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Generating clause sequences of a CNF formula

Kristóf Bérczi∗ Endre Boros† Ondřej Čepek‡ Khaled Elbassioni§

Petr Kučera¶ Kazuhisa Makino‖

Abstract

Given a CNF formula Φ with clauses C1, . . . , Cm and variables V “ tx1, . . . , xnu, a truth
assignment a : V Ñ t0, 1u of Φ leads to a clause sequence σΦpaq “ pC1paq, . . . , Cmpaqq P
t0, 1um where Cipaq “ 1 if clause Ci evaluates to 1 under assignment a, otherwise Cipaq “ 0.
The set of all possible clause sequences carries a lot of information on the formula, e.g. SAT,
MAX-SAT and MIN-SAT can be encoded in terms of finding a clause sequence with extremal
properties.

We consider a problem posed at Dagstuhl Seminar 19211 “Enumeration in Data Man-
agement” (2019) about the generation of all possible clause sequences of a given CNF with
bounded dimension. We prove that the problem can be solved in incremental polynomial
time. We further give an algorithm with polynomial delay for the class of tractable CNF
formulas. We also consider the generation of maximal and minimal clause sequences, and
show that generating maximal clause sequences is NP-hard, while minimal clause sequences
can be generated with polynomial delay.

Keywords: CNF formulas, Clause sequences, Enumeration, Generation

1 Introduction

The concept of well-designed pattern trees was introduced by Letelier et al. [9] as a convenient
graphic representation of conjuctive queries extended by the optional operator. The nodes of
such a tree correspond to the queries, while the tree itself represents the optional extensions.
Well-designed pattern trees have been studied from a complexity point of view in several aspects.
One of the most interesting problems in the context of query languages is the generation problem,
that is, generating the solutions one after the other without repetition.

Previous work The generation problem was studied for First-Order and Conjunctive Queries
[3, 5, 7, 12] and for well-designed pattern trees [9]. Recently, Kröll et al. [8] initiated a system-
atic study of the complexity of the generation problem of well-designed pattern trees. They
identified several tractable and intractable cases of the problem both from a classical and from
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a parameterized complexity point of view. One class of pattern trees however remained un-
classified. For a class C of conjunctive queries, a well-designed pattern tree T is globally in C

if for every subtree T 1 of T the corresponding conjunctive query is also in C. The treewidth
of a conjunctive query is the treewidth of its Gaifman-graph [6]. In [8], the complexity of the
generation problem for the class of well-designed pattern trees falling globally in the class of
queries of treewidth at most k and having c-semi-bounded interface was left open (see [8, Table
1 on page 16]).

At the Dagstuhl Seminar 19211 “Enumeration in Data Management”, Kröll proposed an
open problem on the generation of clause sequences of CNF formulas [2, Problem 4.7]. The
problem is motivated by the fact that it can be reduced to the above mentioned unsolved case
of pattern trees, thus any bound on the generation complexity would be helpful in understanding
the general problem. A generation algorithm outputs the objects in question one by one without
repetition. We call it a polynomial delay procedure if the computing time between any two
consecutive outputs is bounded by a polynomial of the input size. We call it incrementally
polynomial, if for any k the first k objects can be generated in polynomial time in the input size
and k. Finally, it is called total polynomial if all N objects are generated in polynomial time in
the input size and N .

The problem studied in this paper can be formalized as follows. Let V “ tx1, . . . , xnu
be a set of n Boolean variables and Φ “ C1 ^ ¨ ¨ ¨ ^ Cm be a CNF in these variables with
clauses C1, . . . , Cm. For an assignment a : V Ñ t0, 1u, the corresponding binary sequence
σΦpaq “ pC1paq, . . . , Cmpaqq is called a signature1 of Φ, that is, Cipaq “ 1 if clause Ci evaluates
to 1 under assignment a, and Cipaq “ 0 otherwise. In particular, this means that Φ is satisfiable
if and only if there exists some assignment a with σΦpaq “ p1, . . . , 1q. Moreover, MAX-SAT
and MIN-SAT can be encoded by asking for the signature with the largest and smallest sum of
elements, respectively.

