
ar
X

iv
:2

00
7.

09
13

3v
2

 [
cs

.G
T

]
 5

 A
pr

 2
02

1

Indivisible Mixed Manna: On the Computability of MMS+PO

Allocations

RUCHA KULKARNI, University of Illinois at Urbana-Champaign, USA

RUTA MEHTA, University of Illinois at Urbana-Champaign, USA

SETAREH TAKI, University of Illinois at Urbana-Champaign, USA

In this paper we initiate the study of finding fair and efficient allocations of an indivisible mixed manna:

Divide< indivisible items among = agents under the popular fairness notion of maximin share (MMS) and
the efficiency notion of Pareto optimality (PO). A mixed manna allows an item to be a good for some agents

and a chore for others, and hence strictly generalizes the well-studied goods (chores) only manna. For the

goods manna, non-existence of anMMS allocation prompted a series of works on finding approximateMMS

allocations, and the best factor known to date is U =∼3/4, while non-existence is only known for U close to 1.

The problem of finding U-MMS allocation for the (near) best U ∈ (0, 1] for which it exists, remains unresolved

even when the number of agents is a constant, while the problem of finding U-MMS + PO allocation is

unexplored for any U ∈ (0, 1].
We make significant progress on the above questions for the case of mixed manna. First, we show that

for any U > 0, an U-MMS allocation may not always exist, thus ruling out solving the problem for a fixed U .

Second, towards computing U-MMS + PO allocation for the best possible U , we obtain a dichotomous result:

We derive two conditions and show that the problem is tractable under these two conditions, while dropping

either renders the problem intractable. The two conditions are: (8) number of agents is a constant, and (88)
for every agent, her absolute value for all the items is at least a constant factor of her total (absolute) value

for all the goods or all the chores.

In particular, first, for instances satisfying (8) and (88) we design a PTAS – an efficient algorithm to find

an (U − n)-MMS and W-PO allocation when given n, W > 0, for the highest possible U ∈ (0, 1]. Second, we
show that if either condition is not satisfied then finding an U-MMS allocation for any U ∈ (0, 1] is NP-hard,
even when a solution exists for U = 1. On< item instances our PTAS runs in time 2$ (1/min{n2,W2 })?>;~ (m)
for given n and W , and therefore gives polynomial run-time for n,W as small as $ (1/√log<).

As corollaries, our algorithm resolves the open questions of designing a PTAS for a goods manna and a

chores manna with constantly many agents to find an U-MMS allocation for the best possible U ; the best

known was U = ∼3/4 for goods manna, and U = 9/11 for chores manna. To the best of our knowledge, ours is

the first algorithm that ensures both approximate MMS and PO guarantees. In terms of techniques, for the

first time, we use an LP-rounding through envy-cycle elimination as a tool to solve an MMS problem and

ensure PO, which may be of independent interest.

1 INTRODUCTION

Finding fair and economically efficient allocations of indivisible items is a fundamental problem
that arises naturally in various multi-agent systems [Ste48, BT96, Vos02, Mou04, EPT07, Bud11,
GHS+18], for example, school seats assignment, spectrum allocation, air traffic management, allo-
cating computing resources on a network, splitting assets and liabilities in partnership dissolution,
and office tasks. Many of these involve both goods that are freely disposable and chores that have
to be assigned. In this paper we study the problem of finding fair and efficient allocations of a
mixed manna, i.e., a setM of discrete items that are goods/chores, among a set N of agents with
additive valuations. We note that a mixed manna allows an item to be a good (positively valued)
for some agents, and a chore (negatively valued) for others, and thereby strictly generalizes the
extensively studied goods (chores) manna (See Appendix E for a detailed discussion on related
works).

http://arxiv.org/abs/2007.09133v2

Rucha Kulkarni, Ruta Mehta, and Setareh Taki 1

Tomeasure fairness and efficiencywe consider the popular and well studied notions of maximin-
share (MMS) (e.g., see [Bud11, KPW18, AMNS17, GHS+18, FGH+19, GT20]) and Pareto optimality
(PO) respectively. Pareto optimality is a sought after notion in economics, and when achieved
means that there is no other allocation that makes all the agents better off and at least one of
them strictly better off. The fairness notion of maximin-share is inspired from the classical cut-
and-choose mechanism1. The MMS value of agent 8 is the value that she can guarantee herself
if she is to partition (cut)M into = = |N | bundles, given that she is the last agent to choose her
favorite bundle. Naturally, she will try to maximize the minimum valued bundle in the partition.
Formally, if Π= (M) represents all possible partitions (�1, . . . , �=) ofM into = bundles, and E8 is
her valuation function, then

MMS8 (M) = max
(�1,...,�=) ∈Π= (M)

min
:∈[=]

E8 (�:) . (1)

AnMMS allocation is onewhere every agent gets at least herMMS value. The problem of finding
anMMS allocation has seen extensive work in the case of a goods (chores) only manna, while no
results are known for the mixed manna. Even for the goods (chores) manna, no work has explored
the PO guarantee in addition toMMS, to the best of our knowledge; finding fair+(approximate) PO
allocations has been studied for other fairness notions like EF1 and Prop1 [BKV18, ZP20, AMS20].
In this paper we initiate the study of finding an MMS + PO allocation for a mixed manna.

For the goods manna, the notable result of Kurokawa, Procaccia and Wang [KPW18] showed
that an MMS allocation may not always exist, but U-MMS allocations, where every agent gets at
least U times her MMS value, exist for U = 2/3. This prompted works on efficient computation of
an U-MMS allocation for progressively better U ∈ [0, 1] [AMNS17, BKM17, GMT18, GHS+18]; the
best factor known so far is U = (3/4 + 1/(12=)) by Garg and Taki [GT20] for = ≥ 5 agents. With a
chores manna,MMS values are negative, and an U-MMS allocation gives each agent 8 a bundle of
value at least 1

U
·MMS8 . For this case too, starting from the work [ARSW17] for U = 1/2, a series

of works improved it to 9/11 [BKM17, HL19].

With a mixed manna we show that, for any fixed U ∈ (0, 1], an U-MMS allocation may not
always exist (see Appendix B); in contrast, non-existence with a goods manna is known for U
close to one [KPW18]. This rules out efficient computation for any fixed U, and naturally raises
the following problem.

Design an efficient algorithm to find an U-MMS + PO allocation for the best possible U , i.e., the

maximum U ∈ (0, 1] for which it exists.

This exact problem is intractable: In the case of identical agents, an (U = 1)-MMS allocation
exists by definition. However, finding one is known to beNP-hard for a goods manna.2 On the pos-
itive side, a polynomial-time approximation scheme (PTAS) is known for this case due to [Woe97];
given a constant n ∈ (0, 1], the algorithm finds a (1 − n)-MMS allocation in polynomial time. No
such result is known when the agents are not identical. Guaranteeing PO in addition adds to the
complexity, since even checking if a given allocation is PO is coNP-hard even with two identical
agents [ABL+16]. In light of these results, we ask,

Question. Can we design a PTAS, namely an efficient algorithm to find an (U − n)-MMS + W-PO
allocation, given n, W > 0, for the best possible U?

1In case of divisible items and two agents, one agent cuts so that she is okay with both the bundles and the other person

chooses (mentioned in the Bible).
2Checking if a given instance admits an MMS allocation is known to be in NPNP, but not known to be in NP [BL16].

Rucha Kulkarni, Ruta Mehta, and Setareh Taki 2

Our Contribution. In this paper we make significant progress towards this question for mixed
manna by showing the following dichotomy result: We derive two conditions and show that the
problem is tractable under these conditions, while dropping either renders the problem intractable.
The two conditions are: (8) number of agents = is a constant, and (88) for every agent 8 , her total
(absolute) value for all the items (|E8 (M)|) is significantly greater than the minimum of her total
value of goods (E+8) and her total (absolute) value for chores (E

−
8), i.e., for a constant g > 0, |E8 (M)| ≥

g ·min{E+8 , E−8 }.
In particular, first, for instances satisfying (8) and (88), we design a PTAS (as asked in the above

question). Second, we show that if either condition is not satisfied, then finding an U-MMS allo-
cation for any U ∈ (0, 1] is NP-hard, even with identical agents where a solution exists for U = 1.
This hardness is striking because it shows inapproximability within any non-trivial factor when
either (8) or (88) is not satisfied. This also indicates that the two conditions are unavoidable.

Our algorithm, in principle, gives a little more than a PTAS. It runs in time 2$ (1/min{n2,W2 })?>;~(m)
for given n, W , thus gives polynomial run-time for n, W as small as$ (1/√log<), where< = |M|.
U-MMS + PO for goods (chores) manna. As a corollary, we obtain a PTAS for finding U-MMS +

PO allocations of a goods manna and a chores manna when the number of agents is a constant.
This improves the previous results for these settings in two aspects: (8) provides the best possible
approximation factor; factors better than the general case known for good manna are 4/5 for
= = 4 [GHS+18], 8/9 for = = 3 [GM19], and 1 for = = 2 [BL16], and (88) provides an additional
(approximate) PO guarantee.

Challenges. The key challenge in solving this question is handling items of high value to any
agent. In the goods or chores mannas, these items can be greedily assigned, for example as sin-
gleton bundles. But in a mixed manna, high valued goods (chores) may have to be bundled with
specific sets of chores (goods) or low valued items to form lesser valued bundles. Secondly, the
MMS values of the agents, and the U for which U-MMS allocation exist, both are not known. In
fact, computing the exact MMS values is NP-hard (even with a goods manna).

PTAS to find MMS values. As the first key step for our main algorithm, we design a PTAS that
returns (1 − n) approximate MMS values of agents, which may be of independent interest.

A new technique to prove PO. Since certifying a PO allocation is a coNP-hard problem [ABL+16],
known works maintain a PO allocation with market equilibrium as a certificate [BKV18, MG20,
GM20]. We develop a novel approach to ensure PO with U-MMS through LP rounding. The LP
itself is intuitive, however the rounding is involved. It makes use of envy-graph and properties of
the MMS in a novel way. This approach may be of independent interest.

Organization. Section 2 gives a formal definition of the problem and notations. Section 3 discusses
the main result of PTAS for the U-MMS + PO problem with the best possible U ; the formal proofs
missing from this section due to space limitations are in Appendix A. The formal and complete
discussion of the PTAS for computing MMS values for the case when MMS ≥ 0 is in Section 4
and for the MMS < 0 case is in Appendix C. Appendix B discusses the non-existence of U-MMS

allocation for any U ∈ (0, 1]. Finally, the discussion of NP-hardness results is in Appendix D.

2 PROBLEM DEFINITION AND NOTATIONS

Notations. We use [:] to denote the set {1, 2 · · · , :}. For 2 ∈ R, 2+ denotes max{2, 0}.
We consider the problem of allocating a setM of< indivisible items among a setN of = agents

in a fair and efficientmanner, with the fairness notion ofmaximin share (MMS) and the efficiency

Rucha Kulkarni, Ruta Mehta, and Setareh Taki 3

notion of Pareto-optimality (PO). Each agent 8 ∈ N has an additive valuation function E8 : 2
M → R

over sets of items. For a set (⊆ M, her value is E8 (() =
∑

9 ∈(E8 9 . Agents are called identical if their
E8s are the same function; in this case, the valuation function is denoted by E .

The set of items valued non-negatively (negatively) by an agent 8 are called her Goods (Chores),
and denoted byM+8 = { 9 | E8 9 ≥ 0} (M−8 = { 9 | E8 9 < 0}). The sets of all the goods and all the
chores of the instance are defined as respectivelyM+ := ∪8M+8 , andM− :=M\M+. We refer to
an item 9 as a good if E8 9 ≥ 0 for some agent and as a chore if E8 9 < 0 for all agents.

MMS values and allocation. Let�c
= {�1, �2, · · · , �=} denote a partition of all the items among

the = agents, referred as an allocation, i.e., �8 ∩�8′ = ∅ for all distinct 8, 8 ′ inN , and ∪8�8 =M. And
let Π= (M) be the set of all possible allocations ofM among = agents. The maximin share (MMS)
value of an agent 8 is defined as

MMS=8 (M) = max
(�1,...,�=) ∈Π= (M)

min
:∈[=]

E8 (�:).

We refer to MMS=8 (M) by MMS8 when the qualifiers = andM are clear, and by MMS when
agents are identical. Note thatMMS8 can be negative too.

Definition 2.1 (U-MMS allocation). �c is called an U-MMS allocation for an U ∈ (0, 1], if for
each agent 8 ∈ N we have E8 (�8) ≥ UMMS8 if MMS8 ≥ 0, E8 (�8) ≥ (1/U)MMS8 , if MMS8 <

0. Equivalently, E8 (�8) ≥ min{UMMS8 , (1/U)MMS8}. When U ≤ 0, for simplicity, we define any

allocation as U-MMS.

W-Pareto optimal (W-PO) and W-Pareto dominating allocations.An allocation�c is said to be
W-PO if there does not exist any �c ∈ Π= (M), called an allocation W-Pareto dominating �c , such
that ∀8 ∈ N , E8 (�8) ≥ (1 + W)E8 (�8) if E8 (�8) ≥ 0, and E8 (�8) ≥ 1

(1+W) E8 (�8) if E8 (�8) < 0, and for at

least one 8 the inequality is strict.

An allocation is called PO if it is 0-PO. It is easy to see that if there exists an U-MMS allocation
for a given instance then there is one that is both U-MMS and PO (and thereby also W-PO). This is
because if an allocation �c Pareto dominates an U-MMS allocation �c , then �c is also U-MMS.

Since the problem of finding U-MMS allocation is NP-hard for any U ∈ (0, 1], we design a PTAS
to compute an U-MMS + PO allocation for a sub-class of instances. To characterize this sub-class,
we will need the following definition.

For each agent 8 ∈ N , define E+8 =
∑

9 ∈M+8 E8 9 and E−8 =
∑

9 ∈M−8 |E8 9 |. (2)

Definition 2.2 (U-MMS + PO Problem). Given an instance (N ,M, (E8)8 ∈N) and U ∈ (0, 1] where,

(1) the number of agents = is constant, and

(2) for some constant g > 0, for every agent 8 ∈ N , |E8 (M)| ≥ g ·min{E+8 , E−8 },

either find an allocation �c ∈ Π= (M) that is both U-MMS and PO, also called an U-MMS + PO
allocation, or correctly report that such an allocation does not exist for the given instance.

