i.e. for reading the
letter a for the k + 2th time):
(1) σ → τ
(2) τ → τ
(3) τ → σ

The last possibility ends in a state with weight zero. Since multiplying
by zero results in a total path weight of zero, these paths will not add
anything to the total word weight, thus we can ignore these paths.

In the second option, we need to look at all paths of the word ak+1,
that end in state τ . Since σ can been seen as a non-accepting state,
the total weight of the word ak+1 comes from paths ending in state τ .
Thus, the weight of the paths of the word ak+2 taking (2) as its last
transition, is equal to the weight of the word ak+1.
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Possibility (1) is all paths of the word ak+1 ending in state σ. Since
σ can be seen as a non-accepting state, the weight of these paths is
not included in the weight of the word ak+1. If we look back an extra
transition, we see that these paths have to be the paths of the word ak

ending in state τ . (Note that the only transition towards σ is coming
from state τ). Fortunately, we know the weights of these paths, which
is the weight of the word ak.

Therefore, the weight of the word ak+2 is equal to the weight of the
word ak+1 plus the weight of ak.

By strong induction on k we can now conclude that, starting at the
base cases, these weights must generate the Fibonacci sequence.
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Chapter 3

Different algebras

Until now we have calculated the output of a word using the following
method:

• For each path, we multiply all the weights of the transitions including
the weight of the final state.

• For all paths together, add up all the results.

In short, we have used the operators ‘addition’ and ‘multiplication’. Weighted
automata are not restricted to these operators, they can also use other al-
gebras, or so called “semirings”. What those semirings are, precisely will
be discussed in the next Chapter. We will first look at how they work, by
considering a few other examples.

3.1 Largest suffix

One example is a weighted automaton that uses addition and the maximum
function. Thus:

• For each path, we add up all the weights of the transitions including
the weight of the final state.

• For all paths together, we take the maximum of all the results.

The automaton in Figure 3.1 uses that max-plus semiring, which is also
known as the ‘tropical semiring’. This automaton gives us again the largest
suffix of a’s of a word.

Let us check the word ‘abaaa’ again: There are four possible paths to
read this word:

9



σ → σa → σab → σaba → σabaa → σabaaa :

(0 + 0 + 0 + 0 + 0) + 0 = 0

σ → σa → σab → σaba → σabaa → τabaaa :

(0 + 0 + 0 + 0 + 0) + 1 = 1

σ → σa → σab → σaba → τabaa → τabaaa :

(0 + 0 + 0 + 0 + 1) + 1 = 2

σ → σa → σab → τaba → τabaa → τabaaa :

(0 + 0 + 0 + 1 + 1) + 1 = 3

Taking the maximum of these weights, gives 3 as the total weight of the
word ‘abaaa’. This is indeed equal to its largest suffix of a’s and is in line
with the outcome of the previous automaton.

σ/0 τ/1
a, 0

a, 0
b, 0 a, 1

Figure 3.1: Max-plus weighted automaton returning the largest suffix of a’s.

3.2 Shortest subword

In this next example, we use addition and minimum function to compute
the shortest subword of b’s in a word. (And if there is none, it outputs ∞.)
Thus:

• For each path, we add up all the weights of the transitions including
the weight of the final state.

• For all paths together, we take the minimum of all the results.

The automaton in Figure 3.2 uses this min-plus semiring. Let us check for
the word ‘babba’ what is its shortest subword consisting of only b’s:
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ρ→ ρb → ρba → ρbab → ρbabb → ρbabba :

(0 + 0 + 0 + 0 + 0) +∞ =∞
ρ→ ρb → ρba → ρbab → ρbabb → σbabba :

(0 + 0 + 0 + 0 + 0) +∞ =∞
ρ→ ρb → σba → τbab → τbabb → υbabba :

(0 + 0 + 1 + 1 + 0) + 0 = 2

σ → τb → υba → υbab → υbabb → υbabba :

(1 + 0 + 0 + 0 + 0) + 0 = 1

Now we take the minimum of the results of all the paths and conclude that
the shortest subword of ‘b’s consists indeed of only one ‘b’.

To make this example complete, let’s look at another word for this same
automaton.