As an example, consider the CNF formula Φ “ C1 ^ C2 ^ C3 ^ C4, where C1 “ x1 _ x̄3,
C2 “ x̄2, C3 “ x1 _x2 _x3 and C4 “ x2 _ x̄3. Then assignment a1 “ tx1 ÞÑ 1, x2 ÞÑ 1, x3 ÞÑ 1u
leads to signature σΦpa1q “ p1, 0, 1, 1q, while assignment a2 “ tx1 ÞÑ 0, x2 ÞÑ 0, x3 ÞÑ 1u leads to
signature σΦpa2q “ p0, 1, 1, 0q. It is easy to see that Φ has six different signatures. In general, if
the number of signatures is Ωp2nq, then generating them in total polynomial time is not difficult.
However, their number may be op2nq, presenting a potential challenge for generation.

Given a CNF Φ “ C1 ^ ¨ ¨ ¨ ^ Cm, we denote by dimpΦq “ maxi“1,...,m |Ci|, and call Φ a
d-CNF if dimpΦq ď d. The number of clauses and the number of literals appearing in Φ are
denoted by |Φ| and }Φ}, respectively. Vectors are written using bold fonts throughout, e.g. x.
The problem asked in [2] is for d-CNF formulas where d is a fixed positive integer, but we also
consider the same problem for general CNFs.

Generation of signatures (GSpΦq)

Input: A CNF Φ.
Output: All possible signatures of Φ.

Motivated by MAX-SAT and MIN-SAT, we also consider maximal and minimal signatures.
A signature of a CNF Φ is called maximal (resp. minimal) if an inclusionwise maximal (resp.
minimal) subset of the clauses takes value 1.

1We prefer the term signature over the term clause sequence proposed by Kröl, since it is a binary string, not
a sequence of clauses. Therefore we use the term signature in the rest of the paper.
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Generation of maximal signatures

Input: A CNF Φ.
Output: All possible maximal signatures
of Φ.

Generation of minimal signatures

Input: A CNF Φ.
Output: All possible minimal signatures
of Φ.

Our results We show that GSpΦq can be solved in incremental polynomial time for formulas
with a bounded dimension, thus answering the open problem posed by Kröll, and with poly-
nomial delay for the class of tractable CNF formulas. For the class of formulas with bounded
dimension and co-occurrence, we derive a faster incremental polynomial algorithm. We also
show that generating maximal signatures is NP-hard, while minimal signatures can be gener-
ated with polynomial delay.

Organization Our algorithm with polynomial delay for the class of tractable CNF formulas
is given in Section 2. Section 3 discusses CNFs with bounded dimension: an incremental
polynomial algorithm is presented in Section 3.1 for CNFs with bounded dimension and co-
occurrence, while our main result answering the question of Kröll is presented in Section 3.2.
The generation of maximal and minimal clause sequences is considered in Section 4. Finally,
we conclude the paper in Section 5, where a ‘reversed’ variant of the problem is proposed as an
open question.

2 Tractable CNFs

Given a CNF Φ “
Ź

CPC C, a CNF Ψ “
Ź

CPC1 C is called a sub-CNF of Φ if C1 Ď C, and denoted
by Ψ Ď Φ. We call a family of CNFs tractable if for any CNF Φ in this family the satisfiability
of any sub-CNF of Φ can be decided in polynomial time even after fixing any subset of the
variables at arbitrary values. For example, the classes of 2-CNFs or Horn CNFs are tractable.

Theorem 1. If Φ belongs to a tractable family and has m clauses, then its signatures can be
generated with a delay of Opmq SAT-calls.

