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ABSTRACT
We study the computational complexity of multi-agent path finding

(MAPF). Given a graph𝐺 and a set of agents, each having a start and

target vertex, the goal is to find collision-free paths minimizing the

total distance traveled. To better understand the source of difficulty

of the problem, we aim to study the simplest and least constrained

graph class for which it remains hard. To this end, we restrict 𝐺 to

be a 2D grid, which is a ubiquitous abstraction, as it conveniently al-

lows for modeling well-structured environments (e.g., warehouses).

Previous hardness results considered highly constrained 2D grids

having only one vertex unoccupied by an agent, while the most

restricted hardness result that allowed multiple empty vertices was

for (non-grid) planar graphs. We therefore refine previous results

by simultaneously considering both 2D grids and multiple empty

vertices. We show that even in this case distance-optimal MAPF

remains NP-hard, which settles an open problem posed by Banfi

et al. [4]. We present a reduction directly from 3-SAT using simple

gadgets, making our proof arguably more informative than previous

work in terms of potential progress towards positive results. Fur-

thermore, our reduction is the first linear one for the case where 𝐺

is planar, appearing nearly four decades after the first related result.

This allows us to go a step further and exploit the Exponential Time

Hypothesis (ETH) to obtain an exponential lower bound for the

running time of the problem. Finally, as a stepping stone towards

our main results, we prove the NP-hardness of the monotone case,

in which agents move one by one with no intermediate stops.
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1 INTRODUCTION
We are witnessing the rapid development and adaptation of au-

tonomous multi-robot systems in a wide variety of application

domains. Such systems are deployed in warehouse logistics [23, 38],

rail traffic scheduling [27], autonomous aircraft towing [28], and
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many more [11]. Successfully deploying multi-robot systems re-

quires algorithms for efficiently planning collision-free motions,

which is an ever-growing research field.

We study the motion planning problem of multiple agents oper-

ating on a grid. Grid graphs are commonly employed in multi-

robot motion planning as a simple means of environment dis-

cretization. There is also particular interest in structured environ-

ments, such as warehouses, which are often already grid-like by

design (see, e.g., [23, 25]). In this work we are concerned with in-

tractability of optimizing the sum of distance traveled by agents on

grids. Minimizing distance has been widely studied in motion plan-

ning [5, 22, 32, 33]. The objective has also been studied in MAPF

grid domains [35, 40, 41], including being one of the objectives of

the SoCG 2021 Challenge [10].

The goal of this work is to make the hardness analysis for

distance-optimal MAPF more comprehensible and applicable. Our

driving force closely ties in with future research directions pre-

sented in a recent AAMAS blue-sky paper [30]. Along with oth-

ers [11, 16], it advocates the need for better understanding the

hardness of MAPF.

Previous work. The hardness of time-optimal MAPF has been

well-studied over the previous decade [26, 34, 39, 42], including

results for grid graphs [4, 7]. Previous work on distance-optimal

MAPF dates back at least as far as the 1980s, but has not treated

modern MAPF formulations as extensively. We now outline results

on the intractability of distance-optimal MAPF and compare them

based on a few parameters: the type of graph, the number of empty

vertices, i.e., vertices not containing an agent, and whether parallel

motions are allowed.

The roots of the problem can be traced back to the classic 15-

puzzle [20, 37], which can viewed as moving 15 agents on a 16-

vertex grid graph. In 1984 Goldreich [14, 15] presented the first

NP-hardness result for the generalized puzzle, which consisted of a

general graph with one empty vertex. Ratner and Warmuth [29]

refined his result to hold for the 2D-grid, known as the (𝑛2 − 1)-
puzzle, using a more complicated reduction from a special SAT

variant. A simpler hardness reduction for the same problem from

Rectilinear Steiner Tree [12] was recently shown by Demaine and

Rudoy [8]. The results so far all consider a very constrained case

where only a single vertex is unoccupied by an agent and only one

agent can move at a time.

Meanwhile, the problem has evolved and modern MAPF formu-

lations started allowing multiple agents to move together, including

simultaneous rotation of agents along fully occupied cycles [43].

Accounting for this, Yu and LaValle [42] introduced these motions

into the intractability analysis. They showed that the problem re-

mains NP-hard for parallel motions, including rotations, for general
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Table 1: Comparison of previous hardness proofs for distance-optimal MAPF. Exact definitions for parallel and sequential
motion are given in Section 2. We define the term linear reduction in Section 3.

Paper Planar Grid subgraph > 1 Empty vertex Parallel Sequential Linear reduction

Goldreich [14] ✓ ✓
Ratner and Warmuth [29] ✓ ✓ ✓
Demaine and Rudoy [8] ✓ ✓ ✓
Yu and LaValle [42] ✓
Yu [39] ✓ ✓ ✓ ✓

this work ✓ ✓ ✓ ✓ ✓ ✓

graphs where all vertices are occupied. Yu [39] later refined these

results to hold for planar graphs with more than one empty vertex

(under the same parallel motions). In Table 1 we give a concise

comparison of all the previous proofs.