The above problem without the PO guarantee is called the U-MMS problem. Unlike the goods
manna or the chores manna, for the mixed manna an U-MMS allocation may not exist for any
U > 0, as shown in Appendix B. Therefore, for a mixedmanna, we can only hope to find an U-MMS

allocation for the maximum possible U value for the given instance, formally defined below.

Definition 2.3 (OPT-U-MMS+PO Problem.). Given an instance (N ,M, (E8)8 ∈N), find an allocation
which is U-MMS + PO for an U ∈ (0, 1] such that there is no U ′-MMS allocation for any U ′ > U .

Rucha Kulkarni, Ruta Mehta, and Setareh Taki 4

Note that, given an algorithm for the U-MMS+PO problem it is easy to solveOPT-U-MMS+PO
by doing a binary search on the value of U . We design a PTAS for the former in Section 3 and
thereby solve the latter efficiently up to a small error. By PTAS we mean, given constants n,W > 0,
in polynomial-time it either returns an (U − n)+-MMS + W-PO allocation, or correctly reports that
no U-MMS allocation exists.

The following observations will be useful in what follows (See Appendix A for proofs).

Lemma 2.1. E8 (M) ≥ 0 iff MMS8 ≥ 0.

Lemma 2.2. MMS8 ≤ E8 (M)/|N | for all 8 ∈ N .

Lemma 2.3. [Scale Invariance] U-MMS + PO allocations for the instances (N ,M, (E8)8 ∈N) and
(N ,M, (E ′8)8 ∈N) are the same when for all 8, 9 , E ′8 9 = 28 · E8 9 for some constants 28 > 0.

3 PTAS FOR U-MMS + POWITH NON-IDENTICAL AGENTS

In this section, we present our main result, namely a PTAS for the OPT-U-MMS + PO problem.

For OPT-U-MMS+ PO the crucial step is to get a PTAS for the U-MMS+ PO problem, discussed
next. Recall that the definition of the latter, namely Definition 2.2, assumes two conditions on
the input instance (N ,M, (E8)8 ∈N): (8) number of agents is a constant, and (88) for each 8 ∈ N ,
|E8 (M)| ≥ g ·min{E+8 , E−8 }, where g > 0 is a constant. Let us first briefly discuss why both of these
conditions are unavoidable.

Hardness of approximation. In Appendix D, we show the following theorem by proving that
if either condition is dropped then the problem is intractable for any U ∈ (0, 1], even when exact
MMS allocation exists.

Theorem 3.1. For any instance (=,M, E) with identical agents and E (M) > 0 such that exactly

one of the following two holds: (a) either = = 2 or (b) |E (M)| ≥ g · min{E (M+), |E (M−) |} for a
constant g , finding an U-MMS allocation of (=,M, E) for any U ∈ (0, 1] is NP-hard.

To prove the above theorem, we design two reductions from a well-known NP-hard problem
PARTITION to the problem of finding an U-MMS allocation of an instance (=,M, E) for any U ∈
(0, 1],. The tricky part in these reductions is to guarantee that an U-MMS allocation for any U > 0
maps to a solution of PARTITION.

Computing the MMS values. The first step in our PTAS is to compute the MMS values of the
agents, which is equivalent to finding anMMS allocationwith identical agents. The above hardness
result rules out even approximating the MMS values within any non-trivial factor in polynomial
time if either condition is not satisfied. For the instances satisfying both, in Section 4 we design
an efficient algorithm to compute the MMS values up to a small multiplicative error. We need to
tackle the cases withMMS ≥ 0 andMMS < 0 separately; note that the sign ofMMS can be easily
determined using Lemma 2.1. Formally, we show the following (see Section 4 and Appendix C).

Theorem 3.2. Given an instance (=,M, E) and a constant n > 0, if (8) = is a constant and (88) for
each 8 ∈ [=], |E8 (M)| ≥ g ·min{E+8 , E−8 }, where g > 0 is a constant. Then, there is a PTAS to compute

a (1 − n)-MMS allocation.

Our PTAS for the U-MMS+PO problem takes as input the instance (N ,M, (E8)8 ∈N), a parameter
U ∈ (0, 1], and constants n,W > 0, and it either finds an allocation that is (U − n)+-MMS + W-PO

Rucha Kulkarni, Ruta Mehta, and Setareh Taki 5

allocation, or correctly reports that an U-MMS allocation does not exist; the latter may very well
be the case for any U ∈ (0, 1] as shown in Appendix B.

Pre-processing. First, note that the problem is non-trivial only if U > n, otherwise since (U −
n)+ = 0, thus an allocation that gives every item to the agent with the highest value for it is
(U − n)+-MMS + PO, and returned. Therefore, now on we assume that U > n .

Next we re-define n as min{n, WU

(1+W) }. This is done for technical reasons to ensure that the final

allocation is also W-PO. It does not harm theMMS guarantee, as an (U − n)+-MMS allocation with
a smaller n is also an (U − n)+-MMS allocation with respect to the given n. Note that when U and W
are constants, so is the new value of n . Finally, we assume there are no agents with E (M) = 0. Note
that because of condition 2 of the problem, when E (M) = 0 then the value of every item for this
agent is 0. Also note that their MMS = 0. Thus, we can allocate all the chores arbitrarily among
agents with E (M) = 0, and remove them. It is easy to see that the MMS value of the remaining
agents can only improve, and all U-MMS allocations are retained, by the removal of all the chores
and a subset of agents. The problem then reduces to a goods manna case with no agents with
E (M) = 0, which is solved as a special case of the PTAS we will describe.

Due to the pre-processing step, now on we assume that (N ,M, (E8)8 ∈N), the given fair division
instance, satisfies E8 (M) ≠ 0 for every agent 8 ∈ N . We first scale the valuations so that |E8 (M)| =
= since the problem is scale free by Lemma 2.3.Without loss of generality, we assume that the given
constants U, n, W > 0 are such that U > n, and n ≤ WU

(1+W) . The algorithm first applies the relevant

PTAS from Section 4 or Appendix C to compute the MMS value of every agent approximately

up to a factor (1 − n/2). If MMS8 is the value returned by the algorithm for agent 8, we know

MMS8 ≥ min{(1−n/2)MMS8, (1/(1−n/2))MMS8 }. The algorithm then tries to find an (U −n/2)+-
MMS8 allocation, and fails only when an U-MMS allocation does not exist.

High-level Approach. At a high level, the algorithm to find an (U − n/2)+-MMS8 allocation is as
follows. We will classify all items as BIG, based on if they are highly valued by any agent relative
to her MMS value, or SMALL otherwise. Although the MMS values of agents can be arbitrarily
small, we show that the number of BIG items is a function of =, hence constant from condition 1.
Therefore, we can efficiently enumerate all partitions of the BIG items.

For each partition, we allocate the SMALL items by solving an LP and rounding its solution.

The LP ensures a fractional solution where every agent gets at least an U-MMS valued bundle.
Next, through a careful rounding, we show that if there is an U-MMS allocation where the BIG
items are allocated according to the current partition, then the allocation of all items obtained after

rounding the LP solution is (U − n/2)+-MMS8 . Among all the fractional U-MMS allocations found
by combining some BIG item partition with the allocation of SMALL as per the LP solution, we
find the one, say A = [A1, · · · ,A=], with the highest value for the sum of valuations of all the
agents, i.e.,

∑
8 E8 (A8). That is, we find a fractional allocation,

A ∈ argmax
�∈Π= (BIG)

max
�8 ⊇�8 ,� is U -MMS

∑
8 ∈N

E8 (�8).

Finally, we show that the rounded solution, call it AA , is W-PO, by showing that for an allocation
to W-Pareto dominate AA , it must be an U-MMS allocation and have higher welfare than A. This
proof is quite involved and uses several new ideas, including the way we round the LP solution, to

Rucha Kulkarni, Ruta Mehta, and Setareh Taki 6

show Pareto optimality of the integral allocation3. The following bound on theMMS8 values will
be useful in the analysis, and follows from Lemma 2.2 and |E8 (M)| = =, ∀8 ∈ N .

Lemma 3.1. For each agent 8 ∈ N , MMS8 ≤ 1 if E (M) ≥ 0, otherwise MMS8 ≤ −1.

In the remaining section, we will discuss the details and formalize these ideas, with some proofs
moved to Appendix A in order to convey the main ideas within the page limit. Also, for brevity, at

times we will refer toMMS8 as ˜̀8 and to MMS8 as `8 .

3.1 BIG and SMALL Items

Next we classify items into sets BIG and SMALL, and show bounds on the size of the BIG items
set.

Definition 3.1 (Big and Small items). The sets of all BIG goods (BIG+8) and BIG chores (BIG−8) of
agent 8 are defined as,

BIG+8 := { 9 ∈ M+ | (˜̀8 ≥ 0 and E8 9 > n ˜̀8/(2=)) or (˜̀8 < 0 and E8 9 > n/(2=))}, and
BIG−8 := { 9 ∈ M− | −E8 9 > n/(2=)}.

The union of all sets BIG+8 is called BIG+ = ∪8BIG+8 , and of all BIG−8 sets is called BIG− = ∪8BIG−8 .
Finally, the set of all BIG items is called BIG := BIG+ ∪ BIG−.
Any item that is not in BIG is called a SMALL item. We define SMALL goods and chores for agent 8 as

SMALL+8 = M+8 \BIG+8 , and SMALL−8 = M−8 \BIG−8 . Similarly, the sets of SMALL goods, SMALL

chores, and SMALL items are respectively SMALL+ = M+\BIG+, SMALL− = M−\BIG−, and
SMALL = SMALL+ ∪ SMALL−.

In the remaining section, we will show the size of BIG is constant. For this, we make two useful
observations, then show the bound on BIG.

Claim 3.1. For the approximate MMS values ˜̀8 , we have, if `8 > 0, then ˜̀8 ∈ [(1 − n/2)`8 , `8], if
`8 = 0 then ˜̀8 = 0 and if `8 < 0, then ˜̀8 ∈ [`8/(1 − n/2), `8] .

The claim follows from the guarantees of Theorems 4.1 and C.1. Next, recall the definitions of
E+8 and E−8 from equation (2). The next claim follows from condition 2 of the problem.

Claim 3.2. For all agents 8, E+8 ≤ $ (=), E−8 ≤ $ (=).

Next lemma shows a bound on |BIG| (proof in Appendix A). For this we show the bound of
$ (=2/n) on |BIG+8 | and |BIG−8 | for each agent 8 . Note that if ˜̀8 is big enough then it is easy to
prove that |BIG+8 | is a constant. The difficulty is when ˜̀8 is arbitrarily small, in which case |BIG+8 |
can potentially be large – a tricker case. The bound on |BIG−8 | follows from the definition of BIG−8
together with Claim 3.2.

Lemma 3.2. The number of big items, i.e., |BIG| ≤ $ (=3/n).

3.2 LP for Allocating SMALL Items, and Rounding

Given a partition �c
= (�1, . . . , �=) of BIG items, next we write an LP to find a fractional allocation

of SMALL items such that together with �c this allocation gives at least U-MMS value to every

3Recall that testing PO is coNP-hard [ABL+16], and market equilibrium (or highest sum of valuations for the trivial PO

allocation) is the only technique in all known literature to certify that an allocation is PO.

Rucha Kulkarni, Ruta Mehta, and Setareh Taki 7

agent. If there exists an U-MMS allocation where the BIG items are allocated as per �c then we
show that the LP has to be feasible.

For every agent 8, denote by 28 the value from SMALL that 8 needs for her bundle’s value to be
at least U · ˜̀8 if ˜̀8 ≥ 0 or (1/U) · ˜̀8 otherwise, i.e., 28 = min{(1/U) ˜̀8 , U ˜̀8 } − E8 (�8).

max
∑
8 ∈N

©
«

∑
9 ∈SMALL+8

E8 9G8 9 −
∑

9 ∈SMALL−8

|E8 9 |G8 9ª®¬
(3)

s.t.
∑

9 ∈SMALL+8

E8 9G8 9 −
∑

9 ∈SMALL−8

|E8 9 |G8 9 ≥ 28 , ∀8 ∈ N (4)

∑
8 ∈N

G8 9 ≤ 1, ∀9 ∈ SMALL+ (5)

∑
8 ∈N

G8 9 ≥ 1, ∀9 ∈ SMALL− (6)

G8 9 ≥ 0, ∀8 ∈ N , 9 ∈ M . (7)

We now prove two properties (Lemmas 3.3 and 3.4) that will help in obtaining an integral

(U − n/2)-MMS allocation of items from a fractional U-MMS allocation. Let us assume the LP
has a solution, say G = [G8 9]8 ∈N, 9 ∈SMALL. We define a bipartite graph, called the allocation graph,
corresponding to G as follows. There is a vertex corresponding to each agent in N in one part of
vertices, and to each item in SMALL in the other part, and for all 8 ∈ N and 9 ∈ SMALL, edge (8, 9)
exists if G8 9 > 0. We show the following property of the allocation graph.

Lemma 3.3. The allocation graph of any LP solution G can be made acyclic in such a way that in the

allocation corresponding to the new graph, say G ′ = [G ′8 9]8 ∈N, 9 ∈SMALL, every agent receives a bundle

of the same or better value as in G .

To prove the lemma, we show re-allocations can be done along any cycle in a certain way with-
out any agent losing any value that eliminates at least one edge. For every cycle, we define a par-
ticular scaled valuation function, and define weights for the edges to reflect the values to agents
from the adjacent items. Then we add and subtract weights in a certain way along the cycle, taking
into consideration if the adjacent item is a good or a chore, so that the allocation corresponding
to the new weights, or equivalently (scaled) values to agents, does not contain this cycle.

The next lemma follows since an undirected, acyclic graph forms a tree.

Lemma 3.4. The number of shared items in any acyclic allocation graph is at most = − 1.

Next we describe the notion of envy graph [LMMS04], a directed graph corresponding to any
allocation, that will be used to round the LP solutions.

Envy Graph and Cycle Elimination. Given a set of agentsN and an integral allocationA of a
set of items among them, each node in the graph corresponds to an agent inN . There is a directed
edge (8 → :) corresponding to agents 8 and : if agent 8 values agent :’s allocation more than
her own. It is shown in [LMMS04] that the allocation can be modified so that its corresponding
envy graph is acyclic, and no agent’s valuation decreases. This is done by giving each agent in a
cycle the bundle of her successor. The graph is updated and the process repeated until all cycles
are eliminated. This process can be done efficiently [LMMS04].