Proof. The idea is to apply the so-called ‘flashlight’ approach in the signature space, using SAT
as a ‘flashlight’ [1]. Let Φ “

Źm
i“1

Ci. We are going to build a binary tree in which the paths
from the root to the vertices of the tree correspond to binary values of initial segments of the
set of clauses, that is, C1, . . . , Ck for some 1 ď k ď m. There exists a signature with this prefix
if and only if the CNF formed by the clauses set to value one in this sequence is satisfiable even
after all the forced fixing of variables that appear in clauses whose value is zero (note that a
clause has value 0 if and only if all the literals in it are 0). If such a CNF is not satisfiable, we
backtrack and do not explore the subtree rooted at this vertex as there exists no signature with
this prefix. If the CNF is satisfiable, we continue building the corresponding subtree which in
this is guaranteed to contain at least one signature. The algorithm will not backtrack above
this vertex before outputing all (at least one) signatures in this subtree. It is not difficult to
verify that after at most 2m calls to SAT we can output a new signature not generated before.
After outputting the last signature, the procedure terminates after at most m SAT calls.

Remark 2. Let us remark that the family of monotone CNFs is tractable, but for this case
there is a more efficient polynomial delay generation of the signatures. Indeed, in this case we
can view a clause as a subset of the variables. Consequently, the set of zeros in a signature
corresponds to a union of clauses. We claim that all such unions can be generated with Opnmq
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delay, wherem “ |Φ| is the number of clauses, implying that all signatures of Φ can be generated
with polynomial delay.

To see this claim, we represent unions as leaves of a binary tree of depth n (nodes correspond
to variables), where we construct only the vertices that are on paths to the leaves. Besides the
binary tree, we keep the leaves in a last-in-first-out queue2. Initially, leaves correspond to
individual clauses of Φ. Each time before outputting the first union U in the queue, we check
for all clauses C P Φ if C Y U is a new union or not by using our binary tree. This takes Opnq
time for one clause, and Opnmq time for all the clauses of Φ. Whenever a new union is found,
it is added to the tree and the queue as a last element. After this, we output U and remove
it from the queue. It is not difficult to verify that this gives us an Opnmq delay generation of
all unions. Note that in this case Theorem 1 guarantees only an Op}Φ}mq delay, because every
SAT call requires Op}Φ}q time.

3 CNFs with bounded dimension

3.1 Bounded co-occurrence

Given a CNF Φ, we denote by HΦ “ pΦ, Eq the conflict graph of Φ. The vertices of HΦ are the
clauses of Φ and edges are exactly the conflicting pairs of clauses, i.e., pairs pCi, Cjq for which
there exists a literal u P Ci such that ū P Cj.

Let S Ď Φ be a maximal independent set of HΦ, and let LpSq “
Ť

CiPS Ci denote the set
of literals appearing in the clauses of S. We define a partial assignment aS : LpSq Ñ t0, 1u
by setting all literals of LpSq to zero (and hence the complementary literals are set to 1). The
signature associated to S is then defined as σΦpSq :“ σΦpaSq “ py1, . . . , ymq P t0, 1um. The
coordinates of σΦpSq are well-defined as yi “ 0 if and only if Ci P S for i “ 1, ...,m. We will
dismiss the subscript Φ whenever the CNF in question is clear from the context. Note that for
different maximal independent sets S ‰ S1 of HΦ we have σpSq ‰ σpS1q. It is worth mentioning
that all maximal independent sets of HΦ can be generated with polynomial delay [10,13], which
is hence a good start for CNF signature generation.

Assume that Φ has bounded dimension, i.e., for a constant d we have |Ci| ď d for all
i “ 1, ...,m. Let us define Xj “ tCi P Φ | xj P Ci or x̄j P Ciu. We say that Φ is of ω-bounded
co-occurrence if |Xj | ď ω for j “ 1, ..., n and ω is a fixed constant.

Theorem 3. If Φ has bounded dimension and co-occurrence, then its signatures can be generated
in incremental polynomial time.

Proof. Let us construct greedily a maximal induced matching M Ď E in HΦ. Note that HΦ

has at least 2|M | maximal independent sets (and hence at least this many signatures can be
generated with polynomial delay, as explained above). We denote by W Ď Φ the set of clauses
that have edges in HΦ connecting them to some of the clauses covered by M , and set U “ ΦzW .
Note that U is an independent set in HΦ.