The problem formulation by Yu [39] can be considered as the one

closest to the prevalent formulation of MAPF on grids. Nevertheless,

Yu’s intractability result does not imply hardness for grids since

planar graphs are more general, and his construction cannot be

readily adapted to grids. Indeed, the grid case has been subsequently

posed as an open problem by Banfi et al. [4], who showed the NP-

hardness of time-optimal MAPF on 2D grids.

Contribution. We settle the latter question by showing that

distance-optimal MAPF remains hard on the 2D grid even with

multiple empty vertices. By considering the simplest graph en-

vironment with more movement freedom, our result essentially

establishes hardness for the easiest variant of the problem thus far.

Since we show hardness for a more specific class of graphs than

the previous result by Yu [39], our proof applies to their case as

well. Our hardness proof is via a direct reduction from 3-SAT using

simple gadgets. Its simplicity is highlighted by the fact that it is a

linear reduction, which stands in contrast to all previous proofs

(except for Goldreich’s [14], which uses a non-planar graph with

only one empty vertex).

Although our result is negative in nature, we argue that its rela-

tive simplicity compared to related proofs has important practical

implications that are in-line with current research goals. To this

end, we discuss the main benefits of simple hardness proofs.

First, they make it easier to highlight the parameters that make

the problem hard. By closely identifying such parameters, one can

evaluate different algorithms with respect to these parameters and

improve algorithm selection [21]. Indeed, for the related time objec-

tives, it has been noted that there is no algorithm that dominates all

the others [11], motivating such comparisons. Furthermore, identi-

fying such parameters can pave the way towards positive results

using parameterized complexity [6]. As a modern approach for tack-

ling NP-hard problems, parameterized complexity been recently

raised as a potential research direction for MAPF [30]. Under this

approach, we aim for exact yet efficient algorithms that are expo-

nential only in the size of a fixed parameter while being polynomial

in the size of the input. Lastly, capturing the hardness of the prob-

lem in an easy to grasp way can provide algorithm designers an

intuitive basis for better solutions. We discuss observations in this

spirit based on our hardness construction in the conclusion.

Of additional practical significance is our establishment of a

concrete lower bound for distance-optimal MAPF. Such bounds

provide a crucial indication on whether running times of algorithms

can be improved. While NP-hardness results provide evidence that

computational problems are unlikely to be solvable in polynomial

time, the underlying complexity assumption, namely P != NP, does

not give any concrete lower time bounds. Indeed, many NP-hard

problems differ widely in hardness in practice. Therefore, a stronger

assumption is needed for more meaningful results.

A nowadays common assumption for this purpose is the Expo-

nential Time Hypothesis (ETH), introduced by Impagliazzo and

Paturi [18]. Roughly speaking, it conjectures that 3-SAT cannot be

solved in subexponential time 2
𝑜 (𝑁 )

, where 𝑁 is the number of

variables. The ETH has far reaching consequences (see, e.g., the

survey [24]) leading to increased adoption in robotics and artificial

intelligence [2, 3, 9].

Obtaining an exponential lower bound using the ETH requires

more fine-grained hardness reductions that do not blow-up the size

of the resulting instance (which is roughly the number of agents in

our case). Since our reduction has a linear number of agents, unlike

previous ones for the planar case, we are able to obtain the first

exponential lower bound for distance-optimal MAPF.

Organization. As a stepping stone, we show the hardness of a

more restricted problem version, called monotone MAPF, in which

agents move one by one to their targets and each agent is only

allowed to move once. The monotone version of the problem arises

in the context of object rearrangement, in which a robot moves set

of objects one by one from a given configuration to another [36].

In Section 2 we introduce our terminology and problem defini-

tion. In Section 3 we give background on the ETH and how we can

use it to obtain lower bounds. In Section 4 we show the hardness of

monotone distance-optimal MAPF, which is adapted to the general

(non-monotone) case in Section 5.