Claim 3.3. In an allocation ofM among = agents, every sink agent 8 corresponding to an acyclic

envy graph has value at least 1 for her own bundle if E8 (M) > 0, and at least −1 otherwise.

Rucha Kulkarni, Ruta Mehta, and Setareh Taki 8

Rounding the LP. Using Lemmas 3.3 and 3.4, we first modify the allocation graph of the LP
solution so that it is a forest graph with at most =−1 shared items. Let (be the set of all the shared
items, (−n the set of all the shared chores whose absolute value is more than n | ˜̀8 |/(2=) for at least
one agent, that is, (−n := { 9 ∈ (| ∃8 ∈ N , |E8 9 | > n | ˜̀8 |/(2=)}, and (+ := (\(−n . Allocate each item 9

in (+ to any agent 8 in argmax8 E8 9 . Then consider the envy graph corresponding to this allocation
ofM\(−n , and modify the allocation by eliminating all the cycles in the envy graph. Allocate all
the items in (−n to a sink agent in the acyclic envy graph, and denoted it as 8C .

The following claim will be useful in proving the final allocation of the algorithm is W-PO.

Claim 3.4. If (−n ≠ ∅ then there exists an 8 ∈ N such that E8 (M) > 0.

Proof. Every agent with E (M) < 0 has ` ≤ −1, from Lemma 3.1. The value of any chore in
SMALL for any such agent is at most n/2= ≤ n |` |/2= ≤ n | ˜̀ |/2=, as from Claim 3.1, | ˜̀ | ≥ |` |. Hence, if
(−n ≠ ∅, then the agent who values any item in (−n more than n ˜̀/(2=) has E (M) > 0. �

Finally, we show the maximum loss in value of each agent in the rounding process, which will
be used to ensure that the algorithm returns an (U − n)+-MMS allocation.

Lemma 3.5. In the rounding process, 8C loses at most n/2 value and every other agent 8 loses at most

n | ˜̀8 |/2 value.

Proof. Every agent except 8C , in the worst case, loses all her shared goods and gains all her
shared chores in (+, and has no shared chores in (−n , as she only gains from the rounding of
items in (−n . Her maximum loss from the items in (+ is at most (= − 1) · n ˜̀/(2=) ≤ n ˜̀/2, as
|(+ | ≤ |(| ≤ = − 1, from Lemma 3.4. For agent 8C , her loss from (in the worst case is at most
(= − 1) · n/(2=) ≤ n, as each item in (has absolute value at most n/(2=) for her. �

3.3 PTAS for U-MMS + PO

Algorithm 1 combines the ideas in the previous sections and finds an (U − n)+-MMS allocation if
an U-MMS allocation exists, else returns an empty allocation to indicate that no U-MMS allocation
exists. The algorithm works as follows. First, it finds the approximate MMS values of all agents
using the algorithms from Section 4 and Appendix C, and classifies all items as BIG or SMALL.
Then among all allocations of BIG items where the corresponding LP has a solution, if any, it
finds the combined allocation of BIG and SMALL, calledA, with the highest social welfare where
SMALL may be fractionally allocated.

From constraint 4 of the LP, A is U-MMS, and as shown in Lemma 3.6, its rounded allocation,
denoted as AA , is (U − n)+-MMS. To ensure AA is also W-PO, for technical reasons we require
the sum of absolute values of all agents to be at least U whenever there is at least one agent with
E8 (M) > 0. IfAA does not satisfy this condition, Algorithm 1 ensures a stronger guarantee, namely
at least one agent values her own bundle at least 1, by modifying AA as follows. Let N+ be the
set of agents with E8 (M) > 0. Note that, for an 8 ∈ N+, E8 (M) = = but E8 (�A

8) < U , and hence
there exists an agent : ≠ 8 such that 8 values :’s bundle more than 1. We consider two cases based
on if : is in N+ or not. If : ∉ N+, then :’s MMS value is negative, thus even if we re-allocate
her bundle to 8 and give : nothing (lines 18-19), her (U − n)+-MMS guarantee is maintained. If no
such (8, :) pair is found, then we go to the other case, where : has to be given something. For this
(lines 21-22), we construct a graph on N+ where there is an edge from 8 to : if E8 (�A

8) < U and
E8 (�A

:
) ≥ 1. This graph has to have a cycle (See proof of Claim 3.6), and swapping bundles along

the cycle gives value more than 1 to every agent along the cycle.

Rucha Kulkarni, Ruta Mehta, and Setareh Taki 9

ALGORITHM 1: (U − n)+-MMS + W-PO allocation of mixed items to non-identical agents

Input : Instance (N ,M, (E8)8 ∈N), U ∈ (n, 1], W > 0 and n > 0

Output : (U − n)+-MMS + W-PO allocation or report U-MMS allocation does not exist

1 n ← min{n, WU
(1+W) }, 5 ;06← 5 0;B4

2 For all 8 ∈ N , AA
8 ← ∅ // initialize AA as the empty allocation

3 A ← lowest social welfare allocation, i.e., give every item 9 to agent 8 with smallest E8 9

4 For all 8,MMS8 ← (1 − n
2)-MMS8 value of agent 8 // use Algorithm from Section 4

5 Define BIG and SMALL according to Definition 3.1

6 for all allocations �c = [�1, �2 . . . , �=] of BIG do

7 Solve the LP (Equations (3)-(7)) for allocating SMALL items

8 if LP has a solution then

9 5 ;06← CAD4

10 �c ← Allocation of SMALL in optimal LP combined with �c

11 A ← Allocation from (A, �c) with higher welfare, i.e.,
∑
8 E8 (A8)

12 if 5 ;06 = CAD4 then

13 Make allocation graph of A acyclic using Lemma 3.3

14 Round off A and obtainAA by applying the rounding method from Section 3.2

15 if
∑
8 |E8 (AA

8) | < U , and ∃8 : E8 (M) > 0 // technical steps to get W-PO

16 then

17 N+ ← set of agents 8 with E8 (M) > 0

18 if ∃8 ∈ N+, : ∉ N+ : E8 (AA
:
) ≥ 1 then

19 modify AA by giving AA
:
to 8, and giving : nothing // note: k has negative MMS

20 else

21 Construct the following directed graph� (+ , �). + = N+, directed edge (8 → :) ∈ � if

E8 (AA
8) < U and E8 (AA

:
) ≥ 1 // � has a cycle as for all 8 ∈ + : E8 (AA

8) < U ≤ 1

22 Swap bundles along any 1 cycle in� by giving every agent her successor’s bundle

23 returnAA

We will prove the correctness of the algorithm in the remaining section. In what follows, we
denote by A = [A1 · · · ,A=] and AA

= [AA
1 · · · ,AA

=] respectively the fractional allocation that
is rounded after Line 12 and its rounded allocation. First we show that the algorithm returns an
(U − n)+-MMS allocation if an U-MMS allocation exists.

Lemma 3.6. If the LP has a solution for any partition ofBIG, thenAA is an (U − n)+-MMS allocation.

Proof. First, we argue for the allocation obtained after the rounding step on Line 14. Consider
agent 8C . Since 8C corresponds to a sink node in the envy graph, from Claim 3.3 and Lemmas 3.5
and 3.1, her value for her bundle in AA is at least 1 − n/2 ≥ 1 − n ≥ (U − n)`8C if ˜̀8C ≥ 0, and
−1 − n/2 ≥ −1 − n ≥ (1 + n)`81 ≥ 1

(U−n) `81 otherwise. Next, every agent 8 except 8C , according to

constraint (4) of the LP, receives a bundle of value at least 28 from SMALL in the fractional allocation
of SMALL corresponding to A. Thus, for all 8 ≠ 8C , their value for their bundle in AA is at least
E8 (�8) + 28 − =n · | ˜̀8 |/(2=) ≥ min{(1/U) ˜̀8 , U ˜̀8 } − n · | ˜̀8 |/2, from Lemma 3.5 and by definition of 28 .
Combinedwith Claim 3.1, when ˜̀8 ≥ 0, this is at least (U−n/2) ˜̀8 ≥ (U−n/2) (1−n/2)`8 ≥ (U−n)`8 .
When ˜̀8 < 0, this value is at least 1

U
˜̀8 + n ˜̀8/2. As (1U + n/2) ≤

1
(U−n/2) , and ˜̀8 < 0, along with

Claim 3.1, (1U + n/2) ˜̀8 ≥
1

(U−n/2) (1−n/2) `8 ≥
1
(U−n) `8 .

Rucha Kulkarni, Ruta Mehta, and Setareh Taki 10

Any further modifications of the allocation can occur when (a) there is a pair of agents 8, : with
E8 (AA

:
) > 1 and E: (M) < 0, or when (b) there is a cycle of agents with value at most U for their

own bundle and value at least 1 for the next. The only agents whose value decreases in these steps
are those with E: (M) < 0, who after the swap receive no item. As E: (M) < 0, then `: < 0,
hence they receive at least `: ≥ 1

(U−n) `: valued bundle. As no other agents lose, they still retain

an (U − n)+-MMS bundle. �

Note that, the steps after rounding maintains the MMS guarantee. Since by construction, the
LP has to be feasible whenever BIG items are allocated as per an U-MMS allocation, we get as a
corollary,

Corollary 3.1. If an U-MMS allocation exists, Algorithm 1 returns an (U − n)+-MMS allocation.

Finally, we show the approximate Pareto optimality of the (U − n)+-MMS allocation returned.
This is themore involved part. For this, we use the notion of social welfare of any allocation, defined
as the sum of values of all agents. Formally, for an allocation � = [�1 · · · , �=] among = agents,
define its social welfare asF (�) = ∑

8 E8 (�8).

Lemma 3.7. If an U-MMS allocation exists, then A has the highest welfare among all the U-MMS

allocations ofM amongN obtained by allowing SMALL to be fractionally allotted.

Proof. Let S� ⊆ Π= (BIG) be the set of all partitions of BIG corresponding to which there
is a fractional U-MMS allocation, or in other words, for which the LP has a solution. For every
partition �c in S� , the objective function of the LP ensures that the allocation of SMALL returned
by the algorithm has the highest social welfare among all allocations that satisfy the LP constraints.
Hence, among all U-MMS allocations where the partition of BIG is �c , the allocation returned,
say �c , has the highest social welfare. Formally, let S�,�c

be the set of all U-MMS allocations
corresponding to the partition �c . Then �c ∈ argmax�∈S�,�c

∑
8 F (�).

Let the set of allocations�c , one corresponding to each partition �c ∈ S� , be S� . From Line 11
of the algorithm,A has the highest social welfare among all. Formally,A is in argmax�∈S� {F (�)}.
Combining with the above characterization of the allocations in S�, we have,

A ∈ max
�c ∈S�

argmax
�∈S�,�c

{F (�)} ,

thus proving the lemma. �

Next, we prove two key properties (Lemmas 3.8 and 3.9) of any integral allocation that W-Pareto
dominatesAA . Suppose A∗ is such an allocation.

Lemma 3.8. A∗ is an integral U-MMS allocation.

Proof. We will use the following relation between n, U and W . We have,

n ≤ WU

(1 + U) ⇒ n ≤ W (U − n) ⇒ W ≥ n

(U − n) ⇒ (1 + W) ≥
U

(U − n) . (8)

We know that AA is an (U − n)+-MMS allocation. Hence, agents 8 with `8 ≥ 0 get a bundle of
value at least (U − n)`8 ≥ 0 in AA , hence get a bundle of value at least (1 + W) (U − n)`8 in A∗ .
From equation (8), this is at least U`8 . Next, consider agents with `8 < 0. If they receive a bundle of
positive value in AA , then they also receive a positive valued, hence a bundle of value more than
`8 ≥ 1

U
`8 , inA∗ . And if they get a negative valued bundle of value at least 1

(U−n) `8 inAA , then they

Rucha Kulkarni, Ruta Mehta, and Setareh Taki 11

get a bundle of value at least 1
(1+W) (U−n) `8 , which from equation (8) and the fact that `8 < 0, is at

least 1
U `8 . Hence, A∗ is an integral U-MMS allocation. �

The next property ofA∗ is that it will have higher social welfare than (fractional allocation)A.

To prove this, we first prove two technical claims.

Claim 3.5. F (AA) ≥ F (A) − n if (−n ≠ ∅, else F (AA) ≥ F (A).

Proof. We consider each step in Algorithm 1 that changes the allocation fromA toAA , and see
how it changes the social welfare. The first step is making the allocation graph ofA acyclic. Here
every agent’s value, hence the social welfare also remains the same. The next step is the rounding
process. Here, first the items in (+ are allotted to the agents with the highest value for them, hence
the sum of values of the items from (+ in AA is at least as much as that in A. As no other item’s
allocation changes, the social welfare from them remains the same. Hence this part only improves
the social welfare. Then the envy graph cycle elimination only improves the value of every agent,
hence does not reduce the social welfare. At this point, F (AA) ≥ F (A). If (−n = ∅, the rounding
process ends, hence this inequality holds, otherwise from Lemma 3.5, allocating the items from (−n

reduces the sink agent’s value, hence the social welfare, by at most n, givingF (AA) ≥ F (A) − n.
Now we show the next part of the algorithm does not reduce the social welfare ofAA , hence these
relations remain true, thus proving the claim.

First consider the if statement on Line 18. For agents 8, : when :’s bundle is given to 8, only the
allocation of items inAA

:
changes and the allocation ofM\AA

:
remains the same. Now E: (AA

:
) < U

and E8 (AA
:
) > 1, otherwise this step would not be executed. Hence the social welfare changes by

E8 (AA
:
) − E: (AA

:
) > 1 − U ≥ 0. Finally, suppose some bundles are swapped along some cycle by

executing Line 22. Every agent had value at most U for their bundle, and received a bundle of value
at least 1. Thus, the value of every agent in the cycle changes by at least 1−U > 0, and every other
agent’s bundle, hence its value, remains the same. Thus, the social welfare does not decrease in
this step as well. �

Claim 3.6. If there is an agent 8 with E8 (M) > 0, then there exists some agent 8 ′ with E8′ (AA
8′) ≥ U.

Proof. If the claim is true for the allocation obtained after roundingA, then this is the allocation
returned, hence we are done. Otherwise, the if condition of Line 15 is executed. If the condition
of Line 15 is true, then as the allocation before this line was (U − n)+-MMS, E8 (AA

8) ≥ 0, and after
obtaining :’s bundle, E8 (AA

8 ∪ AA
:
) ≥ 0 + 1 = 1.