Assume that µ “ |M |, |Ci| ď d for all i “ 1, ...,m, and |Xj | ď ω for all j “ 1, ..., n. According
to our assumptions, d and ω are fixed constants. Observe that with these notations we have
|W | ď 2µdω. We denote by n1 the number of variables involved in clauses of W . Note that we
have n1 ď d|W |.

We denote by L1 the (possibly empty) set of variables that are monotone in Φ and appear
only in clauses of U (some variables appear only positively while some others appear only
negatively). Let us first set all literals in L1 to 0, and consider the resulting CNF Φ1 in n1

variables. We generate with polynomial delay the maximal independent sets Sℓ, ℓ “ 1, ..., k of

2The size of the queue can be exponential in n as it contains the leaves of the binary tree that is being built.
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HΦ1 , and the corresponding signatures σpSℓq, ℓ “ 1, ..., k. Now we have k ě 2µ ě p2n
1
q1{2d2ω,

and thus we can try all binary assignments to the n1 variables in Opmnk2d
2ωq time, and see if

we get some more signatures.
Assume we get k1 ě k distinct signatures. By switching the literals in L1, we may get new

signatures, resulting from changing some of the zeros in a signature to one. For any partial
assignment to the n1 variables, this is a set-union generation problem that can be solved with
polynomial delay, see Remark 2. We may get in this way the same signature multiple times,
but no more than k1 times, and thus at this stage the additional signatures are also generated
in incremental polynomial time.

3.2 Unbounded co-occurrence

In the previous section, we considered CNFs with bounded dimension and co-occurrence. The
running time of the algorithm provided by Theorem 3 depends exponentially on ω, hence it is
not suitable for handling the general case. In the present section, a more general procedure is
given based on a different approach.

For a CNF Φ, we denote by GΦ “ pΦ, Eq the so called dual graph of Φ [11]. The vertices of
GΦ are the clauses of Φ and edges are exactly the pairs of clauses pCi, Cjq for which there exists
a variable that occurs in both Ci and Cj (complemented or not). If S Ď Φ is an independent
set of GΦ, then the clauses of S have pairwise disjoint sets of variables involved.

Theorem 4. There exists an algorithm A that generates the signatures of a CNF Φ consisting

of m clauses in n binary variables in Opdm2nkpd
2
qq total time, where d “ dimpΦq and k is the

number of signatures.

Proof. We prove the claim by induction on d. For d ď 2 the claim follows by Theorem 1.
Assume now that we already proved the claim for all d1 ă d, and let us consider a CNF

Φ “ C1 ^ C2 ^ ¨ ¨ ¨ ^ Cm with dimpΦq “ d. Let us associate to Φ its dual graph GΦ as defined
above. Let S Ď V pGΦq be a maximal independent set of GΦ. Such a set can be obtained by
a simple greedy procedure in polynomial time in the size of Φ. Note that clauses in S involve
pairwise disjoint sets of variables, due to the fact that S is an independent set of GΦ. Thus, we
can choose a literal uC P C for each clause C P S, set all other literals in C to zero, set all other
variables not occurring in clauses of S to zero, and make all possible truth assignment to the
literals uC , C P S. This way we obtain k0 “ 2|S| different binary signatures of Φ. Note that we
can output these k0 signatures with polynomial delay.

The total number of variables involved in clauses of S is n1 ď d|S|. Hence we can assign in
all possible ways values to these variables, and produce 2n

1
subproblems Φj, j “ 1, ..., 2n

1
in the

remaining variables in Opmn2n
1
q “ Opmnkd

0
q time which is polynomial in the input size and

k0, since d is a fixed constant. Each of these residual problems is of dimension at most d ´ 1.
Indeed, each of the clauses not in S shares at least one variable with the clauses of S, since S

is a maximal independent set of GΦ, and now that shared variable is fixed at a binary value.
We apply algorithm A to each of the residual sub-CNFs Φj, j “ 1, ..., 2n

1
, one by one.