Take the word ‘bbbabb’. There are three possible paths to read this word:

ρ→ ρb → ρbb → ρbbb → ρbbba → ρbbbab → ρbbbab :

(0 + 0 + 0 + 0 + 0 + 0) +∞ =∞
ρ→ ρb → ρbb → ρbbb → σbbba → τbbbab → τbbbab :

(0 + 0 + 0 + 0 + 1 + 1) + 0 = 2

σ → τb → τbb → τbbb → υbbba → υbbbab → υbbbab :

(1 + 1 + 1 + 0 + 0 + 0) + 0 = 3

The minimum of these outcomes is 2, which is indeed the shortest subword
of b’s, namely the last two letters of the word.

ρ/∞ σ/∞ τ/0 υ/0

a, 0
b, 0

a, 0 b, 1

b, 1

a, 0

a, 0
b, 0

Figure 3.2: Weighted automaton computing shortest subword of b’s.

Note that with some small changes, this automaton can easily be changed
in one computing the longest subword of a certain letter.
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Chapter 4

Formal definition of weighted
automata

Now that we have a more intuitive understanding of how weighted automata
work, we will look at how to properly define this kind of automata. We
have seen in the previous Chapter that weighted automata can use different
algebras, the so called semirings. Therefore to understand the definition of
weighted automata, we first have to look at the definition of these semirings.

4.1 Semirings

A semiring is mathematical structure that is very similar to a ring. The
only difference is that a semiring does not require each element to have an
additive inverse.

Definition 1. A semiring is an algebraic structure (S,⊕,⊗, 0̄, 1̄) with S a
set, such that 0̄, 1̄ ∈ S and ⊕,⊗ : S × S → S, with the following properties:

• (S,⊕) is a commutative monoid with identity element 0̄, thus:

– ∀a, b, c ∈ S : a⊕ (b⊕ c) = (a⊕ b)⊕ c;
– ∀a ∈ S : 0̄⊕ a = a⊕ 0̄ = a;

– ∀a, b ∈ S : a⊕ b = b⊕ a.

• (S,⊗) is a monoid with identity element 1̄, thus:

– ∀a, b, c ∈ S : (a⊗ b)⊗ c = a⊗ (b⊗ c);
– ∀a ∈ S : 1̄⊗ a = a⊗ 1̄ = a.

• The operations (⊕ and ⊗) are distributive, thus:

– ∀a, b, c ∈ S : a⊗ (b⊕ c) = (a⊗ b)⊕ (a⊗ c);
– ∀a, b, c ∈ S : (a⊕ b)⊗ c = (a⊗ c)⊕ (b⊗ c).

12



• Multiplication by 0̄ annihilates, thus:

– ∀a ∈ S : 0̄⊗ a = a⊗ 0̄ = 0̄.

A few examples of semirings are:

The natural semiring: (N0,+, ·, 0, 1)

The tropical semiring: (R ∪∞,min,+,∞, 0)

The boolean semiring: ({0, 1},∨,∧, 0, 1)

To check that these structures are indeed semirings, is left as an exercise
for the reader.

4.2 Weighted automata as quintuple

Similar to regular automata, weighted automata can be defined in terms of
a tuple.

Definition 2. Given a semiring S, any weighted automaton is described as
a quintuple (Q,Σ, δ, i, o), with:

Q the finite set of states,

Σ the alphabet,

δ : Q→ Σ→ (Q→ S) the transition function,

i : Q→ S the initial weight map,

o : Q→ S the output weight map.

For the set of states and the alphabet we do not need to go into more
detail, as they are defined the same way in regular automata theory.

The transition function does differ from the one of regular automata.
This function does not only tell for every state if a certain letter is read to
which state it can go, but also what weight is assigned to that transition.
These weights are elements of the chosen semiring.

The initial weight map and the output weight map return the initial,
respectively the output, weight of a state. In our examples the initial weight
is either 1̄ or 0̄, meaning it is either a starting state or it is not. However,
automata can be defined with an initial weight equal to any element of the
semiring, but we choose not to.
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To illustrate this, we take a look back at our sample automaton in Figure
2.1. Given the semiring over N, we can define this automaton as (Q,Σ, δ, i, o)
with:

Q = {σ, τ};

Σ = {a, b};

δ : Q→ Σ→ (Q→ S) with

δ(σ)(a)(σ) = 1;

δ(σ)(a)(τ) = 1;

δ(σ)(b)(σ) = 1;

δ(τ)(a)(τ) = 1.

i : Q→ N with

i(σ) = 1;

i(τ) = 0.

o : Q→ N with

i(σ) = 0;

i(τ) = 1.

4.3 Weighted languages

Last but not least, we also need to formally define the language of a weighted
automata.