2 TERMINOLOGY
We now define distance-optimal MAPF. We are given an undirected

graph 𝐺 (𝑉 , 𝐸) and a set 𝑅 of 𝑛 agents. Each agent 𝑟 ∈ 𝑅 has a start

vertex 𝑠 (𝑟 ) ∈ 𝑉 and goal vertex 𝑡 (𝑟 ) ∈ 𝑉 . We define a trajectory
(timed path) for an agent 𝑟 as a sequence 𝜋𝑟 : N→ 𝑉 where N is

the set of non-negative integers representing time steps. A feasible

𝜋𝑟 must be a sequence of vertices that connects 𝑠 (𝑟 ) and 𝑡 (𝑟 ):

• 𝜋𝑟 (0) = 𝑠 (𝑟 )
• ∃𝑇𝑖 ∈ N, s.t. ∀𝜏 ≥ 𝑇𝑖 , 𝜋𝑟 (𝜏) = 𝑡 (𝑟 )



• ∀𝜏 > 0, 𝜋𝑟 (𝜏 − 1) = 𝜋𝑟 (𝜏) or (𝜋𝑟 (𝜏 − 1), 𝜋𝑟 (𝜏)) ∈ 𝐸

We call the set of trajectories for all agents {𝜋𝑟 }𝑟 ∈𝑅 a motion plan.
We call the motion plan collision-free if and only if the agents do not
simultaneously occupy the same vertex or edge. That is, ∀𝑟, 𝑟 ′ ∈ 𝑅

s.t. 𝑟 ≠ 𝑟 ′, 𝜋𝑟 , 𝜋𝑟 ′ must satisfy the following:

• ∀𝜏 ≥ 0, 𝜋𝑟 (𝜏) ≠ 𝜋𝑟 ′ (𝜏)
• ∀𝜏 > 0, (𝜋𝑟 (𝜏 − 1), 𝜋𝑟 (𝜏)) ≠ (𝜋𝑟 ′ (𝜏), 𝜋𝑟 ′ (𝜏 − 1)).

Monotone motion plan. The active interval of an agent 𝑟 in

a motion plan, denoted by 𝐼𝑟 , is the interval from the first time 𝑟

leaves 𝑠 (𝑟 ) to the last time 𝑟 reaches 𝑡 (𝑟 ), i.e.,
𝐼𝑟 B [min

𝜏 ∈N
𝜋𝑟 (𝜏 + 1) ≠ 𝑠 (𝑟 ),max

𝜏 ∈N
𝜋𝑟 (𝜏 − 1) ≠ 𝑡 (𝑟 )]

If the active intervals {𝐼𝑟 }𝑟 ∈𝑅 of a motion plan are pairwise disjoint

then we call it a monotone motion plan, i.e., the agents move one

by one.

Paths and distance cost. We define the path of an agent 𝑟 in

a motion plan, denoted by 𝑃 (𝑟 ), to be its path in 𝐺 in the regular

graph theoretic sense, i.e., 𝜋𝑟 with consecutive appearances of the

same vertex 𝑣 replaced by a single occurrence of 𝑣 . The length
of a path is the number of edges in the path. The distance cost
of a motion plan is the sum of the lengths of the paths of the

agents in 𝑅, i.e., the total distance traveled by the agents. For an

instance𝑀 B (𝐺, 𝑅, {𝑠 (𝑟 ), 𝑡 (𝑟 )}𝑟 ∈𝑅), we denote by 𝑑∗ (𝑀) the cost
of a motion plan where each agent takes the shortest possible path,

i.e., this is the optimistic lower bound for the distance cost. Formally,

𝑑∗ (𝑀) = ∑
𝑟 ∈𝑅 𝑑 (𝑠 (𝑟 ), 𝑡 (𝑟 )) where 𝑑 (𝑢, 𝑣) is the distance, namely,

the length of a shortest path, between 𝑢 and 𝑣 in 𝐺 .

We can now define the two decision problems for which we

prove NP-hardness:

Distance-Optimal MAPF: Given 𝐺, 𝑅, {𝑠 (𝑟 ), 𝑡 (𝑟 )}𝑟 ∈𝑅 as defined

above and an integer 𝑘 ∈ N, is there a motion plan {𝜋𝑟 }𝑟 ∈𝑅 that is

collision-free and has a distance cost of at most 𝑘?

Monotone Distance-Optimal MAPF: Same as above, except that

the motion plan needs to be monotone.

Remark: Parallel, sequential, and monotone plans. The
above (non-monotone) formulation allows the strongest notion

of parallel synchronized motions. For example, notice that an agent

can move into a vertex that is just being left by another agent, i.e.,

agents can move like a train. Specifically, this also allows agents

to synchronously rotate along a fully occupied cycle. In sequential
MAPF (classically known as pebble motion on graphs), the motion

plan can only have one agent moving at each time step. Note that

a monotone motion plan is also sequential, but that opposite is not

true, i.e., a plan can be sequential but not monotone.