This way we produce signatures that extend the pattern on S defined by xj P t0, 1un
1
, for all

j “ 1, ..., 2n
1
one by one. We may produce the same signature in this way again and again, but

no more than 2n
1
times. Since 2n

1
“ Opkd

0
q, we can show that this procedure works in total

polynomial time.
To see this let us introduce some additional notation. We denote by Xj Ď Y “ t0, 1un

1
,

j “ 1, ..., 2|S| the nonempty sets of (partial) assignments that produce the same signature on
the clauses of S. For x P Y , let us denote by Φpxq the residual CNF, and by kpxq the number
of signatures of Φpxq. We denote by gpΨq the running time of the above described recursive
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algorithm on CNF Ψ and let Gpm,n, d, kq be the maxima of gpΨq over all CNFs with at most
m clauses on n variables having dimpΨq ď d and having at most k signatures.

The total computational time in the first phase of the above procedure that ends with
producing a list of 2n

1
residual CNFs, each of dim ď d ´ 1 is bounded by

Opm2nq ` Opmnk0q ` Opmnkd0q ď Km2nkd0

for a suitable constant K that does not depend on m, n, and k0. The first term on the left hand
side is the time to build GΦ and to find a maximal independent set S. The second term is the
time we need to generate the k0 initial signatures. The third term is the time to generate the
2n

1
ď kd

0
subproblems.

For x P Xj and x
111 P Xj1 with j ‰ j1 the CNFs Φpxq and Φpx111q cannot share signatures, since

those must already differ on S by the definition of the sets Xj for j “ 1, ..., k0. However, for
x,x111 P Xj CNFs Φpxq and Φpx111q may share (many) signatures. Discounting the one signature
we already produced with a given trace on S, we can still expect

kj ě max
xPXj

kpxq ´ 1

different signatures produced by algorithm A when we use it for CNFs Φpxq, x P Xj . Thus, in
total we get

k “ k0 ` k1 ` ¨ ¨ ¨ ` k
2|S|

different signatures for Φ. The total running time on CNFs Φpxq, x P Xj can be bounded by

ÿ

xPXj

gpΦpxqq ď |Xj |Gpm,n, d ´ 1, kjq.

Thus, for the total running time of algorithm A on Φ we get

gpΦq ď Gpm,n, d, kq ď Km2nkd0 `
k0
ÿ

j“1

|Xj |Gpm,n, d ´ 1, kjq

ď Km2nkd0 ` kd0Gpm,n, d ´ 1, kq,

where for the last inequality we used kj ď k for all j “ 1, ..., k0, implying Gpm,n, d ´ 1, kjq ď
Gpm,n, d ´ 1, kq, which allows this quantity to be factored out of the sum, that can be then
upper bounded by

řk0
j“1

|Xj | “ 2n
1

ď kd
0
. Using this we can show by induction on d that

Gpm,n, d, kq ď Ldm2nkpd
2
q

for some constant L (we will choose L ě K) which will complete the proof of our claim. Now

Gpm,n, d, kq ď Km2nkd0 ` kd0Gpm,n, d ´ 1, kq

ď Km2nkd0 ` kd0Lpd ´ 1qm2nkpd´1

2
q

ď Lm2nkd ` kdLpd ´ 1qm2nkpd´1

2
q

ď Lm2nkd ` Lpd ´ 1qm2nkpd´1

2
q`d ď Ldm2nkpd

2
q.

Corollary 5. The algorithm A constructed in the above proof in fact works in incremental
polynomial time.
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Proof. Using the above theorem, we can prove this claim by induction on the dimension d.
When d “ 1, the claim is trivially true.