Definition 3. Let de language of a given automaton be the function L that
takes a word as input and returns the weight of that word, by the following:

L : Σ∗ → S

L(w) =
⊕
q∈Q

(i(q)⊗ L(q)(w))

with

L : Q→ Σ∗ → S

L(q)(λ) = o(q)

L(q)(aw) =
⊕
p∈Q

(δ(q)(a)(p)⊗ L(p)(w)) ∀a ∈ Σ

In this definition, we write Σ∗ for the set of all possible words that can
be made with the alphabet Σ.
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Chapter 5

Pumping lemmas

In general automata theory, we can use the pumping lemma to prove that
a certain language is not regular. Can we also use some kind of pumping
lemma to say something about weighted automata? To answer this question
we will first look at the pumping lemma for general automata theory. After
that, we will define a version of the pumping lemma that is suitable for
weighted automata.

5.1 Classic pumping lemma

Before diving into the pumping lemmas for weighted automata, let us first
recall the classic pumping lemma for regular automata.

We know that for each regular language a finite automaton accepting
that language exists. Thus a method to prove that a language is not regular,
is to show that there does not exist any finite automaton accepting that
language.

Lemma 1. Let L be a regular language, which is recognized by a determ-
inistic finite automaton M with k states. Let w be any word in L with
|w| ≥ k. Then w can be written as uvz, with |uv| ≤ k and |v| > 0, such that
∀i ≥ 0 : uviz ∈ L.

To illustrate the working of this lemma, we look at the language L =
{anbn|n ∈ N} over the alphabet {a, b}.

Assume L is regular, then a finite automaton M accepting L must exist.
Let k be the number of states in M . Let w = akbk with k ∈ N, then
|w| = 2k ≥ k. By the lemma, we can write w = uvz where |uv| ≤ k. This
gives us u = ap, v = aq and z = arbk, with p+ q + r = k and q 6= 0. Now it
must hold that ∀i ≥ 0 : uviz ∈ L. In particular it must hold for i = 2, thus
uv2z ∈ L. But, uv2z = apa2qarbk = akaqbk /∈ L. This is in contradiction
to the lemma. Therefore, our assumption was wrong, which makes L not
regular.
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5.2 Pumping lemma for finite weighted automata

In 2020, Chattopadhyay et al published a paper introducing some pumping
lemmas for weighted automata [1]. Although they looked into ambiguity of
weighted automata, they did not specify a lemma about the determinism of
a given language.

The following new lemma can be used to prove the non-determinism of
weighted automaton:

Lemma 2. Assume L : A∗ → S is a language recognized by a deterministic
weighted finite automaton M , in which A is an alphabet and S is an arbitrary
semiring. Then ∃k ∈ N such that ∀w ∈ L, |w| ≥ k : ∃u, v, z ∈ A∗ and ∃s ∈ S
such that:

• w = uvz

• |uv| ≤ k and |v| > 0

• ∀i ∈ N : L(uviz) = L(w) · si−1

Proof. We define N as the number of states in M . Take k as in the lemma
and let k = N . Consider any given word w ∈ L. When this word is entered
into the automaton M , various states will activate. Since the word w is at
least of length N , the automaton will at some point come back to a state it
has previously been in. Consider the first time that this happens and call
this state On, conform Figure 5.1.

Define u as all the letters read prior to reaching state On, and v as all the
letters read between the two occurrences of On (within the loop). Finally
define z as the remaining letters, such that w = uvz. Note that |v| > 0,
because the loop cannot consist of zero states.

Define the length of u as n and the length of v as m. Thus |uv| = n+m.
This length varies based on the word w. Since k is defined as N , which is
the largest possible value of |uv| for all words w, this ensures that |uv| ≤ k
for any word w.

Next, consider the value of L(uviz) for any i ∈ N. Let rj be the weight
of the jth transition in the u part of the word. Let sj and tj be the jth

transition in the v, respectively z part, of the word. Then L(uviz) is equal
to: r1 · r2 · . . . · rn · (s1 · s2 · . . . · sm)i · t1 · t2 · . . . · tl ·Ox, where Ox repres-
ents the output of the final state of the word w, conform Figure 5.1.