Otherwise, for every agent 8 in N+ we have E (M) = =, thus there is at least one agent : ∈ N+
such that E8 (AA

:
) ≥ 1. The graph � (+ , �) has an edge 8 → : in this case. As

∑
8 |E8 (AA

8) | < U, for
every 8 we have E8 (AA

8) < U ≤ 1. Thus for every edge 8 ≠ :. Hence,� has at least one cycle. After
swapping along a cycle, all agents along the cycle receive the bundle of their successor, hence have
value at least 1 for their own bundle. Thus, the final allocation has some agent with value at least
1 ≥ U for her bundle. �

Lemma 3.9. A∗ has higher social welfare than A.

Proof. For cleaner exposition, we will denote E8 (�8) by E8 (�) for any allocation �.

Rucha Kulkarni, Ruta Mehta, and Setareh Taki 12

By definition of a W-Pareto dominating allocation, the social welfare of allocationA∗ is,

F (A∗) > (1 + W) ·
∑

8 :E8 (AA) ≥0
E8 (AA) + 1

1 + W ·
∑

8 :E8 (AA)<0
E8 (AA)

=

∑
8

E8 (AA) + W ·
∑

8 :E8 (AA) ≥0
E8 (AA) − W

(1 + W) ·
∑

8 :E8 (AA)<0
E8 (AA)

= F (AA) + W ·
∑

8 :E8 (AA) ≥0
E8 (AA) + W

(1 + W) ·
∑

8 :E8 (AA)<0
|E8 (AA) |.

(9)

Let 1(−n be an indicator variable for whether (−n is non-empty. Substituting the relation between
F (A) andF (AA) fromClaim 3.5 in equation (9) we get,F (A∗) > F (A)−n ·1(−n+W ·

∑
8 :E8 (AA) ≥0 E8 (AA)+

W

(1+W) ·
∑

8 :E8 (AA)<0 |E8 (AA) |. Hence, to prove the lemma, it suffices to show,

W ·
∑

8 :E8 (AA) ≥0
E8 (AA) + W

(1 + W) ·
∑

8 :E8 (AA)<0
|E8 (AA) | − n · 1(−n ≥ 0. (10)

If (−n = ∅, we are done, as all values on the left hand side in the above equation, say L, are non-
negative. Hence, we now prove the equation when (−n ≠ ∅, that is, 1(−n = 1.

We know n ≤ WU

(1+W) , and as W ≥ 0, W ≥ W

1+W . Substituting these relations in L, we have,

! ≥ W

1 + W ·
∑

8 :E8 (AA) ≥0
E8 (AA) + W

(1 + W) ·
∑

8 :E8 (AA)<0
|E8 (AA) | − WU

(1 + W) =
W

1 + W

(∑
8

|E8 (AA) | − U
)
.

But as (−n ≠ ∅, from Claim 3.4, there is some agent 8 with E8 (M) > 0. Then from Claim 3.6,
E8′ (AA) ≥ U for at least one agent 8 ′. Hence, W

1+W (
∑

8 |E8 (AA) | − U) ≥ 0, thus proving equation (10),

hence the lemma. �

Corollary 3.2. If an U-MMS allocation exists, Algorithm 1 returns a W-PO allocation.

Proof. For contradiction, suppose AA is not W-PO. Then there is another allocation, say A∗,
that W-Pareto dominates AA . From Lemmas 3.8 and 3.9, A∗ is an integral U-MMS allocation with
higher social welfare thanA. From Lemma 3.7, this is a contradiction. �

Using Corollaries 3.1 and 3.2, the next theorem obtains the main result.

Theorem 3.3. Given an instance (N ,M, (E8)8 ∈N) and constants U, n,W > 0, that is, an instance of

the U-MMS + PO problem, Algorithm 1 returns an (U − n)+-MMS + W-PO allocation if an U-MMS

allocation exists, else reports it does not exist, in time $ (2$ ((=3 log=)/min{n2,W2/2})<3) where = = |N | is
a constant. Thus, it is a PTAS.

3.4 PTAS for OPT-U-MMS + PO

Our final goal is to solveOPT-U-MMS+PO problem, that is to find U-MMS+PO allocation for the
highest possible U . In this section we design a PTAS for this problem: given (N ,M, (E8)8 ∈N), and
constants n, W > 0, we design a polynomial-time algorithm to find (U − n)+-MMS+W-PO allocation
for the highest possible U . For this we will use the PTAS for U-MMS + PO problem described in
the previous section.

Note that, for a given U , Algorithm 1 either returns (U − n)+-MMS+W-PO allocation, or returns
an empty allocation. And by Theorem 3.3, whenever it returns an empty allocation no U-MMS

allocation exists. Using this, we run a simple binary search to find the highest value of U ∈ [n, 1]

Rucha Kulkarni, Ruta Mehta, and Setareh Taki 13

(up to a polynomial precision) for which Algorithm 1 returns a non-empty allocation. If empty
allocation is returned for every U in our search, then we only need to ensure PO and therefore we
return the social welfare maximizing allocation obtained by giving every item to the agent who
values it the most.

We stop when the range of U values under consideration is [2 −X, 2 +X] for X =
1

2?>;~ (<)
for some

constant 2 , where < = |M|. Clearly the number of iterations the binary search will take to get
within such a range is at most ?>;~(<). Each iteration runs Algorithm 1 once, and hence finishes
in $ (<3) time (Theorem 3.3). Thus the overall running time of the algorithm is ?>;~(<), and the
next theorem follows.

Theorem 3.4. Given an instance (N ,M, (E8)8 ∈N) and constants n,W > 0, that is, an instance of the

OPT-U-MMS+PO problem, there is a PTAS that runs for (2$ (1/min{n2,W2 })?>;~(<)) time and returns

an (U − n)+-MMS + W-PO allocation such that for any U ′ > U + 1
2<

2 , no U ′-MMS allocation exists,

where 2 > 0 is a constant.

This completes the discussion of the OPT-U-MMS + PO problem. Next, we describe a PTAS for
finding the MMS value of an agent for distributing a set of items M into = bundles according
to a valuation function E : M → R. We refer to this problem as the U-MMS problem with (=)
identical agents. Using Lemma 2.1 we can find the sign of theMMS value. Hence, we describe two
algorithms, one for each case when MMS ≥ 0 and otherwise. The following section discusses the
algorithm for the former case.

4 FINDING MMS VALUES OF AGENTS WHEN MMS ≥ 0

In this section we prove Theorem 3.2 for the case whenMMS ≥ 0, i.e., given an instance (=,M, E),
we describe an algorithm to find a (1 − n)-MMS allocation for any constant n > 0. Using scale
invariance (Lemma 2.3), here on we assume E (M) = = without loss of generality. Due to Lemma
2.2, this implies MMS ≤ E (M)/= = 1.

The high level ideas used in the algorithm are as follows. First is a classification of all the items
into two sets, Big and Small, based their value (Section 4.1). Using this we prove that |Big| is
constant, which allows the enumeration of all allocations of Big, referred as partitions of Big to
avoid confusion with allocations ofM . Next in Section 4.2 we explain a short procedure which
allows us to characterize partitions of Big as valid or invalid. We show that there is at least one
valid partition corresponding to which there is anMMS allocation, hence all invalid partitions can
be discarded. Finally in Section 4.3, we describe a sub-routine called Bag-Fill, that greedily allocates
or ‘fills’ the items from Small upon partitions or ‘bags’ of Big that satisfy certain constraints to
obtain a (1−n)-MMS allocation. The main algorithm (Section 4.4) enumerates all partitions of Big,
discards the invalid partitions, and applies Bag-Fill if its constraints are satisfied. If the constraints
are not satisfied, we show that we can apply the PTAS for obtainingMMS allocationswith identical
agents for a goods manna, and obtain a (1 − n)-MMS allocation.

We now discuss these key ideas formally followed by the algorithm in separate subsections.

4.1 Big and Small items

Given an instance (=,M, E) and a constant n > 0, let Big be the set of items in M which have
absolute value higher than n

2 , i.e.,

Big = { 9 ∈ M : |E 9 | ≥ n
2 }.

Rucha Kulkarni, Ruta Mehta, and Setareh Taki 14

Let Big+ and Big− respectively be the sets of the goods and the chores in Big, i.e., Big+ = Big∩M+,
and Big− = Big ∩M−. Let Small be the set of small items, i.e.,M \ Big, and similarly define the
sets of goods (Small+) and chores (Small−) in Small.

We abuse notation slightly and call items in the set Big (or Small) as Big (resp. Small) items.

Lemma 4.1. |Big| = $ (=/n).

Proof. As E (M) = =, we have = = E (M+) − |E (M−) |. Then, as E (M+) ≥ (1 + g) |E (M−) |,

= ≥ E (M+) − E (M+)
1 + g =⇒ E (M+) ≤ =(1 + g)

g
. (11)

Finally, by the definition of Big+ we have

|Big+ | ≤ E (M+)
n
2

≤ 2=(1 + g)
ng

.

Similarly, we have

= ≥ (1 + g) |E (M−) | − |E (M−) | ⇒ |E (M−) | ≤ =/g . (12)

Thus, the number of Big chores is bounded as |Big− | ≤ 2=
ng
. Hence, |Big| = |Big+∪Big− | = $ (n). �

As = and n are constant, Lemma 4.1 implies that all partitions of Big can be enumerated in
constant time.

4.2 Valid and Invalid partitions of Big

Given an allocation �c
= [�1 · · · , �=] of M, denote by �c

= [�1 · · · , �=] the allocation from
M\Small+. Classify the bundles of �c based on their value from �c into sets B1, B2, B3, and B4,
together called the B-sets, as follows.

B1 := {�: ∈ �c : E (�:) > 1} B2 := {�: ∈ �c : 1 − n ≤ E (�:) ≤ 1}
B3 := {�: ∈ �c : 0 ≤ E (�:) < 1 − n} B4 := {�: ∈ �c : E (�:) < 0} (13)

We will abuse notation to denote all items in the sets in any B8 , i.e. ∪A: ∈B8A: , by B8 .
Given a partition of Big �c , we now explain a procedure using which we classify the partition

as valid or invalid. First classify the bundles of �c into four sets as per equation (13). Initially, all
Small items are unallocated. Then while B1 ≠ ∅ and Small− ≠ ∅, assign any item from Small− to
any agent that has a bundle from B1 . Re-classify the bundles using equation (13) and remove the
assigned item from Small− after every assignment. This procedure ends when either B1 or Small−

becomes empty, or both. If in the end B1 ≠ ∅, and we also have (a) B4 ≠ ∅ and (b) E (B3 ∪ B4 ∪
Small+) < (1 − n

2) (|B3 | + |B4 |) then we call �c invalid. All partitions of Big that are not invalid
are called valid.

Lemma 4.2. There exists an MMS allocation where the Big items are allocated according to a valid

partition.

Proof. Let �c be an MMS allocation with the lowest value of |B1 | + |B4 |, and let �c be its
corresponding partition of Big. Suppose �c is invalid. Then the agents with bundles from B3 or
B4 can only receive items from B3 ∪ B4 ∪ Small+ in �c . From Lemma 2.2 and the definition of
invalid partitions giving E (B3 ∪ B4 ∪ Small+) < (1 − n

2) (|�3 | + |�4 |), we have ` < (1 − n
2).

As both B1,B4 ≠ ∅, consider any bundles � and �′ respectively from B1 and B4. Let E (�) =
(1 + G) and E (�′) = −~ for some G,~ > 0. In �c , �′ must be bundled with a set of items from
Small+, denoted as S+, of value at least ~ + `. We form two new bundles�1 and�2 of at leastMMS

Rucha Kulkarni, Ruta Mehta, and Setareh Taki 15

value using �, �′ and S+ as follows. First merge � and �′ into one bundle (with value 1 + G −~). If
1 + G −~ ≥ `, call this bundle �1 and add all the remaining items from S+ to �2. Each bundle thus
has value at least `. Otherwise, if 1 + G − ~ < `, add items from S+ one by one, each time to the
bundle with the lower value before adding the item. Let �1 and �2 be the resulting bundles after
adding all items in S+. Without loss of generality, let E (�1) ≥ E (�2). As each item in S+ has value
at most n

2 and is always added to the lower valued bundle, E (�1) − E (�2) ≤ n
2 . Thus,

E (�1) + E (�2) ≥ 1 + G − ~ + ~ + ` = 1 + G + ` and E (�1) − E (�2) ≤ n
2

=⇒ E (�2) ≥ 1
2 (1 + G + ` −

n
2) >

1
2 (1 + ` −

n
2) > ` =⇒ E (�1) > `.

No item from Big is assigned to �2. Thus, �2 ∉ B1 ∪ B4, and �1 and �2 combined with the
allocations of the remaining agents who did not get � or �′ in �c form anMMS allocation with a
smaller value of |B1 | + |B4 | than �c , a contradiction. Thus, �c is valid. �

4.3 Algorithm Bag-Fill

In this sectionwe design the algorithmBag-Fill (Algorithm 2) that generalizes algorithms in [GHS+18,
GMT18, GT20] to themixed setting. Bag-Fill (Algorithm2) takes as input anMMS instance (=,M, E),
and a partition of the Big items ofM, denoted by �c

= [�1, �2, . . . , �=] such that they satisfy one
of the two condition sets (14) or (15). It outputs an allocation of items �c

= [�1, . . . , �=] where
E (�8) ≥ 1 − n , for all 8 ∈ [=].

E (Small) +
=∑

:=1

E (�:) ≥ =.

E (�:) ≤ 1 ∀: ∈ [=] .
|E 9 | < n ∀9 ∈ Small.

(14)

E (Small) +
=∑

:=1

E (�:) ≥ =(1 − n
2).

E (�:) ≤ 1 − n
2 ∀: ∈ [=] .

|E 9 | < n
2 ∀9 ∈ Small.

(15)

Algorithm 2 works as follows. It has = − 1 rounds. Each round starts with a bundle (‘bag’) from
�c . If the bag is valued at least (1− n), then it is assigned to some agent. If not, we first add all the
unallocated Small chores to this bag. Then one by one we add the unallocated goods from Small

until it is valued at least (1−n), and assign to some agent. After all rounds are done, in the last step,
all remaining items from Small are added to the bag �= . The next lemma proves the correctness of
the algorithm.