3 LOWER BOUNDS USING THE
EXPONENTIAL TIME HYPOTHESIS

When designing or improving an algorithm for a problem, a natural

question is, “What is the fastest possible algorithm for the prob-

lem?” A common way of addressing the problem is using the theory

of NP-hardness, which uses the assumption that P != NP. Under

this assumption, it is widely believed that NP-hard problems such

as 3-SAT cannot be solvable in polynomial time. Unfortunately, the

assumption is too weak to allow us to conclude any concrete lower

bounds. Therefore, a stronger assumption called the Exponential

Time Hypothesis (ETH) was introduced by Impagliazzo and Pa-

turi [18]. In essence, it relies on research barriers as evidence for

the nonexistence of a sub-exponential algorithm for 3-SAT. With

this stronger assumption, the ETH has enabled to delineate NP-

complete problems based on concrete time bounds, which is more

fine grained than the usual classification into complexity classes.

We now state the version of the hypothesis that we will use. The

original ETH states the lower bound in terms of the number of

variables 𝑁 of the 3-SAT formula. However, the output instances of

hardness reductions usually depend on the size of the formula, i.e.,

the number of literals, which could be as large as𝑂 (𝑁 3). Therefore,
through the use of the Sparsification Lemma by Impagliazzo et

al. [19] it was shown that the original ETH also holds with respect

to the number of clauses, which we state as follows:

Exponential Time Hypothesis [18, 19]. There is no algorithm

solving every instance of 3-SAT with 𝑁 variables and𝑀 clauses in

time 2
𝑜 (𝑁+𝑀)

.

Using this hypothesis we are able to obtain concrete lower

bounds as follows. First, for convenience, we note that for a 3-

SAT formula 𝜙 we have |𝜙 | = 𝑂 (𝑁 +𝑀), where |𝜙 | is the size of the
formula. Consider a linear reduction from 3-SAT to some problem

𝐴, i.e., a polynomial-time algorithm that takes a 3-SAT formula 𝜙

and outputs an equivalent instance 𝑥 , whose size, |𝑥 |, is bounded by
𝑂 ( |𝜙 |). Then, if 𝐴 had an algorithm with a running time of 2

𝑜 ( |𝑥 |)
,

we could use it, after applying the reduction, to solve 3-SAT in time

2
𝑜 ( |𝜙 |) = 2

𝑜 (𝑁+𝑀)
. Therefore, the existence of a linear reduction

from 3-SAT to 𝐴 implies the nonexistence of a 2
𝑜 ( |𝑥 |)

algorithm

for 𝐴 under the ETH. We will present linear reductions in order to

make the same claim for distance-optimal MAPF.

In general, a reduction from 3-SAT to 𝐴 outputting an instance

of size𝑂 (𝑔( |𝜙 |)) would exclude an 2
𝑜 (𝑓 ( |𝑥 |))

-time algorithm for 𝐴,

where 𝑓 is the inverse of 𝑔. Therefore, reductions aiming to obtain

lower bounds using ETH should keep the blow up of the instance,

represented by the function 𝑔, as close to linear as possible.

4 MONOTONE DISTANCE-OPTIMAL MAPF
In this section we prove that Monotone Distance-Optimal MAPF is

NP-hard for grid graphs and present an exponential lower bound

under the ETH. We remark that the feasibility problem, i.e., simply

deciding whether a monotone (collision-free) motion plan exists,

was shown to be NP-hard [13]. Therefore, we refine the problem

definition by assuming here that some monotone motion plan exists

and focus only on the hardness of optimization.

Before presenting the reduction, we provide an intuition into

the hardness of the problem. Recall that once an agent 𝑟 reaches its

target, it may no longer move. As a result, when 𝑟 is at its target,

agents that move after it might be forced to detour around 𝑟 and

take a longer path. Hence, an algorithm for the problem needs to

carefully decide which agent to move next, so that shortest paths

that will be needed (for agents moving later) are not blocked. The

decision is further complicated by the fact that before an agent 𝑟

can move, some agents may need to move first to clear a path for 𝑟 .

We now present a reduction from 3-SAT, the problem of de-

ciding satisfiability of a formula in conjunctive normal form with
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Figure 1: The instance 𝑀 for the formula 𝜙 = (𝑥 ∨ 𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑦 ∨ 𝑧). Obstacles appear in gray. The leftmost
variable gadget’s entrance and exit are marked by a cross and a dot, respectively. The start and target positions are the filled
and unfilled colored squares, respectively. Positive and negative literal agents (and their target positions) are green and red,
respectively. Literal agents are labeled with unique indices in order to distinguish between appearances of the same literal.
Clause agents and their target positions are cyan.
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Figure 2: Three stages of an optimalmonotonemotionplan for the instance in Figure 1. The plan corresponds to the assignment
𝑥 = 𝑇,𝑦 = 𝐹, 𝑧 = 𝑇 , for which 𝑃 is shown in blue. We use blue text labels to highlight target positions of agents that have
moved in each stage. In the first stage (top) agents in 𝑅− move, in the following order: 𝑧1, 𝑦1, 𝑥1 (namely 𝑧1 moves first, then 𝑦1
and finally 𝑧1). In the next stage (middle) the clause agents move: 𝑐1, 𝑐2, 𝑐3. In the final stage (bottom), the agents in 𝑅+ move:
𝑧2, 𝑧1, 𝑦2, 𝑦1, 𝑥2, 𝑥1.

three literals in each clause. The reduction is an adaptation of a

simplified version of the hardness proof for monotone MAPF [13].