Consider now the general case, as in the proof of the above theorem. As we remarked there,
producing the first k0 “ 2|S| signatures in fact can be done with polynomial delay. After this we
start processing the CNFs Φpxq for x P Xj, j “ 1, ..., k0. Note that the signatures produced from
Φpxq, x P Xj and Φpx111q, x111 P Xj1 are all different if j ‰ j1. Note also that dimpΦpxqq ď d ´ 1
for all x P Xj , j “ 1, ..., k0, and thus we can assume by induction that their signatures can be
produced in incremental polynomial time in the size of Φpxq, which is bounded by the size of Φ.
Thus, if Xj “ tx1, ...,xℓu, then we can produce kpx1q new signatures in incremental polynomial
time, in fact regardless how many we produced previously (including the k0 we have from the
first phase.) Let us denote by qpm,n, kpx1qq the polynomial bounding the total time processing
Φpx1q. If kpx2q ą kpx1q, then maybe the first kpx1q signatures produced from Φpx2q coincide
with the ones we already generated from Φpx1q, but still after at most qpm,n, kpx1qq time we
get a new signature. In the worst case, we have kj “ kpx1q ě kpxiq for all xi P Xj , i ‰ 1, in
which case processing Φpxiq, i “ 2, ..., ℓ may not produce any new signatures. Since ℓ ď kd

0
,

this means that the largest gap between the output of the last signature of Φpx1q and next
new signature is not more than kd

0
qpm,n, kpx1qq, at a moment when we have already produced

k1 ě k0 ` kpx1q signatures. Thus this largest time gap between two outputs is still bounded by
a polynomial of the input size Opmnq and the number of signatures k1 ě k0 ` kpx1q produced
so far.

4 Generating maximal and minimal signatures

Generation of maximal signatures is difficult as it includes SAT as a special case.

Theorem 6. Generating all maximal signatures is NP-hard.

Proof. Let us consider a CNF Φ, and observe that its unique maximal signature is the all-one
vector if and only if Φ is satisfiable. Hence any total polynomial time algorithm generating
the maximal signatures would detect satisfiability of Φ. As SAT is difficult in general [4], the
theorem follows.

It turns out that minimal signatures can be generated efficiently.

Theorem 7. Minimal signatures can be generated with polynomial delay.

Proof. We claim that there is a one-to-one correspondance between minimal signatures of a CNF
Φ and maximal independent sets of its conflict graph HΦ. Since HΦ can be built in polynomial
time from Φ and maximal independent sets of a graph can be generated with polynomial delay
[10,13], this would prove the theorem.

To see the above claim, assume first that a signature σ “ tσC | C P Φu is a minimal signature
of Φ. Note that the set S “ tC P Φ | σC “ 0u is an independent set in HΦ. For any C P Φ
with σC “ 1 there must exist a conflict between C and some C 1 P S, since otherwise we could
set σC to zero without forcing any of the clauses in S to change their values, contradicting the
minimality of σ. Thus S must be a maximal independent set.

The other direction follows from the fact that if S is a maximal independent set of HΦ and
we set all the clauses in S to zero, then all other clauses of Φ are forced to take value one due
to the conflicts between S and other vertices of HΦ.
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5 Conclusions

In this paper we show that all signatures of a given CNF with a bounded dimension can be
generated in incremental polynomial time, answering an open problem posed by Kröll [2,
Problem 4.7]. A faster incremental polynomial algorithm is provided for the class of formulas
where both the dimension and the co-occurrence are bounded. Moreover, it is also shown that
the same task can be done with polynomial delay if the input CNF is from a tractable class
(in this case no bound on dimension or co-occurrence is necessary). Finally, it is proved that
generating maximal signatures is NP-hard, while minimal signatures can be generated with
polynomial delay.

In this context it is interesting to note that given a 3-CNF Φ with m clauses and the vector
y “ p1, 1, ..., 1q P t0, 1um it is NP-hard to test whether y is a signature of Φ, or not (y is a
signature if only if Φ is satisfiable). On the other hand, our results show that generating all
signatures of Φ can be done in incremental polynomial time. This is a rather unusual behavior
for a generation problem. Typically, if all solutions of a given problem can be generated in
incremental polynomial time, checking if a given candidate is a solution or not is computationally
easy.

An additional problem connected to CNF signatures was stated at the Dagstuhl Seminar
19211 by Gy. Turán. Given a set S Ď t0, 1um, does there exist a CNF with m clauses such
that S is exactly its set of all signatures? If yes, can such a CNF be computed efficiently? This
‘reverse’ problem (get the signatures, output clauses) to the problem presented in this paper
(get the clauses, output signatures) is to the best of our knowledge completely open.
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