ALGORITHM 2: Bag-filling to find (1 − n)-MMS allocation of identical agents

Input : (=,M, E), Partition of Big ⊆ M : �c = [�1, �2, . . . , �=] . Input satisfies Condition set (14) or (15)

Output :�c
= {�1, . . . , �=} such that E (�8) ≥ 1 − n, ∀8 ∈ [=] .

1 �c ← ∅, Small←M\Big
2 for : ∈ {1, . . . , = − 1} do
3 while E (�:) < 1 − n do
4 9 ← argmin 9 ∈Small E 9

5 �: ← �: ∪ { 9}, Small← Small \ { 9}
6 �c ← �c ∪ {�:}
7 �= ← �= ∪ Small, �c ← �c ∪ {�=}
8 return �

Rucha Kulkarni, Ruta Mehta, and Setareh Taki 16

Lemma 4.3. If anMMS instance with identical agents satisfies condition set (14) or (15), then Algo-

rithm 2 gives a (1 − n)-Allocation.

Proof. By induction on : ∈ {0, 1, 2, · · · , =− 1}, we prove that the value of each assigned bundle
after : rounds is in [1 − n, 1] if the instance satisfies condition set (14), and in [1 − n, 1 − n/2] if it
satisfies condition set (15). The base case when : = 0 is trivial.

First consider the case when condition set (14) is satisfied. Assume the value of all bundles
assigned to the first:−1 agents are in this range. Now E (� 9) ≤ 1 for all 9 ∈ {:, .., =}. If E (�:) ≥ 1−n,
we are done. If not, then while the value of �: is less than 1− n, the value of the unallocated items
from Small is at least the value of all items minus that of all the allocated bundles and unallocated
bags of Big items. This can be bounded as,

E (M) −
∑
8<:

E (�8) − E (�:) −
∑
8>:

E (�8) > = − (: − 1) − (1 − n) − (= − :) > n.

Hence, there is at least one unallocated Small good. Before adding the last Small good to �: , its
value was strictly less than 1− n . Adding the last item increases the value by at most n . Hence, the
value of �: is at most 1. Thus, E (�:) ∈ [1 − n, 1], for all : ∈ [= − 1] . As the total value of all items
is at least =, and the total value of the = − 1 assigned bundles is at most = − 1, the last agent also
gets a bundle of value at least 1.

Now suppose the instance satisfies condition set (15). In every round, while this is not true, the
value of unallocated goods is at least n/2. Thus, there is at least one Small good. Finally, after
assigning = − 1 bundles, the total value remaining is at least =(1 − n/2) − (= − 1) (1 − n/2), hence
the last bundle also has value at least (1 − n). �

4.4 The PTAS

We use the notions from the previous subsections and derive the PTAS, shown in Algorithm 3. The
PTAS works as follows. It first enumerates all the partitions of Big. For each partition �c , it first
classifies the bundles into the B-sets as per equation (13). If B1 is not empty, then add items from
Small− to any bag in B1, re-defining the sets and removing the assigned item from Small− after
each assignment. This process ends when either B1 = ∅ or Small− = ∅. In the first case, condition
set (14) of the Bag-Fill algorithm is satisfied, and we run Algorithm 2 (Line 8) and return its output.

Otherwise whenB1 ≠ ∅, if |B4 | = 0, then reduce to the following goodsmanna U-MMS problem
instance (N ′,M ′, E ′). N ′ is the set of agents who received bundles from B3 or B4. M ′ has (a)
Small+, with each item having the same value in E ′ as in E , and (b) for each bundle � ∈ B3,M ′
has a new item 1 with value E ′

1
= E (�). Run the PTAS from [JKV16] on (N ′,M ′, E ′) to find a

(1 − n)-MMS allocation ofM ′ among the =′ = = − (|B1 | + |B2 |) agents, and store its output in A.

For the final case when B1 ≠ ∅ and |B4 | > 0, first check if the remaining unallocated goods and
agents in B3 ∪ B4 fulfill the condition set 15. If they do, apply the Bag-Fill and return the (1 − n)-
MMS allocation. If not, then �c is invalid, hence discarded. After enumerating all the partitions,
the algorithm returns the best allocation from A.

Let us now discuss the analysis of the PTAS. To prove correctness when B1 ≠ ∅ and B4 = ∅,
we first show in Lemma 4.4 a relation between the MMS values of the given instance and the
reduced goods manna instance. Let �c ∗ be some MMS allocation, and �c ∗

= {�∗1, �∗2, · · · , �∗=} be
the allocation of Big items according to �c ∗.

Rucha Kulkarni, Ruta Mehta, and Setareh Taki 17

ALGORITHM 3: (1 − n)-MMS allocation for identical agents with MMS ≥ 0

Input : (=,M, E) such that E (M) = =, n ∈ [0, 1]
Output : (1 − n)-MMS Allocation

1 A← ∅. Π= (Big) ← all partitions of Big into = sets.

2 for �c ∈ Π= (Big) do

3 Define B-sets as per equation (13).

4 while B1 ≠ ∅ and Small− ≠ ∅ do

5 Remove any item 9 from Small− and assign to any agent with a B1 bundle
6 Re-define the B-sets for the new allocation

7 if B1 = ∅ then
8 �c ← Bag-Fill((N ,M, E), B-sets)
9 return �c

10 A1,2 ← allocation of all bundles from B1 and B2 to distinct agents
11 N ′ ← set of remaining agents,M ′ ← ∪�∈B3∪B4� ∪ Small+, =′ = |N ′ |
12 if B4 ≠ ∅ then
13 if E (M ′) ≥ =′(1 − n

2) then
14 �c ← A1,2 ∪ Bag-Fill((N ′,M ′, E),B − B4CB = B3 ∪ B4)
15 return �c

16 else

17 continue // �c is invalid

18 else

19 M ′← Small+

20 for � ∈ B3 do
21 introduce a new good 1 with E (1) = E (�);M ′←M ′ ∪ {1}
22 �c ← A1,2 ∪ (1 − n)-MMS allocation for (N ′,M ′, E ′) using the algorithm in [JKV16]

23 A← A ∪ {�c }

24 return argmax�c ∈Amin�8 ∈�c E (�8)

Lemma 4.4. If for �c ∗, the subsequent allocation of Big ∪ Small− in Algorithm 3 has B4 = ∅, then,

MMS= (M) ≤? MMS=−|B1 |− |B2 | (
⋃
�∈B3

� ∪ Small+) .

Proof. We form an allocation of∪�∈B3�∪Small+ among=−|B1 |− |B2 | agents with the smallest
bundle’s value at least MMS= (M), thus proving the lemma. Consider the allocation of Small in
�c ∗. Allocate the items fromM ′ = ∪�∈B3�∪Small+ among the setN ′ of agents who have received
bundles in B3, as they are allocated in �c ∗. Call this allocation �c ′. Now the allocation �c ∗ may
also have some Small chores assigned to agents in N ′, but no other goods. The lowest valued
bundle in �c ′ thus has value at least that of the lowest valued bundle in �c ∗ (since no SMALL

chore is added to these bundles in �c ′). The MMS value of agents in N ′, when partitioningM ′
among them, is at least that of the lowest valued bundle of �c ′, hence is at least MMS= (M). �

Next we state and prove the main theorem of this section.

Theorem 4.1. Given an instance (=,M, E) with MMS ≥ 0, Algorithm 3 returns a (1 − n)-MMS

allocation in $ (<) time.

Rucha Kulkarni, Ruta Mehta, and Setareh Taki 18

Proof. First we prove the correctness of the algorithm. Note that no valid partition is discarded,
as the procedure before deciding to discard a partition is exactly the procedure to determine if the
partition is invalid. Consider a valid partition �c ∗ corresponding to an MMS allocation �c ∗, and
its B-sets as per (13). From Lemma 4.2, such a partition exists. After executing the while loop on
Line 4, as every Small chore has absolute value at most n/2, upon adding the last chore before the
value falls below 1, the value of every bundle to which a chore was added is still at least 1 − n/2.
After this, one of the cases based on which conditions from B1 = ∅ and B4 = ∅ are true gets
executed. In every case, there is some allocation generated, as the partition is valid.

If the Bag-Fill algorithm is called, then every agent gets a bundle of value 1 − n. As MMS ≤ 1,
the allocation returned is (1 − n)-MMS.

If thePTAS of [JKV16] is called, then first, the agents receiving bundles fromB1,B2, by definition
of these sets, have value at least 1 − n ≥ (1 − n)-MMS for their bundle. Also, as �c ∗ corresponds
to an MMS allocation, the MMS value for allocating the remaining items among the remaining
agents, from Lemma 4.4, is at least the originalMMS value. Hence, a (1−n)-MMS allocation of the
goods manna instance, combined with the allocations to the agents with the B1 and B2 bundles,
is (1 − n)-MMS.

As �c ∗ is considered when enumerating all the Big item partitions, this allocation will be stored
in A. Hence, the allocation returned has value at least (1−n)-MMS for the smallest valued bundle.

For running time, note that every iteration of the for loop first allocates all Small chores, then ei-
ther runs a bag-filling algorithmwhich takes$ (<) time, discards the iteration, or runs the PTAS of

[JKV16] which takes$ (2$̃ (1/n)= log<) = > (2(1/n2)= log<) time. In the worst case, every iteration

takes$ (< +$ (21/n2= log<)) time. The for loop runs for = |BIG | iterations, which from Lemma 4.1

is$ (==/gn) = 2$ (= log=/gn) . Hence, the total run time of the algorithm is$ (2= log=/gn (21/n2= log< +
<)) = $ (<) time. �

Acknowledgments.We would like to thank Prof. Jugal Garg for several valuable discussions.

REFERENCES

[ABL+16] Haris Aziz, Péter Biró, Jérôme Lang, Julien Lesca, and Jérôme Monnot. Optimal reallocation under additive

and ordinal preferences. In International Conference on Autonomous Agents & Multiagent Systems, pages

402–410. ACM, 2016.

[ACIW19] Haris Aziz, Ioannis Caragiannis, Ayumi Igarashi, and Toby Walsh. Fair allocation of indivisible goods and

chores. In IJCAI, pages 53–59, 2019.

[ACL19a] Haris Aziz, Hau Chan, and Bo Li. Maxmin share fair allocation of indivisible chores to asymmetric agents. In

International Conference on Autonomous Agents and MultiAgent Systems, AAMAS ’19, pages 1787–1789, 2019.

[ACL19b] Haris Aziz, Hau Chan, and Bo Li. Weighted maxmin fair share allocation of indivisible chores. arXiv preprint

arXiv:1906.07602, 2019.

[AEG+13] Nima Anari, Shayan Ehsani, Mohammad Ghodsi, Nima Haghpanah, Nicole Immorlica, Hamid Mahini, and

Vahab S. Mirrokni. Equilibrium pricing with positive externalities. Theor. Comput. Sci., 476:1–15, 2013.

[AGSS17] Nima Anari, Shayan Oveis Gharan, Amin Saberi, and Mohit Singh. Nash Social Welfare, Matrix Permanent,

and Stable Polynomials. In 8th Innovations in Theoretical Computer Science Conference (ITCS), pages 1–12,

2017.

[AHMSH19] Haris Aziz, Xin Huang, Nicholas Mattei, and Erel Segal-Halevi. The constrained round robin algorithm for

fair and efficient allocation. arXiv preprint arXiv:1908.00161, 2019.

[Ale20] Martin Aleksandrov. Jealousy-freeness and other common properties in fair division of mixed manna. arXiv

preprint arXiv:2004.11469, 2020.

[AMGV18] Nima Anari, Tung Mai, Shayan Oveis Gharan, and Vijay V. Vazirani. Nash social welfare for indivisible items

under separable, piecewise-linear concave utilities. In Proceedings of the Twenty-Ninth Annual ACM-SIAM

Symposium on Discrete Algorithms, SODA 2018, pages 2274–2290, 2018.

Rucha Kulkarni, Ruta Mehta, and Setareh Taki 19

[AMNS17] Georgios Amanatidis, Evangelos Markakis, Afshin Nikzad, and Amin Saberi. Approximation algorithms for

computing maximin share allocations. ACM Transactions on Algorithms (TALG), 13(4):52, 2017.

[AMS20] Haris Aziz, Hervé Moulin, and Fedor Sandomirskiy. A polynomial-time algorithm for computing a pareto

optimal and almost proportional allocation. Operations Research Letters, 48(5):573–578, 2020.

[ARSW17] Haris Aziz, Gerhard Rauchecker, Guido Schryen, and Toby Walsh. Algorithms for max-min share fair alloca-

tion of indivisible chores. In Thirty-First AAAI Conference on Artificial Intelligence, 2017.

[AW19] Martin Aleksandrov and Toby Walsh. Greedy algorithms for fair division of mixed manna. CoRR,

abs/1911.11005, 2019.

[AW20a] Martin Aleksandrov and Toby Walsh. Two algorithms for additive and fair division of mixed manna. In

German Conference on Artificial Intelligence (Künstliche Intelligenz), pages 3–17. Springer, 2020.

[AW20b] Martin Aleksandrov and Toby Walsh. Two algorithms for additive and fair division of mixed manna, 2020.

[BB18] Arpita Biswas and Siddharth Barman. Fair division under cardinality constraints. In IJCAI, pages 91–97,

2018.

[BBKN18] Siddharth Barman, Arpita Biswas, Sanath Kumar Krishnamurthy, and Yadati Narahari. Groupwise maximin

fair allocation of indivisible goods. In Thirty-Second AAAI Conference on Artificial Intelligence, 2018.

[BBKS20] Siddharth Barman, Umang Bhaskar, Anand Krishna, and Ranjani G Sundaram. Tight approximation algo-

rithms for p-mean welfare under subadditive valuations. arXiv preprint arXiv:2005.07370, 2020.

[BGJ+19] Siddharth Barman, Ganesh Ghalme, Shweta Jain, Pooja Kulkarni, and Shivika Narang. Fair division of in-

divisible goods among strategic agents. In Proceedings of the 18th International Conference on Autonomous

Agents and MultiAgent Systems, pages 1811–1813, 2019.

[BILS19] Xiaohui Bei, Ayumi Igarashi, Xinhang Lu, and Warut Suksompong. Connected fair allocation of indivisible

goods. arXiv:1908.05433, 2019.

[BKM17] Siddharth Barman and Sanath Kumar Krishna Murthy. Approximation algorithms for maximin fair division.