Given a 3-SAT formula 𝜙 , we construct a corresponding monotone

MAPF instance𝑀 that has a motion plan with the lowest attainable

distance cost, 𝑑∗ (𝑀), if and only if 𝜙 is satisfiable.

An example of the construction is shown in Figure 1, which

should be followed throughout the description. We present the

figure as a planar workspace composed of unit grid cells, which are

dual to the vertices on a grid graph. We therefore occasionally use

the term cell to refer to a vertex in the graph.

The construction is a grid 𝐺 with three rows. It contains two

types of agents: literal agents, each corresponding to an appearance

of a literal in 𝜙 , and clause agents, each corresponding to a clause of

𝜙 . The clause agents are initially located in a rectangular “room” at

the very left of the construction (see cyan squares in Figure 1). To

their right is a series of variable gadgets, which the clause agents

have to traverse though, i.e., enter and exit in the general rightward

direction. Each gadget has an entrance on the left and an exit on
the right, which are marked by a cross and a dot, respectively, in

Figure 1. We use obstacle cells to make entrances, exits, and other

passages only one row/column wide.

The literal agents’ start positions are located in the variable

gadgets. Each variable gadget initially contains literal agents of

a single variable and has two optimal-length paths for traversing

it. The top path (i.e., the one going right along the grid’s top row,

then down) initially contains positive literal agents, and the bottom
path path initially contains negative literal agents. Note that there

are some empty cells in variable gadgets in Figure 1 that are not

necessary for the current construction, but will later play a role in

Section 5 (and are kept for commonality between figures).

The literal agents’ target positions are located in clause gadgets.
Each clause gadget’s middle row contains the target positions of



the literals in the clause that the gadget represents. The gadget also

contains a target of one clause agent on its top row. We include an

empty column at the right of each clause gadget to ensure acces-

sibility of the latter target. Specifically, the empty columns allow

each clause agent 𝑐 to reach its target position even if all the targets

in the respective clause gadget are occupied (note that in this case

𝑐’s path will be longer than the shortest possible path).

The gadgets are arranged from left to right so that first we have

variable gadgets and then clause gadgets. The order of gadgets

of the same type and start/target positions within a gadget are

arbitrary.

It is easy to verify that there exists a monotone motion for plan

for𝑀 . Simply repeat the following for each variable gadget Ξ, going
from the rightmost to the leftmost gadget: first move agents that

are on Ξ’s top path in right to left order and then do the same for

Ξ’s bottom path. At this point all literal agents are at their targets.

Therefore, from now on there always exists a clause agent that may

be moved to its target, until all have reaches their targets.

The following theorem proves the correctness of the construc-

tion.

Theorem 1. 𝑀 has a monotone motion plan with a distance cost
of 𝑑∗ (𝑀) if and only if 𝜙 is satisfiable.

Proof. Assume that 𝜙 has a satisfying assignment A. Let 𝑅+

(resp. 𝑅−) be the set of agents corresponding to literals that evaluate
to true (resp. false) according to A. Let 𝑃 be the shortest path from

the entrance of leftmost variable gadget to the exit of the rightmost

variable gadget that passes through all the start positions of 𝑅−; see
Figure 2. Observe that for each variable gadget, 𝑅− contains agents

that are all either on the gadget’s top path or bottom path. This

means that 𝑃 exists and that it is 𝑥-monotone.

We specify a monotone motion plan in which all agents move

along 𝑃 while traversing variable gadgets. The motion plan has

three stages, which are illustrated in Figure 2. In each stage a group

of agents move, starting with 𝑅−, then the clause agents, and finally

𝑅+. First, agents in 𝑅− move in right to left order along 𝑃 , which

guarantees no collisions between literal agents. Observe that each

agent in 𝑅− can achieve the shortest path to its target, initially

guided by 𝑃 . Next, the clause agents move in the natural order that

allows each of them to leave their initial room using the shortest

path with no collisions. We have the following properties at this

point: 𝑃 contains only empty cells and each clause gadget’s middle

row must also contain an unoccupied target of an agent in 𝑅+. The
latter holds becauseA satisfies 𝜙 and the agents of 𝑅+ have not yet

moved. Therefore, each clause agent can also take an optimal path.