We define:

r = r1 · r2 · . . . · rn
s = s1 · s2 · . . . · sm
t = t1 · t2 · . . . · tl
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Using this, we can write:

L(uviz) = r1 · r2 · . . . · rn · (s1 · s2 · . . . · sm)i · t1 · t2 · . . . · tl ·Ox

= r · si · t ·Ox

= r · s · t ·Ox · si−1

= L(w) · si−1

This proves that L(uviz) = L(w) · si−1 for any i ∈ N, proving the theorem.

O0 O1 O2 On−1 On

On+1

On+2

On+m−1

O...O...Ox−1Ox

r1 r2 rn

s1

s2

sm

t1

t2tl

Figure 5.1: Deterministic weighted finite automaton M

It is good to note that, as opposed to regular automata theory, there
is a difference between deterministic and non-deterministic weighted auto-
mata. Not all non-deterministic weighted automata can be transformed into
a deterministic one, whereas this is possible for all non-deterministic regular
automata. Therefore, not all weighted languages will meet Lemma 2. An
example of such language will be shown in the next Chapter.
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Chapter 6

Application of the lemma

We can now use this pumping lemma for weighted automata to prove that
for the language that generates the Fibonacci sequence, which we introduced
in section 2.3, no deterministic automaton can be given. But before we look
into that proof, let us first look at the application of this lemma on a simpler
language.

Consider the language L over the semiring (N,+, ·, 0, 1) with L(an) =
2n + 1, as shown in Figure 6.1.

σ/2 τ/1

υ/1

a, 2

a, 2

a, 1

a, 1

Figure 6.1: Automaton generating L(an) = 2n + 1

Theorem 2. The language L with L(an) = 2n + 1 is not deterministic.

Using the pumping lemma for weighted automata, we can now prove by
contradiction that no deterministic automaton for this language L can be
given.
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Proof. Assume L is deterministic, then by Lemma 2 there exists a k ∈ N
such that ∀w ∈ L, |w| ≥ k : ∃u, v, z ∈ {a}∗ and ∃s ∈ N such that:

• w = uvz

• |uv| ≤ k and |v| > 0

• ∀i ∈ N : L(uviz) = L(w) · si−1

Let us take such k and consider the word w = ak. Take u, v, z and s as
mentioned in the lemma. We know that ak = uvz, thus uviz can be written
as ai·m+l with m+ l = k and m > 0.

Since it must hold that ∀i ∈ N : L(ai·m+l) = L(am+l) · si−1 we can
conclude that:

L(a2m+l) = L(am+l) · s, thus

22m+l + 1 = (2m+l + 1) · s

and

L(a3m+l) = L(am+l) · s2

= L(a2m+l) · s, thus

23m+l + 1 = (22m+l + 1) · s

This gives us:

s =
22m+l + 1

2m+l + 1
and s =

23m+l + 1

22m+l + 1

Therefore:

22m+l + 1

2m+l + 1
=

23m+l + 1

22m+l + 1

(22m+l + 1) · (22m+l + 1) = (23m+l + 1) · (2m+l + 1)

24m+2l + 2 · 22m+l + 1 = 24m+2l + 23m+l + 22m+l + 1

2 · 22m+l = 23m+l + 22m+l

Dividing both sides by 2m+l, gives:

2 · 2m = 22m + 1

E
This is a contradiction! For m > 0, the left sides results in an even number,
since it is a multiple of two. The right hand side however is an power of two
plus one and shall therefore be odd. A number cannot be both even and odd.
Therefore, our assumption was wrong. Thus L is not deterministic.
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A more interesting case is the language that generates the Fibonacci
sequence, as introduced in Section 2.3. Because that language being de-
terministic means that for some staring index x and some interval i the
x-th, (x+ i)-th, (x+ 2i)-th, et cetera, number of the Fibonacci sequence are
just multiples of each other, which is highly unlikely. Therefore we want to
prove the theorem stating that for this language no deterministic automaton
can be given.

Theorem 3. The language generating the Fibonacci sequence is not determ-
inistic.

Proof. Let L be the language generating the Fibonacci sequence, as intro-
duced in Section 2.3. Assume L is deterministic, then by Lemma 2 there
exists a k ∈ N such that ∀w ∈ L, |w| ≥ k : ∃u, v, z ∈ {a}∗ and ∃s ∈ N such
that:

• w = uvz

• |uv| ≤ k and |v| > 0

• ∀i ∈ N : L(uviz) = L(w) · si−1

Let us take such k and consider the word w = ak. Take u, v, z and s as
mentioned in the lemma. We know that ak = uvz and since |uv| ≤ k and
|v| > 0 we know that v = aj for some j ∈ N with 0 < j ≤ k.