In Proceedings of the 2017 ACM Conference on Economics and Computation, pages 647–664. ACM, 2017.

[BKV18] Siddharth Barman, Sanath Kumar Krishnamurthy, and Rohit Vaish. Finding fair and efficient allocations. In

Proceedings of the 2018 ACM Conference on Economics and Computation, Ithaca, NY, USA, June 18-22, 2018,

pages 557–574. ACM, 2018.

[BL16] Sylvain Bouveret and Michel Lemaître. Characterizing conflicts in fair division of indivisible goods using a

scale of criteria. Autonomous Agents and Multi-Agent Systems, 30(2):259–290, 2016.

[BMR+13] Simina Brânzei, Tomasz P. Michalak, Talal Rahwan, Kate Larson, and Nicholas R. Jennings. Matchings with

externalities and attitudes. In International conference on Autonomous Agents and Multi-Agent Systems, AA-

MAS ’13, 2013.

[BMSY17] Anna Bogomolnaia, Hervé Moulin, Fedor Sandomirskiy, and Elena Yanovskaya. Competitive division of a

mixed manna. CoRR, 2017.

[BMSY19] Anna Bogomolnaia, Hervé Moulin, Fedor Sandomirskiy, and Elena Yanovskaia. Dividing bads under additive

utilities. Soc. Choice Welf., 52(3):395–417, 2019.

[BT96] Steven J Brams and Alan D Taylor. Fair Division: From cake-cutting to dispute resolution. Cambridge University

Press, 1996.

[Bud11] Eric Budish. The combinatorial assignment problem: Approximate competitive equilibrium from equal in-

comes. Journal of Political Economy, 119(6):1061–1103, 2011.

[CCG+18] Yun Kuen Cheung, Bhaskar Chaudhuri, Jugal Garg, Naveen Garg, Martin Hoefer, and Kurt Mehlhorn. On

fair division of indivisible items. In FSTTCS, 2018.

[CDG+17] Richard Cole, Nikhil R. Devanur, Vasilis Gkatzelis, Kamal Jain, Tung Mai, Vijay V. Vazirani, and Sadra Yaz-

danbod. Convex program duality, fisher markets, and nash social welfare. In Proceedings of the 2017 ACM

Conference on Economics and Computation, EC ’17, 2017.

[CFSV19] Vincent Conitzer, Rupert Freeman, Nisarg Shah, and Jennifer Wortman Vaughan. Group fairness for the

allocation of indivisible goods. In The Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pages

1853–1860. AAAI Press, 2019.

[CG15] Richard Cole and Vasilis Gkatzelis. Approximating the nash social welfare with indivisible items. In Proceed-

ings of the Forty-Seventh Annual ACM on Symposium on Theory of Computing, STOC 2015, 2015.

[CGM20] Bhaskar Ray Chaudhury, Jugal Garg, and Ruta Mehta. Fair and efficient allocations under subadditive valua-

tions. arXiv preprint arXiv:2005.06511, 2020.

[CGMM20] Bhaskar Ray Chaudhury, Jugal Garg, Peter McGlaughlin, and Ruta Mehta. Dividing bads is harder than

dividing goods: On the complexity of fair and efficient division of chores. 2020.

[CKMS20] Bhaskar Ray Chaudhury, Telikepalli Kavitha, Kurt Mehlhorn, and Alkmini Sgouritsa. A little charity guar-

antees almost envy-freeness. In Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete

Algorithms, pages 2658–2672. SIAM, 2020.

Rucha Kulkarni, Ruta Mehta, and Setareh Taki 20

[EPT07] Raul Etkin, Abhay Parekh, and David Tse. Spectrum sharing for unlicensed bands. IEEE Journal on selected

areas in communications, 25(3):517–528, 2007.

[FGH+19] Alireza Farhadi, Mohammad Ghodsi, Mohammad Taghi Hajiaghayi, Sébastien Lahaie, David M. Pennock,

Masoud Seddighin, Saeed Seddighin, and Hadi Yami. Fair allocation of indivisible goods to asymmetric agents.

J. Artif. Intell. Res., 64:1–20, 2019.

[GHM19] Jugal Garg, Martin Hoefer, and Kurt Mehlhorn. Approximating the Nash Social Welfare with budget-additive

valuations. arxiv:1707.04428; Preliminary version appeared in the proceedings of SODA 2018, 2019.

[GHS+18] Mohammad Ghodsi, Mohammadtaghi Hajiaghayi, Masoud Seddighin, Saeed Seddighin, and Hadi Yami. Fair

allocation of indivisible goods: Improvements and generalizations. In Proceedings of the 2018 ACM Conference

on Economics and Computation, EC ’18, 2018.

[GKK20] Jugal Garg, Pooja Kulkarni, and Rucha Kulkarni. Approximating nash social welfare under submodular

valuations through (un) matchings. In Proceedings of the fourteenth annual ACM-SIAM symposium on discrete

algorithms, pages 2673–2687. SIAM, 2020.

[GM19] Laurent Gourvès and JérômeMonnot. Onmaximin share allocations in matroids. Theor. Comput. Sci., 754:50–

64, 2019.

[GM20] Jugal Garg and Peter McGlaughlin. Computing competitive equilibria with mixed manna. In Proceedings of

the 19th International Conference on Autonomous Agents and MultiAgent Systems, pages 420–428, 2020.

[GMT18] Jugal Garg, Peter McGlaughlin, and Setareh Taki. Approximating maximin share allocations. In 2nd Sympo-

sium on Simplicity in Algorithms (SOSA 2019). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2018.

[GT20] Jugal Garg and Setareh Taki. An improved approximation algorithm for maximin shares. In Proceedings of

the 21st ACM Conference on Economics and Computation, EC ’20, page 379–380, 2020.

[HL19] Xin Huang and Pinyan Lu. An algorithmic framework for approximating maximin share allocation of chores.

CoRR, abs/1907.04505, 2019.

[JKV16] Klaus Jansen, Kim-Manuel Klein, and José Verschae. Closing the gap for makespan scheduling via spar-

sification techniques. In 43rd International Colloquium on Automata, Languages, and Programming, ICALP,

volume 55, pages 72:1–72:13, 2016.

[KPW16] David Kurokawa, Ariel D Procaccia, and Junxing Wang. When can the maximin share guarantee be guaran-

teed? In AAAI, volume 16, pages 523–529, 2016.

[KPW18] David Kurokawa, Ariel D. Procaccia, and Junxing Wang. Fair enough: Guaranteeing approximate maximin

shares. J. ACM, 65(2):8:1–8:27, 2018.

[LMMS04] Richard J. Lipton, Evangelos Markakis, Elchanan Mossel, and Amin Saberi. On approximately fair allocations

of indivisible goods. In Proceedings 5th ACM Conference on Electronic Commerce (EC-2004), 2004.

[LSZ19] Yin Tat Lee, Zhao Song, and Qiuyi Zhang. Solving empirical risk minimization in the current matrix multi-

plication time. In Conference on Learning Theory, pages 2140–2157, 2019.

[LT19] Zbigniew Lonc and Miroslaw Truszczynski. Maximin share allocations on cycles. arXiv:1905.03038, 2019.

[LV18] Zhentao Li and Adrian Vetta. The fair division of hereditary set systems. In International Conference on Web

and Internet Economics, pages 297–311. Springer, 2018.

[MG20] PeterMcGlaughlin and Jugal Garg. Improving nash social welfare approximations. volume 68, pages 225–245,

2020.

[Mou04] Hervé Moulin. Fair division and collective welfare. MIT press, 2004.

[PW14] Ariel D Procaccia and JunxingWang. Fair enough: Guaranteeing approximate maximin shares. In Proceedings

of the fifteenth ACM conference on Economics and computation, pages 675–692. ACM, 2014.

[SSH19] Fedor Sandomirskiy and Erel Segal-Halevi. Fair division with minimal sharing. arXiv preprint

arXiv:1908.01669, 2019.

[Ste48] Hugo Steinhaus. The problem of fair division. Econometrica, 16:101–104, 1948.

[Vos02] Thomas Vossen. Fair allocation concepts in air traffic management. PhD thesis, PhD thesis, Supervisor: MO

Ball, University of Martyland, College Park, Md, 2002.

[Woe97] Gerhard J Woeginger. A polynomial-time approximation scheme for maximizing the minimum machine

completion time. Operations Research Letters, 20(4):149–154, 1997.

[ZP20] David Zeng and Alexandros Psomas. Fairness-efficiency tradeoffs in dynamic fair division. EC ’20, page

911–912, New York, NY, USA, 2020. Association for Computing Machinery.

A MISSING PROOFS

A.1 Section 2

Lemma 2.1. E8 (M) ≥ 0 iff MMS8 ≥ 0.

Rucha Kulkarni, Ruta Mehta, and Setareh Taki 21

Proof. If the sum of valuations of all items E8 (M) is negative, there can be no allocation where
every bundle has non-negative valuation. Hence, MMS8 is negative. If the sum of valuations is
positive, then adding all items to one bundle and no item in other bundles makes the least-valued
bundle have zero value. Thus, in this case,MMS8 ≥ 0. �

Lemma 2.2. MMS8 ≤ E8 (M)/|N | for all 8 ∈ N .

Proof. If MMS8 > E8 (M)/=, it implies that there exists a partition of items in Π= (M) where
all bundles have value greater than E8 (M)/=. Therefore, E8 (M) ≥ =.MMS8 > =.

E8 (M)
=

= E8 (M),
which is a contradiction. �

Lemma 2.3. [Scale Invariance] U-MMS + PO allocations for the instances (N ,M, (E8)8 ∈N) and
(N ,M, (E ′8)8 ∈N) are the same when for all 8, 9 , E ′8 9 = 28 · E8 9 for some constants 28 > 0.

Proof. For any agent 8, the value of any bundle of items S according to the two valuation
function are related as E ′8 (S) = 28 · E8 (S). Thus, by definition ofMMS, herMMS values according
to the two valuation functions are also related as MMS′8 = 28 · MMS8 , where MMS′8 is agent 8

′s
MMS value according to E ′8 .

This implies that a set of items has U-MMS value for 8 according to (E8)8 ∈N if and only if it has
U-MMS value according to (E ′8)8 ∈N . Hence all U-MMS allocations according to valuations (E8)8 ∈N
are also U-MMS according to (E ′8)8 ∈N and vice versa.

The U-MMS+PO allocation according to (E8)8 ∈N, sayA, is U-MMS and must also be PO accord-
ing to (E ′8)8 ∈N, as otherwise the Pareto dominating allocation will Pareto dominate A according
to (E8)8 ∈N too. �

A.2 Section 3

Claim 3.1. For the approximate MMS values ˜̀8 , we have, if `8 > 0, then ˜̀8 ∈ [(1 − n/2)`8 , `8], if
`8 = 0 then ˜̀8 = 0 and if `8 < 0, then ˜̀8 ∈ [`8/(1 − n/2), `8] .

Proof. We know from condition 2 of the U-MMS + PO problem that E8 (M) ≥ g ·min{E+8 , E−8 }.
After scaling, we have |E8 (M)| = =. For agents where E8 (M) ≥ 0, = ≥ g · E−8 ⇒ E−8 ≤ =/g = $ (=).
Also,= = E+8 −E−8 ⇒ E+8 ≤ =(1+1/g) = $ (=). Analogously we prove the claimwhen E8 (M) < 0. �

Lemma 3.2. The number of big items, i.e., |BIG| ≤ $ (=3/n).

Proof. Since BIG = ∪8 ∈NBIG+8 ∪8 ∈N BIG−8 , to prove the lemma it suffices to show that the
number of BIG goods and chores of every agent 8 ∈ N is |BIG+8 |, |BIG−8 | ≤ $ (=2/n). Fix an agent
8 ∈ N . First we will show bound on |BIG+8 |.
Case 1: ˜̀8 ≥ 0.

If ˜̀8 ≥ 1/3, |BIG+8 | ≤ |{ 9 ∈ M : E8 9 > n/(6=)}| ≤
E+8

n/(6=) ≤
6=

n
$ (=) = $ (=2/n) (16)

The last inequality follows by Claim 3.2. Otherwise, if ˜̀8 < 1/3, then `8 ≤ ˜̀8/(1 − n/2) < 1/(3 −
3n/2) < 2/3. Divide BIG+8 into two sets as follows.

BIG+8 = { 9 : E8 9 > n/(6=)} ∪ { 9 : n ˜̀8/(2=) < E8 9 ≤ n/(6=)}. (17)

Let us call the first set in Equation (17) LARGE and the second set MEDIUM. Similarly as for the
case of ˜̀8 ≥ 1/3, we can prove the size of LARGE is at most $ (=2/n). We now prove that the

number of items in MEDIUM is at most 2= (=−1)
(1−n/2)n + (= − 2). We show that if this is not true then

Rucha Kulkarni, Ruta Mehta, and Setareh Taki 22

there is a partition of all the items where all parts have value strictly more than `8 for agent 8 which
is a contradicts that `8 being herMMS value. The partition is as follows. Add all items except the
goods fromMEDIUM to the first bundle. If 8’s value for this bundle is more than 1, divideMEDIUM

to make=−1 bundles with at least 2=/((1−n/2)n) +1 items in each. Then all the remaining bundles
have value at least, (

2=

(1 − n/2)n + 1
) (n

2=

)
˜̀8 >

˜̀8

(1 − n/2) ≥ `8 .

If the value of the first bundle is less than 1 for 8 , then we add enough goods from MEDIUM

to each bundle one by one (first bundles and all remaining empty bundles) so that their value is
at least 2/3 > `8 . Since every item in MEDIUM has value at most n/(6=), the value of the each
bundle is less than 2/3 before adding the last item and less than 2/3 + n/(6=) < 1 later. As each
bundle’s value is at most 1 and E (M) = =, there are enough items to make (= − 1) bundles, each
of value at least 2/3 which is greater than `8 . This is a contradiction to definition ofMMS8 .

Therefore, |MEDIUM| ≤ 2= (=−1)
(1−n/2)n + (= − 2) = $ (=2/n). Hence |BIG+8 | = |LARGE| + |MEDIUM| =

$ (=2/n), for any 8 with ˜̀8 ≥ 0.