Finally, 𝑅+ can move optimally, guided by 𝑃 , similarly to 𝑅−.
For the other direction, we assume that there is a monotone

motion plan for𝑀 with a distance cost of 𝑑∗ (𝑀) and show that 𝜙

has a satisfying assignment. Let 𝑅+ denote the agents that move

after the last clause agent moves. For any variable 𝛼 ∈ 𝜙 , 𝑅+ cannot

contain literal agents corresponding to both 𝛼 and 𝛼 , since then

clause agents would not be able to reach their target positions.

Therefore, we can define an assignment A in which the literals

corresponding to 𝑅+ evaluate to true. (If a variable does not have

literals in 𝑅+, then it can be assigned an arbitrary value.)

Let𝐶 be a clause in 𝜙 and let 𝑐 be the corresponding clause agent,

i.e., 𝑐 has to go to 𝐶’s clause gadget. There must be a target vertex

𝑣 in the middle row of 𝐶’s clause gadget that is unoccupied when 𝑐

moves. Such a vertex 𝑣 must exist in order for 𝑐 to have the shortest

possible path to its target 𝑡 (𝑐) during its turn to move. Therefore,

the literal agent 𝑟 , with 𝑡 (𝑟 ) = 𝑣 must be in 𝑅+ by definition, i.e., it

must move after 𝑟 . Hence, the literal corresponding to 𝑟 evaluates

to true by A, which means that 𝐶 is satisfied and we are done. □

It is easy to verify that the number of agents in𝑀 as well as the

size of the resulting graph is linear in |𝜙 |. Therefore, we conclude
the following.

Corollary 1. Monotone Distance-Optimal MAPF is NP-hard and
cannot be solved in sub-exponential time 2𝑜 (𝑛) or 2𝑜 ( |𝑉 |) unless ETH
fails, even for a grid graph 𝐺 = (𝑉 , 𝐸) with 3 rows, where 𝑛 is the
number of agents.

5 GENERAL DISTANCE-OPTIMAL MAPF
Our previous construction no longer holds once non-monotone

motions are allowed. Since agents are not constrained by time, they

can make intermediate stops, which adds a lot of possibilities to the

motion plan. The main challenge is that literal agents can “cheat”

by making intermediate stops in variable gadgets along their way.

For example, in Figure 1𝑦1 could position itself in the cell to the left

of 𝑧1, thereby creating a path through 𝑦’s variable gadget that does

not enforce an assignment to 𝑦.1 Therefore, we introduce blockers,
which are new agents that prevent undesirable intermediate stops,

and prove that general distance-optimal MAPF is NP-hard on grid

graphs.

As before, for a 3-SAT formula𝜙 , we construct a distance-optimal

MAPF instance𝑀 ′
that has a motion plan with a distance cost of

𝑑∗ (𝑀 ′) if and only if𝜙 is satisfiable. An example of the new instance

𝑀 ′
is illustrated in Figure 3. In general,𝑀 ′

is the same as𝑀 from

Section 4 except for the following change: Each variable gadget now

has a blocker agent that starts at the gadget’s entrance and has to go

to the gadget’s exit. This ensures that all the agents passing through

the gadget must use the same path within the gadget, thereby

keeping the incoming and outgoing order of the traversing agents

the same. This property prevents clause agents from “cheating” and

bypassing literal agents, thereby mimicking the monotone case. The

following lemma formally states the functionality of the blockers:

Lemma 1. Let Ξ be a variable gadget in𝑀 ′. Then, in any motion
plan for𝑀 ′ with a cost of 𝑑∗ (𝑀 ′), all the agents that traverse Ξmust
take the same path through Ξ.

Proof. Let 𝑏 denote the blocker agent that is initially at Ξ’s
entrance. Since 𝑃 (𝑏) is an optimal path, it can be either the top path

or the bottom path inΞ, which we denote by 𝑃1 and 𝑃2, respectively;
see Figure 5. Similarly, any agent 𝑟 that traverses Ξ, must have

either 𝑃1 or 𝑃2 be a subpath of its path, 𝑃 (𝑟 ). However, we cannot
have 𝑃 (𝑏) be a subpath of 𝑃 (𝑟 ), as that would necessarily lead to a

collision between 𝑏 and 𝑟 . That is, 𝑟 must somehow bypass 𝑏 to exit

Ξ, which is not possible if they take the same path in Ξ. This leaves
𝑟 with exactly one path that it can take through Ξ, namely, the one

1
Eliminating free cells in the two paths in 𝑧’s variable gadget does not solve the

problem. Observe that it is possible for both positive and negative literal agents to

leave the gadget before any clause agent moves. If this happens, it would create space

for the undesirable intermediate stops described.
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Figure 3: The instance𝑀 ′ modified from𝑀 in Figure 1. Blocker agents (and their target positions) are shown in orange.
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Figure 4: The path 𝑃 (blue) corresponding to the assignment 𝑥 = 𝑇,𝑦 = 𝐹, 𝑧 = 𝑇 along with a snapshot after the first stage of the
motion plan for𝑀 ′.

not taken by 𝑏. Since this applies to any agent 𝑟 , we have all the

agents traversing Ξ take the same path through Ξ, as required. □

r
P1

b

P2

Figure 5: A variable gadget at some time point during a mo-
tion plan. The gadget’s respective blocker agent 𝑏 is at its
start position and its target position is on the right. The
agent 𝑟 needs to traverse the gadget. The two possible short-
est paths for 𝑏 are shown as 𝑃1 (blue) and 𝑃2 (red). Note that
these paths overlapnear 𝑠 (𝑏) and 𝑡 (𝑏). Herewehighlight that
𝑏 and 𝑟 cannot use the same path in the gadget.