By the lemma, it must hold that for all i ∈ N : L(uviz) = L(w) · si−1.
Thus: L(ak+(i−1)·j) = L(ak) · si−1, or simplified: L(ak+i·j) = L(ak) · si.

The n-th number of the Fibonacci sequence can be found by the following
formula (as proved by Horadam [6]):

ϕn − ψn

√
5

with ϕ =
1 +
√

5

2
and ψ =

1−
√

5

2

Therefore:

L(an) =
ϕn − ψn

√
5

Since it must hold that ∀i ∈ N : L(ak+i·j) = L(ak) · si we can conclude
that:

L(ak+j) = L(ak) · s, thus

ϕk+j − ψk+j

√
5

=
ϕk − ψk

√
5
· s

and
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L(ak+2j) = L(ak) · s2

= L(ak+j) · s, thus

ϕk+2j − ψk+2j

√
5

=
ϕk+j − ψk+j

√
5

· s

This gives us:

s =
ϕk+j − ψk+j

√
5

·
√

5

ϕk − ψk
=
ϕk+j − ψk+j

ϕk − ψk

and

s =
ϕk+2j − ψk+2j

√
5

·
√

5

ϕk+j − ψk+j
=
ϕk+2j − ψk+2j

ϕk+j − ψk+j

Therefore:

ϕk+j − ψk+j

ϕk − ψk
=
ϕk+2j − ψk+2j

ϕk+j − ψk+j

(ϕk+j − ψk+j) · (ϕk+j − ψk+j) = (ϕk+2j − ψk+2j) · (ϕk − ψk)

ϕ2k+2j − 2 ·ϕk+jψk+j +ψ2k+2j = ϕ2k+2j −ϕk+2jψk −ϕkψk+2j +ψ2k+2j

−2 · ϕk+jψk+j = −ϕk+2jψk − ϕkψk+2j

Dividing both sides by −ϕkψk, gives:

2 · ϕjψj = ϕ2j + ψ2j

2 · ϕjψj = (ϕj)2 + (ψj)2

(ϕj)2 − 2 · ϕjψj + (ψj)2 = 0

(ϕj − ψj)2 = 0

ϕj − ψj = 0

ϕj = ψj

E
This is a contradiction, since we know that ϕ 6= ψ and ϕ 6= −ψ. Therefore,
our assumption was wrong. Thus L is not deterministic.

21



Chapter 7

Related work

A lot of research has been done in the area of weighted automata. Back in
1961, Schützenberger published a paper on the definitions of the family of
automata [9]. This paper was used as a basis for a lot of researchers. Most
of the findings on this topic were put together in the Handbook of weighted
automata by Droste et al in 2009 [2]. However, we will not go into further
details on those related publications.

It is more interesting to look at related work about pumping lemmas
and about determinism. Especially, the paper of Chattopadhyay on pump-
ing lemmas for weighted automata from 2020 [1]. They have introduced
multiple pumping lemmas for different properties of weighted automata. Al-
though they did study ambiguity of weighted automata, where every word
can only be read in at most one way, they did not specifically look into
determinism. Mohri did study deterministic automata, but only to see their
behaviour in certain algorithms [8].

Since to the best of our knowledge, no pumping lemma on deterministic
weighted automata was published yet, we continued on the work of Chat-
topadhyay by coming up with a new pumping lemma that can be used to
prove non-determinism of weighted automata.
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Chapter 8

Conclusions

We have seen what weighted automata are, how they work and how they
can be mathematically defined on the basis of semirings. Secondly, we in-
troduced a new pumping lemma for weighted automata that can be used
to prove the non-determinism of a weighted automaton. Therefore, we have
also shown that determinism and non-determinism are not equivalent for
weighted languages, as opposed to regular automata theory. Finally, we
used our new lemma to show that for the language generating the Fibonacci
sequence no deterministic automaton can be given.

8.1 Future work

For future work it would be interesting to look at a language generating the
Fibonacci sequence over a complex semiring. Perhaps in that algebra it is
possible to give a deterministic weighted automata for that language.

The knowledge we gained about determinism of weighted automata, can
also be useful for the studies of self-learning algorithms on weighted auto-
mata. In the paper of van Heerdt et al [4] the language of Theorem 2 is
given as an example for which their algorithm does not work. Perhaps any
relation with determinism of weighted automata and the working of their
algorithm can be found.
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