Case 2: ˜̀8 < 0. Then by the definition of a BIG good for this case, |BIG+8 | ≤ E+8 /(n/(2=)) =

(2=/n)$ (=) = $ (=2/n).
Next we show the bound on |BIG−8 |. By definition of a BIG chore, |BIG−8 | ≤ 2= · E−8 /n = $ (=2/n),

as from Claim 3.2 we have E−8 ≤ $ (=). �

Lemma 3.3. The allocation graph of any LP solution G can be made acyclic in such a way that in the

allocation corresponding to the new graph, say G ′ = [G ′8 9]8 ∈N, 9 ∈SMALL, every agent receives a bundle

of the same or better value as in G .

Proof. First we show how to eliminate one cycle, say �, in the allocation graph of G . That is,
we define a new allocation G ′, that removes one cycle without reducing the value of any agent. Let
there be : agents and : items in �, with the edges as,

01 — >1 — 02 — >2 — · · · — >8−1 — 08 — >8 — 0 (8+1) · · · — >:−1 — 0: — >: — 01 .

Each agent 08 is partially assigned items >8 and >8−1 (by setting 0 ≡ :) and each item >8 is partially
assigned to agents 08 and 08+1 (by setting : + 1 ≡ 1). Without loss of generality, we may assume
that items in � are solely considered as either a good or a chore by both agents sharing them,
otherwise, we can break the cycle by allocating the share of the other agent for this item to the
one who considers it as a good. We call an item a good if both the agents sharing it consider it so,
else a chore.

First we argue the case when there is at least one good.Without loss of generality we assume >:

is a good. Let -�
= [G11, G21, G22, . . . , G: (:−1) , G:: , G1:] be the allocation vector of cycle � . Also let

+̃�
= [Ẽ11, Ẽ21, Ẽ22, . . . , Ẽ: (:−1) , Ẽ:: , Ẽ1:] be the vector representing the scaled values of the agents

for the items assigned to them in �, defined as,

Ẽ8 9 =

{
E8 9 if 8 = 1

E8 9

(
E(8−1) (8−1)
E8 (8−1)

)
otherwise.

In +̃� the valuations of the agents are scaled in a way so that agents sharing an item in� have the
same value for that item (except for item :). Without loss of generality we assume Ẽ1: ≤ Ẽ:: . Let
*�

= [D11,D21, D22, . . . , D: (:−1) , D:: ,D1:] be the utility vector of � where D8 9 = Ẽ8 9G8 9 . Let X be the

Rucha Kulkarni, Ruta Mehta, and Setareh Taki 23

minimum of smallest positive D8 9 , 8 ≠ 9 (even indexes of*�) and smallest |D88 |, D88 < 0 (odd indexes

of*�). Define

D ′8 9 :=

{
D8 9 − X if 8 ≠ 9

D8 9 + X otherwise.

Then the desired G ′ is defined as,

G ′8 9 :=

{
D ′8 9/Ẽ8 9 if 8, 9 ∈ �
G8 9 otherwise.

By choice of X , at least one G ′8 9 with G8 9 > 0 will be 0 and no new edge is added to the allocation

graph so the cycle� is removed. We need to show that the new G ′8 9 ’s present a feasible allocation.
By choice of X , we can see thatD ′8 9 ≥ 0 when 9 is a good for agents sharing it in� ,D ′8 9 ≤ 0 otherwise.

For all agents 08 in� ,D8 (8−1) +D88 = D ′
8 (8−1) +D

′
88 (by setting 1−1 = : for agent 01) so each agent will

get the same utility before removing the cycle. Also, we have D88 + D8 (8+1) = D ′88 + D ′8 (8+1) and since

for all items$8 , 8 ∈ [: − 1], Ẽ88 = Ẽ8 (8+1) we have G88 + G8 (8+1) = G ′88 + G ′8 (8+1) . For item : we have,

D ′:: = D:: + X =⇒ G ′:: = G:: +
X

Ẽ::

D ′1: = D1: − X =⇒ G ′1: = G1: −
X

Ẽ1:
=⇒ G ′:: + G

′
1: ≤ G:: + G1: .

The last inequality hold because Ẽ1: ≤ Ẽ:: . Therefore, all agents receive the same utility in the
new allocation. But there may be an extra amount of good : available; we assign it to the agent
who has the highest share of good : .

If all items in� are chores, we define +̃ and* similarly as for the previous case. Without loss of
generality, we assume Ẽ1: ≤ Ẽ:: andwe chooseX to be the smallest |D88 |,D88 < 0 (odd indexes of*�).
With the same analysis we get D88 + D8 (8+1) = D ′88 + D ′8 (8+1) for all agents 8 , G88 + G8 (8+1) = G ′88 + G ′8 (8+1)
for items 8 ≠ : and G ′

::
+ G ′

1:
≥ G:: + G1: . Therefore, agents get the same utility with an extra

amount of chore : assigned to some agent. We improve the utility of the agent who gets this share
of chore : by reducing her share from chore : by making,

∑
8 ∈N G8: = 1.

We repeat this process for every cycle, removing at least one edge with every removal. Hence,
in polynomial time, we get an acyclic allocation graph.

�

Lemma 3.4. The number of shared items in any acyclic allocation graph is at most = − 1.

Proof. Suppose there are : shared goods. Consider the subgraph of the allocation graph with
the = +: nodes corresponding to all the buyers and only the shared goods. As this graph is acyclic,
there are at most = + : − 1 edges. Further, each item is shared, meaning there are at least two
edges incident to each node representing a good. Thus, there are at least 2: edges. The inequality
= + : − 1 ≥ 2: is satisfied only when : ≤ = − 1, hence there are at most = − 1 shared goods. �

Corollary 3.1. If an U-MMS allocation exists, Algorithm 1 returns an (U − n)+-MMS allocation.

Proof. If an U-MMS allocation exists, then for the partition of BIG corresponding to this allo-
cation, say �c

= [�1 · · · , �=], there is an integral allocation of SMALL where every agent 8 gets

Rucha Kulkarni, Ruta Mehta, and Setareh Taki 24

value U · ˜̀8 − E8 (�8) ≥ 28 from SMALL. Thus, the LP will have a (fractional) solution. From Lemma
3.6, the resulting allocation obtained by rounding the LP solution is (U − n)+-MMS. �

Theorem 3.3. Given an instance (N ,M, (E8)8 ∈N) and constants U, n,W > 0, that is, an instance of

the U-MMS + PO problem, Algorithm 1 returns an (U − n)+-MMS + W-PO allocation if an U-MMS

allocation exists, else reports it does not exist, in time $ (2$ ((=3 log=)/min{n2,W2/2})<3) where = = |N | is
a constant. Thus, it is a PTAS.

Proof. From Corollaries 3.1 and 3.2 the correctness of Algorithm 1 follows. Next we analyze
the running time.

The time to compute the approximateMMS values is$ (= ·2(= log=)/n (21/n2= log<+<)), from the
proofs of Theorems 4.1 and C.1. Since |BIG| ≤ $ (=3/gn) by Lemma 3.2, the number of iterations

in the for loop enumerating all the allocations of the BIG items is $ (2$ ((=3 log=)/n)). Note that we
re-define n as min{n, UW

(1+W) } ≥ min{n, W
2

2 } =: Z , thus |BIG| ≤ $ (=3/Z). Each iteration solves an LP

of<= variables and $ (<=) constraints, hence takes time some polynomial function in (<,=) less
than$ ((<=)3) [LSZ19]. Finding a cycle in the allocation graph requires time linear in the number
of edges, at most$ (<=). Eliminating the cycle requires time$ (<=), and deletes at least one edge.
Repeating the process until the graph is acyclic takes at most$ (<=) iterations, hence the making
the allocation acyclic and rounding it steps take time at most $ (<2=2). Hence the total time for
the algorithm in the worst case is,

$ (= · 2= log=/n (21/n2= log< +<)) +$ (2$ (=3 log=/Z)<3=3 +<2=2) ≤ $ (2$ ((=3 log=)/min{n2,Z })<3),

= $ (2$ ((=3 log=)/min{n2,W2/2})<3) = $ (<3),
as =, U, W and n are constant. �

B NON-EXISTENCE OF U-MMS ALLOCATIONS

In this section, we show an instance for which there is no U-MMS allocation for any U > 0. Our
instance is amodification of the instance in [KPW16] that shows that anMMS allocation in a goods
only manna does not always exist. We take their exact instance, and add three chores toM, each
of absolute value equal to a small constant less than the agent’s MMS values. For completeness,
we discuss all details of the instance.

Let N = {1, 2, 3},M+ = {(9 , :) : 9 ∈ [3], : ∈ [4]},M− = {(1), (2), (3)}, andM = M+ ∪M−
respectively be the set of agents, goods, chores, and all items. In order to define the valuations of

the agents for each of these items, we first define matrices$, � (1) , � (2) , and � (3) as follows.

$ =

17 25 12 1
2 22 3 28
11 0 21 23

� (1) =

3 −1 −1 −1
0 0 0 0
0 0 0 0

� (2) =

3 −1 0 0
−1 0 0 0
−1 0 0 0

� (3) =

3 0 −1 0
0 0 −1 0
0 0 0 −1

.

The valuation of each agent 8 for each good (9 , :) is, E8 ({(9 , :)}) = 106 + 103 · $ 9: + � (8)9: , and
their value for each chore is −4054999.75.
From [KPW16], every agent can divide all the goods in this instance into three bundles of value

4055000 each. Adding one chore to each of these makes every bundle’s value 0.25. It can be verified
that the average value of all items is 0.25 for every agent. As MMS cannot be higher than the

Rucha Kulkarni, Ruta Mehta, and Setareh Taki 25

average, the above allocation shows that every agent’s MMS value is 0.25. [KPW16] also show
that there is no allocation of the goods were all agents get at least 4055000, and that the sum of
any 3 goods is less than 4055000. As the values of goods are integers, every agent must get at
least 4 goods for every chore in order to receive a positive valued bundle. If every agent is to get a
positive valued bundle, the agent receiving less than 4055000 from the goods must not receive any
chore, and must get at least one good. But then there are 3 chores and at most 11 goods remaining
to be allotted. Hence, at least one agent will receive a negative valued bundle. Therefore, there is
no allocation that can guarantee every agent a positive valued bundle, and the best U for which an
U-MMS allocation exists is at most zero.

C COMPUTINGMMSWHEN MMS < 0

In this section we introduce the algorithm that finds a (1 − n)-MMS allocation of an agent with
MMS < 0 for an instance (=,M, E) and a constant n > 0, or equivalently, a (1−n)-MMS allocation
of (N ,M, (E8)8 ∈N) when there are identical agents with valuation function E (Algorithm 4). From
Lemmas 2.2 and the normalization E (M) = −=, we have MMS ≤ −1.
From Definition 2.1, a (1 − n)-MMS allocation gives each agent a bundle with value at least
(1/(1 − n))MMS. Let f := 1

1−n − 1. Algorithm 4 obtains an allocation where each agent gets a
bundle of value at least (1 + f)MMS = (1/(1− n))MMS. The high level idea of the algorithm is as
follows. First we scale the valuations so that E (M) = −=, and classify items as Big or Small. Then
similarly as in Algorithm 3, we enumerate all partitions of Big. While there are unallocated Small

goods, we add them one by one to the bundle with the least value. Once all the Small goods are
exhausted, we iteratively add Small chores to the bundle with the highest value.

ALGORITHM 4: (1 − n)-MMS Allocation for identical agents with MMS < 0

Input : (=,M, E), a constant n
Output : (1 − n)-MMS Allocation

1 Normalize the valuations so that E (M) = −=.
2 f ← 1

1−n − 1, A← ∅
3 Big := { 9 ∈ - : |E 9 | ≥ f}, Small ≔M\Big, Small+ = Small ∩M+, Small− = Small ∩M−
4 for B ∈ Π= (Big) do

5 while Small+ ≠ ∅ do

6 add any Small good to a bundle with the lowest value

7 while - ≠ ∅ do
8 add any Small chore to a bundle with the highest value

9 store the allocation to a set A

10 return argmax�∈Amin�8 ∈� E (�8) // return allocation with highest maximin value

Theorem C.1. Algorithm 4 gives a (1 − n)-MMS allocation when MMS < 0 in$ (<) time.

Proof. We first prove a helpful lower bound on the value of all Small goods. Let �c ∗ be a
partition of the Big items corresponding to an MMS allocation. There are enough Small goods
to add to each part in �c ∗ so that every part has at least MMS value. Specifically, for the set
S = {� ∈ �c ∗ : E (�) < MMS} we have,

E (Small+) ≥ MMS · |S| − E (�c ∗) (18)

Rucha Kulkarni, Ruta Mehta, and Setareh Taki 26

Now, let �c
= {�1, . . . , �=} be the output of Algorithm 4. Suppose for contradiction there exists

some �8 ∈ � such that E (�8) < (1
1−n)MMS = (1 + f)MMS. Consider each �: ⊇ �: with �: ∈ S.

Note that the algorithm adds Small goods to the bundle with the least value. Because of�8 , before
adding the last Small good to any bundle, its value is less than (1 + f)MMS. The last good added
has value at most f . Therefore, all the �:s have value at most MMS. From, (18) and the fact that
the algorithm adds goods to the least valued bundle, we have,

E (Small+ \ (
⋃

:∈[=]
�:)) ≥

∑
�∈S

MMS − E (�) + f = f, (19)

which is a contradiction.

Now we prove that after adding the Small chores the value of all the bundles is at least (1 +
f)MMS. This is true because while there exists an unallocated chore, the value of the highest
valued bundle is greater than −1, because E (M) = −=. Adding a chore to such bundle will decrease
the value by at most f . Therefore, the value of such bundle is at least −(1 + f) ≥ (1 + f)MMS. By
definition of f, (1 + f) = 1/(1 − n).
Finally, |BIG| = $ (=/f) = $ (=/n), from the definition of BIG and f. As every iteration corre-

sponding to a partition of BIG takes $ (<) time, Algorithm 4 runs for $ (< · 2$ (= log=/n)) = $ (<)
time. �

D HARDNESS OF APPROXIMATION

The U-MMS + PO problem makes two assumptions. First, the number of agents is assumed to be
a constant. Second, the sum of absolute values of all the items for every agent is assumed to be
at least g times the minimum of this sum for the goods and the chores, for some constant g > 0.
In this section we show that relaxing either of these two assumptions makes the U-MMS problem
NP-hard for any U ∈ (0, 1], even when agents are identical.