We now prove the correctness of the modified construction.

Theorem 2. 𝑀 ′ has a motion plan with a distance cost of 𝑑∗ (𝑀 ′)
if and only if 𝜙 is satisfiable.

Proof. We adjust the motion plan defined for𝑀 in the proof of

Theorem 1 to accommodate the blocker agents. LetA be a satisfying

assignment and let 𝑃 be as defined before. The new plan has two

additional stages. First, blocker agents move to intermediate stops

that are not on 𝑃 (in arbitrary order). Figure 3 indicates the two

possible intermediate stops for each blocker agent using crosses and

Figure 4 shows an example of the blockers’ positions after the first

stage. Next, we perform the same motion plan as for𝑀 . Then, in the

final stage, blockers move to their targets (again in arbitrary order,

since each assignment only contains the blocker at this stage). It is

easy to verify that the new plan is optimal: The intermediate stops

always allow blocker agents to not block 𝑃 , while also allowing

them to eventually reach their targets using optimal paths. As for

the rest of the agents, each agent is able to take the same path as in

Theorem 1.

For the other direction, let us assume that there is a motion plan

for 𝑀 ′
with a cost of 𝑑∗ (𝑀 ′). By Lemma 1, all the clause agents

follow the same path in each variable gadget. Therefore, let 𝑃 denote

the path that all the clause agents follow between the entrance of

the leftmost variable gadget to the exit of the rightmost variable

gadget. We define a satisfying assignment A using 𝑃 as follows:

A variable 𝛼 ∈ 𝜙 is assigned to be true (resp. false) if 𝑃 passes

though start positions of negative (resp. positive) literal agents in

𝛼 ’s variable gadget. In other words, literals corresponding to literal

agents that are initially located on 𝑃 are assigned to be false (see

Figure 4 for an example of the correspondence between 𝑃 and A).

As before, let 𝑅+ (resp. 𝑅−) be the set of agents corresponding to

literals that evaluate to true (resp. false) according to A.

Let𝐶 be a clause in 𝜙 and let 𝑐 be the corresponding clause agent,

i.e., 𝑐 has to go to 𝐶’s clause gadget. We show that 𝐶 is satisfied by

A. It suffices to show that 𝑐’s path, 𝑃 (𝑐), contains a target of an
agent in 𝑅+ in 𝐶’s clause gadget. Let us assume for a contradiction

that this does not hold. Then, since 𝑃 (𝑐) is 𝑐’s individually optimal

path, it must still pass through a target in 𝐶’s clause gadget. This

target must be 𝑡 (𝑟 ) of some 𝑟 ∈ 𝑅−. We will now claim that 𝑃 (𝑟 )
must be a subpath of 𝑃 (𝑐). Intuitively, this means that 𝑐 cannot

bypass 𝑟 , and will ultimately be blocked by 𝑟 once 𝑟 reaches 𝑡 (𝑟 ),
thus yielding the contradiction.

Let Ξ be the variable gadget on which 𝑠 (𝑟 ) lies. By definition,

𝑠 (𝑟 ) lies on 𝑃 , so 𝑟 must follow 𝑃 to exit Ξ using the shortest path.

By Lemma 1, 𝑟 must continue following 𝑃 , the subpath shared by

all clause agents, in all variable gadgets it traverses (after leaving

Ξ). The remainder of 𝑃 (𝑟 ) must also be a subpath of 𝑃 (𝑐) since both
paths are optimal and hence simply go right until reaching the cell

below 𝑡 (𝑟 ). Therefore, 𝑃 (𝑟 ) as a whole is a subpath of 𝑃 (𝑐). This is
a contradiction since then 𝑟 must reach 𝑡 (𝑟 ) before 𝑐 does, which
would block 𝑐 . In conclusion, we showed that 𝐶 is satisfied, which

holds for any clause, and so we are done. □

Observe that all our arguments hold regardless of whether paral-

lel motion is allowed or not. For the case of synchronous rotations

along cycles, by definition for such a rotation to occur, there has to

be an agent moving left. As none of the individually optimal paths



for agents ever require moving left, rotations cannot occur for a

plan with cost 𝑑∗ (𝑀 ′). It is easy to verify that the number of agents

in 𝑀 ′
as well as the size of the resulting graph remains linear in

|𝜙 |. Therefore, we conclude the following:

Corollary 2. Distance-Optimal MAPF is NP-hard and cannot be
solved in sub-exponential time 2𝑜 (𝑛) or 2𝑜 ( |𝑉 |) unless ETH fails, even
for a grid graph 𝐺 = (𝑉 , 𝐸) with 3 rows, where 𝑛 is the number of
agents. This holds for both parallel and sequential motions.