When agents are identical, the allocation that decides the MMS value of the agents is also an
MMS allocation for the instance. Thus, for U = 1, the GENERAL U-MMS problem should return
an MMS allocation. Furthermore, given E (M) > 0, we are guaranteed to have MMS ≥ 0 due to
Lemma 2.1. However next we show that when either assumption of problem U-MMS is dropped,
deciding if the inequality is indeed strict is NP-hard.

We separate Theorem 3.1 as two NP-hardness results in Theorems D.1 and D.2. To prove both,
we reduce from the known NP-hard PARTITION problem.

PARTITION Problem. Given a set of non-negative integers � = {41, . . . , 4<}, output YES if there
exists a division of the elements into two sets of equal weight, otherwise output NO.

TheoremD.1. Given an instance (=,M, E) with constantly many (two) identical agents and E (M) >
0, checking ifMMS > 0 is NP-hard.

Proof. We reduce an instance of PARTITION to anMMS instance (=,M, E) with two identical
agents. LetN = {1, 2}.M = [< + 2], where the first< items are goods and the last two are chores.
The valuation function E is defined as follows, where V = 1/4.

E 9 =

{
4 9 , ∀ 9 ∈ [<]
−(∑8 48/2) + V, 9 ∈ {< + 1,< + 2}.

That is, the goods correspond to PARTITION elements, and have the same value as the weight of
the element, and the chores are V more than the negated weight of each set in an equal distribution

Rucha Kulkarni, Ruta Mehta, and Setareh Taki 27

of the elements. Note that, (0) the trivial partition where all items are in the same bundle has the
smaller bundle valued zero, and (1) the average of values of all items is V , and MMS cannot be
higher than the average (Lemma 2.2). Hence, 0 ≤ MMS ≤ V .

We prove the correctness of the reduction in the following two claims.

Claim D.1. PARTITION has a solution⇒ MMS ≥ V .

Proof. Divide the goods into two bundles as per the PARTITION solution, and add one chore
to each set. This gives us two bundles of equal value V , implying that MMS ≥ V . �

Claim D.2. MMS > 0⇒ PARTITION has a solution.

Proof. We prove the contrapositive by contradiction. Suppose PARTITION does not have a
solution. but MMS > 0 for the instance (=,M, E). Let �c

= (�1, �2) be the allocation achieving
the MMS value, and let D1 = E (�1) and D2 = E (�2). Then we have D1, D2 > 0.

First we prove that both the chores cannot be in the same bundle. If they are, and if all goods
are not in this bundle, then the value of the bundle with chores is at most the sum of all except the
smallest good. This is (−∑

8 48 + 2V) + (
∑

8 48 −min8 48) ≤ 1/4 − 1 < 0. If every good and chore is
in the same bundle, the value of the other bundle is 0. But E1 > 0, hence the chores are in separate
bundles.

But then the value of the goods in each bundle is at least the total value minus the chore’s value,
i.e., for 8 = 1, 2, E (�8 ∩M+) = D8 − (− 1

2

∑
8 ∈[<] 48 + V) ≥ MMS − V + 1

2

∑
8 48 >

1
2

∑
8 48 − V . Since

V = 1/4 while E (�8 ∩ M+) and 1
2

∑
8 48 are integers, it follows that E (�8 ∩ M+) ≥ 1

2

∑
8 48 . Then

partition (�1 ∩ M+, �2 ∩ M+) of � = (41, . . . , 4<) is a solution of the PARTITION problem, a
contradiction. �

Claims D.1 and D.2 show that MMS > 0 ⇐⇒ there is a solution to PARTITION.

When agents are identical, they agree on every item if it is a good or a chore, and therefore
M62

= ∅. Therefore, E+8 and E−8 as defined in Definition 2.2 are same as E (M+) and |E (M−) |
respectively. �

Theorem D.2. Given a fixed constant g > 0, even if an instance (=,M, E) with identical agents

satisfies |E (M)| ≥ g ·min{E (M+), |E (M−) |}, checking if MMS > 0 is NP-hard.

Proof. Again, we give a reduction from PARTITION. Let � = {41, 42, · · · , 4<} be the set of
elements given as input for PARTITION. Create an instance (=,M, E) as follows: N has = agents,
where = will be fixed later based on the value of g .M = {1, 2, · · · ,<+=} where the first<+ (=−2)
items are goods, and the last 2 are chores. The valuation function E is defined as follows, where
V = 1/4.

E 9 =

4 9 ∀9 ∈ [<]
V for 9 ∈ {< + 1, ...,< + (= − 2)}
−∑

8 ∈[<] 48/2 + V for 9 ∈ {< + = − 1,< + =}.

That is, the first < goods have values equal to the weights of the corresponding elements of
PARTITION. The remaining (= − 2) goods have value V each, and both the chores have value
−(∑8 48/2) + V. Fix = to satisfy |E (M)| ≥ g · min{E (M+), |E (M−) |}, or equivalently E (M+) ≥
(1 + g) |E (M−) |, that is, ((= − 2)V +∑

8 48) ≥ (1 + g) (
∑

8 48 + 2V).

Rucha Kulkarni, Ruta Mehta, and Setareh Taki 28

We again have 0 ≤ MMS ≤ V. The lower bound because E (M) > 0 and Lemma 2.1, and the
upper bound because the average E (M)/= is V and Lemma 2.2. The correctness is argued in the
next two claims.

Claim D.3. PARTITION has a solution⇒ MMS ≥ V.

Proof. Divide the first < goods as per the division of the elements of PARTITION into equal
valued sets, and add one chore to each bundle. From the remaining goods {< + 1, ...,< + (= − 2)}
give one each to the remaining (= − 2) bundles. The value of every bundle created is V . Hence,
MMS ≥ V . �

Claim D.4. MMS > 0⇒ PARTITION has a solution.

Proof. We prove the contrapositive of the statement, by contradiction. Suppose PARTITION

instance � = 41, . . . , 4< does not have a solution, but MMS > 0 for (=,M, E).
Given that there are exactly two chores, at least (=−2) bundles have only goods and has to have

at least one good. Furthermore, since 48s are positive integers and V = 1/4, each of these (= − 2)
bundles have value at least V . Now, V being the upper bound on the MMS value, wlog we can
assume that these (= − 2) bundles have exactly one good of the minimum value, namely V . This
exhaust the goods {< + 1, . . . ,< + (= − 2)} with value V . Therefore, the two chores and all goods
corresponding to the PARTITION problem elements, and no other good, are in the remaining two
bundles. Let these be the first two bundles �1 and �2.

Now by the same argument as in the proof of Claim D.2, we can show that both �1 and �2 have
positive value only if each contains exactly one chore and the total value of goods in each, namely
E (�8 ∩ �) for 8 = 1, 2, is at least 1

2

∑
8 ∈[<] 48 . Thus, (�1 ∩ �,�2 ∩ �) is a solution to the PARTITION

instance �, a contradiction. �

Claims D.3 and D.4 show that MMS > 0 for (=,M, E) ⇐⇒ there is a solution to PARTITION.
�

TheoremsD.1 and D.2 show that even if we know thatMMS ≥ 0 checking if it is strictly positive
is NP-hard. Since for U ∈ (0, 1],MMS > 0⇔ UMMS > 0, this essentially means, we can not find
an U-MMS allocation for any value of U ∈ (0, 1] if either of the two conditions in U-MMS problem
is dropped. The next theorem formalizes this.

Theorem 3.1. For any instance (=,M, E) with identical agents and E (M) > 0 such that exactly

one of the following two holds: (a) either = = 2 or (b) |E (M)| ≥ g · min{E (M+), |E (M−) |} for a
constant g , finding an U-MMS allocation of (=,M, E) for any U ∈ (0, 1] is NP-hard.

Even though an instance with identical agents is guaranteed to have an allocation where every
agent gets at least theMMS value, i.e., 1-MMS allocation exists, Theorem 3.1 ruling out an efficient
algorithm for finding U-MMS allocation any U ∈ (0, 1] is very striking. In light of this result, it
is evident that even getting a PTAS, in other words finding (1 − n)-MMS allocation, in case of
identical agents is non-trivial and important.

E DETAILED RELATED WORK

Fairness and efficiency in mixed manna. While ours is the first work on MMS + PO, finding
fair and efficient allocations has been studied for other notions. [ACIW19] initiate the study for

Rucha Kulkarni, Ruta Mehta, and Setareh Taki 29

a mixed manna, and study the problem of finding EF1 + PO allocations. [AW20a] study fairness
properties related to EFX, defined as envy-freeness up to any item along with PO.

Fairness for Mixed Manna. Finding fair allocations of mixed items has recently caught a lot
of attention for both divisible [BMSY17, BMSY19] and indivisible [AW19, AW20b, Ale20, GM20],
items. However, to the best of our knowledge, ours is the first study on MMS allocations for a
mixed manna.

Fairness and efficiency in goodsmanna. This problem is well-studied for a goods manna. Two
popular notions for a goods manna are the Nash social welfare (NSW), and EF1 + PO, defined and
discussed below.

NSW. Nash Social Welfare (NSW) is the geometric mean of the valuation of the agents. The
NSW problem is to find an allocation of indivisible items that maximizes NSW. This problem is
APX-Hard [MG20], and remarkable approximation results for the linear valuations case have been
proven by a connection of the problem with markets [CG15, CDG+17, BKV18, CCG+18] or real
stable polynomials [AGSS17]. The best known result is a 1.45 approximation factor [BKV18]. Sim-
ilar results are known, again by exploiting the market connection, for popular valuation functions
like budget-additive [GHM19], separable piece-wise linear concave (SPLC) [AMGV18], and their
combination [CCG+18]. Recent results give an$ (=) approximation when agents have subadditive
valuations, a far more general class than all the earlier ones [BBKS20, CGM20]. Recent work has
also been done on the general version of the problem with asymmetric agents, where the aim is
to maximize the weighted geometric mean, for given weights, and submodular utilities [GKK20].
This notion is not applicable for a mixed manna.

EF1 + PO. EF1 was first introduced by [Bud11] as an relaxation of envy-freeness. An allocation
is EF1 if for any two agents 81 and 82, agent 81 prefers (or equally likes) her own bundle to agent
82’s bundle after removing some item from the bundle of agent 82. An EF1 allocation can be found
efficiently using envy cycle removal procedure introduced by [LMMS04]. [BKV18] show a pseudo-
polynomial time algorithm to obtain an EF1 + PO allocation on a goods manna. A series of works
[AMS20, ZP20, CGMM20, SSH19] study special cases of the problem.

Other notions studied for a goodsmanna areProp1+PO [AMS20]), or group fairness notions [CFSV19].
When the preferences are ordinal, [AHMSH19] discuss EF1 solutions that satisfy the efficiency
notions of utilitarian maximality and rank maximality.

MMS. The study of fair division started with the cake cutting problem [Ste48]. Two popular no-
tions of fairness established here were proportionality, meaning each agent must get a bundle
worth at least 1/|N | of her value for all items, and envy-freeness, where each agent must value her
own bundle at least as much as any other. However, neither of these can always be attained when
the items are indivisible. A simple example is allocating one good between two agents; there is no
allocation that is proportional or envy-free. This motivated the search for new fairness notions
for indivisible items. One well-studied notion resulting from this investigation is MMS [Bud11].
In recent years, the problem of finding MMS allocations gained a lot of interest, and a series of
impressive results were found for various special cases of the problem, as discussed below.

MMS for Goods. [BL16] showed that in some restricted cases MMS allocations always exist. A
notable result from [PW14] showed that MMS allocations may not always exist but 2/3-MMS

allocations always do. A series of works studied the efficient computation of 2/3-MMS allocations
for any = [AMNS17, BKM17, GMT18]. [GHS+18] showed that a 3/4-MMS allocation always exists.
Most recently [GT20] showed that a (3/4 + 1/(12=))-MMS allocation always exists. FindingMMS

values is hard but a PTAS for this problem is known [Woe97]. This PTAS can be used to find a
(3/4+1/(12=)−n)-MMSallocation for n > 0 in polynomial time. There is also a strongly polynomial

Rucha Kulkarni, Ruta Mehta, and Setareh Taki 30

time algorithm to find 3/4-MMS allocation [GT20]. Other notable works on the goods only case
before being improved by follow-up work are [FGH+19, GMT18, KPW16, KPW18].

Constant number of agents with a goods only manna. For three agents, [AMNS17] showed that
a 7/8-MMS allocation always exists. This factor was later improved to 8/9 in [GM19]. For four
agents, [GHS+18] showed that a 4/5-MMS allocation always exist.

MMS for Chores. [ARSW17] first studied the MMS problem with a chores manna. They intro-
duced an algorithm for finding 2-MMS allocations4. [BKM17] improved the previous result by
showing an algorithm for a 4/3-MMS allocation. Later, [HL19] improved this result to a 11/9-
MMS allocation. They also showed a PTAS to find (11/9 + n)-MMS allocation and a polynomial
time algorithm to find a 5/4-MMS allocation.

Other variants ofMMS. TheMMS problem has been studied under various other models in the
goods only setting like with asymmetric agents [FGH+19], group fairness [BBKN18, CKMS20], be-
yond additive valuations [BKM17, GHS+18, LV18], inmatroids [GM19], with additional constraints
[GM19, BB18], for agents with externalities [BMR+13, AEG+13], with graph constraints [BILS19,
LT19], andwith strategic agents [BGJ+19]. In the chores only setting too, weightedMMS [ACL19b],
and asymmetric agents [ACL19a] notions have been investigated.

4Our definition of U-MMS for the mixed manna is consistent for agents with positive as well as negativeMMS values. We

define U as smaller than 1, and consider 1/U-MMS valued bundles as U-MMS. Prior results for the chores manna have

U > 1 and ask for U ·MMS valued bundles. We state the approximation factors as defined in the original papers, and ask

the reader to invert them when relating with ours.

	Abstract
	1 Introduction
	2 Problem Definition and Notations
	3 PTAS for -MMS+PO with Non-identical Agents
	3.1 BIG and SMALL Items
	3.2 LP for Allocating SMALL Items, and Rounding
	3.3 PTAS for -MMS+PO
	3.4 PTAS for OPT--MMS+PO

	4 Finding MMS values of agents when MMS0
	4.1 Big and Small items
	4.2 Valid and Invalid partitions of Big
	4.3 Algorithm Bag-Fill
	4.4 The PTAS

	References
	A Missing proofs
	A.1 Section 2
	A.2 Section 3

	B Non-existence of -MMS allocations
	C Computing MMS when MMS<0
	D Hardness of Approximation
	E Detailed Related Work