6 CONCLUSION
We have shown that distance-optimal MAPF is NP-hard on grid

graphs with more than one empty vertex, settling the open prob-

lem by Banfi et al. [4]. Before discussing possible implications of

our proof towards positive results, we advocate for more focus

on achieving refined hardness results. Specifically, we believe that

when proving hardness, one should strive towards the following

two goals: The considered problem setting should be the most re-

stricted, i.e., simplest, one that is still useful, while at the same

time the hardness reduction should be kept simple as well, ideally

with low blow-up. We note that these two goals can sometimes

collide (e.g., compare the elegant proof by Goldreich [14] for gen-

eral graphs versus the one for the grid [29], which was simplified

only close to 30 years later [8]). Nevertheless, we believe that we

have homed in on both goals in this paper, thereby improving the

structural understanding of MAPF.

6.1 Implications of the hardness result
The previous hardness proof for distance-optimal MAPF on planar

graphs by Yu [39] uses agents that need to move in opposite direc-

tions in order to emulate an assignment. As a result, Yu concluded

that the hardness of the problem appears to arise from contention

that occurs when two or more groups of agents want to move in

opposite directions through the same set of narrow paths. From

a practical standpoint, Yu suggests that environments with many

robots would benefit from a design that minimizes path sharing

among the robots.

Since in our construction all the agents move in the same general

direction, we show that hardness remains even without opposite

direction movement. In fact, we remark that our construction can

be modified so that the problem is NP-hard even if agents can only

move down and right. This requires two main modifications: The

variable gadgets need to be arranged in a staircase-like manner,

in which the exit of one gadget is on the same grid row as the

entrance of its neighboring gadget. This modification eliminates

the need for agents to go up between variable gadgets. The second

modification is vertically mirroring the clause gadgets such that

the clause agents’ targets are on the bottom row each gadget.

Given that opposite direction movement does not play a role in

our case, we provide another perspective for the source of difficulty

of the problem. For the purpose of this discussion, when we say

that a target vertex 𝑣 is fulfilled, we mean that the agent 𝑟 with

𝑡 (𝑟 ) = 𝑣 has reached 𝑣 . Our construction’s challenging aspect is

the need of agents to negotiate through paths with many start

and target vertices of other agents. This results in two conflicting

goals: On the one hand each agent needs to pass target positions

along its path before they become fulfilled (assuming that once they

become fulfilled, the agent will have to take a longer path). This

suggests that algorithms for distance-optimal MAPF can benefit

from “prioritizing” agents that have targets along their optimal

path that are close to becoming fulfilled. At the same time, each

agent should aim not to force other agents to move in a manner

that fulfills targets that other agents still need to pass through.

6.2 Future work
Our discussion on implications of the hardness results calls for

the investigation of more parameters that affect the hardness of

the problem. As we noted, agents in our construction have to pass

through a large number of start and target positions of other agents.

A natural question is whether the problem remains hard even if

each agent has an optimal path that passes through a constant

number of start and target positions. Another significant feature

of our construction is that the agents’ paths must largely overlap.

Therefore, the case where the paths can overlap less, which requires

a different layout than the “long and narrow” grid that we used,

seems worthy of more study. Overall, we believe that more subtle

underlying parameters need to be considered. Previous positive

results that employ parameterized complexity in discrete motion

planning problems [1, 17] provide some encouragement.

While our refined analysis has resulted in a concrete lower bound,

we are not aware of any algorithm that matches (or nearly matches)

it, i.e., has a running time of 𝑂 (2𝑛) or 𝑂 (2 |𝑉 |). This brings to light

a gap between lower and upper bounds, which we believe calls

for additional refined analysis on both sides. On the upper bound

side such work was recently done by Gordon et al. [16] for (time-

optimal) Conflict-Based Search [31], which tightened the running

time of the algorithm. Their improved bound is exponential in a

few parameters, therefore it could be beneficial to simultaneously

analyze multiple parameters on the lower bound side. We also

remark here that existing hardness results for time-optimal MAPF

on planar graphs [39] and 2D grid graphs [4, 7] use reductions that

are not linear. Hopefully, tightening both lower and upper bounds

will uncover areas for algorithmic improvements.
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