
Hello everyone, my name is Timothy Deligero, and today I’m presenting a research 

paper done on the topic of unique key horn functions.



To start off the presentation, horn functions and keys should be defined. Horn

functions were defined in the theory of special functions in mathematics as 34 

distinct hypergeometric series of order two by Horn, hence its name, in 1931, and 

then was later corrected by Borngässer in 1933. However, over time horn functions, 

specifically pure Horn functions, were used and studied under many various topics 

due to its properties in both structure and computability in the form of Boolean 

functions, one of which are database theory, which horn functions in particular have 

a very strong relationship with due to having the similar algorithmic problems. Keys

have also been important in the research of database theory, especially relational 

databases, where it is a set of attributes made to be uniquely assigned to a set a 

values, allowing users to retrieve data based on certain conditions and 

requirements from a database’s key set.

A CNF Φ and its Boolean function representation is called a horn if each of its 

clauses in its set have at most one positive literal or Boolean variable and called a 

pure horn if each of its clauses in its set have exactly one positive literal or Boolean 

variable. Each CNF is defined into a single Boolean function. However, every 

Boolean function will have multiple representations of CNFs. Pure horn clauses 

from its CNF can also be viewed as implications in the form of 𝐴 → 𝑣, where 𝐴 is 

the body and 𝑣 is the head. For example, given a clause 𝐶 = ത𝑏 ∨ ҧ𝑐 ∨ 𝑒, its 



implication equivalent of a pure Horn CNF would be 𝑏𝑐 → 𝑒, where 𝐴 = 𝑏𝑐 and 𝑣
= 𝑒. The research paper [1] states that 𝐴 → 𝑣 is an implicate of a Horn function ℎ if 

any assignment 𝑥 ∈ 0, 1 𝑉 that falsifies 𝐴 → 𝑣 also falsifies ℎ. [1] If ℎ is represented 

by a pure Horn CNF then the clauses of this CNF are all implicates of ℎ. A pure 

Horn function is a key Horn if any of its implicates within its body is a key of the 

function.



The authors Bérczi, Boros, Čepek, Kučera, and Makino have proposed the use of 

unique key Horn functions as a form of pure Horn functions to represent a minimal 

key set formed by a Sperner hypergraph otherwise defined as a unique key 

hypergraph by the research paper. [1] Along with defining the characterizations of 

unique key hypergraphs and unique key Horn functions, the research paper [1] 

proves that unique key graphs are co-NP-complete when all of its edges are of size 

two and certain cases of hypergraphs that can be solved in polynomial time. It also 

provides connections between both problems of generating minimum key sets and 

minimal targets sets in terms of similar algorithms with polynomial delay and 

hardness.



As discussed previously about Horn functions, there have been various topics that 

have discussed Horn functions in different uses, such as: 

● Directed hypergraphs in graph theory and combinatorics.

● Implication systems in machine learning.

● Database theory (e.g. relational databases as functional dependencies).

● Lattices and closure systems in algebra and concept lattice analysis. 

● Hydra functions, where the bodies of the Horn functions are of size two, or in a 

CNF representation have clauses containing two literals. 

Given its established properties, Horn functions have strong relations to databases, 

as its algorithmic problems give the same type of context to problems arising from 

databases and its implications are used in a similar manner as to assigning unique 

values to a set of attributes to create functional dependencies in a database. 

Minimizing the CNF representation of a pure Horn functions is difficult, as the process 

is dependent on many variables, such as number of literals, number of clauses, etc. 

Previous research has denoted that established algorithms, even for special cases, 

such as the discussed hydra functions, have been proven to be NP-hard.



There are a couple of definitions and notations established for unique key graphs 

(Sperner hypergraphs with minimal key sets) and unique key Horn functions in the 

paper [1]:

● Sperner hypergraphs (clutters) – Given a Sperner hypergraph (𝑉, 𝐸), or Β
⊆ 2𝑉, where 𝑉 is the set of Boolean variables in this paper [1], for subsets 𝐴, 𝐵
∈ 𝐸, 𝐴 ⊈ 𝐵 and 𝐴 ≠ 𝐵 (i.e. no hyperedge properly contains one another, where 

𝐵 is a hyperedge).

● A transversal 𝑇 ⊆ V of Β is when 𝑇 ∩ 𝐵 ≠ ∅, where ∀𝐵 ∈ Β.

● An independent set 𝑆 of Β is when 𝑇 = 𝑉\S is a transversal of Β. 

● Β𝑑 is denoted as a set of minimal transversals of Β, with Β∗ being a family of its 

independent sets.

● A subhypergraph of Β induced by 𝑆, where 𝑆 ⊆ 𝑉, is denoted as Β𝑆 = ሼ
ȁ

𝐵
∈ Β 𝐵 ⊆ 𝑆}. If 𝑆 ∈ Β∗, then Β𝑆 = ∅.

● A projection of Β to 𝑆 is denoted as Β𝑆 = 𝑚𝑖𝑛′𝑙 𝑆 ∩ 𝐵 𝐵 ∈ Β}, where 𝑚𝑖𝑛′𝑙ሼ𝐻}
denotes the family consisting of inclusionwise minimal members of 𝐻 and 𝑆
⊆ 𝑉. If 𝑆 is not a transversal of Β, then Β𝑆 = ∅ .

● Notation ∪ Β is denoted as the union of hyperedges of a hypergraph (i.e. ∪ Β
= .(𝐵∈Β𝐵ڂ

● A forward chaining closure is defined as 𝐹ℎ 𝑆 = 𝑢 ∈ 𝑉 𝑆 → 𝑣 is an implicate 

of ℎ}.
● The set of minimal keys for a Horn function CNF ℎ is defined as K ℎ .



These definitions and notations will be used for the Lemmas, Theorems, and 

Corollaries presented by the research paper. [1] Given that the proofs are very 

complex and elaborate, they’ll be summarized with the bulletin points and given a 

quick explanation on what they’re used for. It is encourage to read the research 

paper [1] to get a clear idea of what the proofs are explaining.



The Lemmas and Theorems of this section are used to characterize the unique key 

graphs and unique key Horn functions presented in the research paper. [1] Lemma 1 

is already established and well known from previous research papers. Lemma 2 is 

used to address the relationship of minimal transversal to unique key graphs. 



By applying Lemma 4, Theorem 5 can be proven to be true in its bidirectional 

implication, further explaining the minimal traversal within a unique key graph. This 

logic also applies to matroid, as the set of minimal traversals can serve as the cut-

sets or base-sets of a loopless matroid, which compliments Theorem 5.



For this section, lets assume we have a Sperner hypergraph with edges of size 2, 

meaning that there are only pairs of vertices with a single edge connected between 

them. Since it is established that the minimal transversal are complement to the 

independent sets of a Sperner hypergraph, they also represent the minimum vertex 

covers, giving an idea of the neighboring vertices with a unique key graph. The proof 

shown by the research paper [1] basically proves the opposite of the statement, 

meaning that a CNF Φ is satisfiable if and only if the graph 𝐺Φ is not a unique key, 

which also means that there exists a maximal independent set that contains vertex 𝑧
with no individual neighbor. This shown that determining a unique key graph from this 

type of Sperner hypergraph is co-NP-complete, as there is a polynomial algorithm that 

exists to solve the “NO” instances for unique key hypergraphs.



The above figure represents an instance of a graph 𝐺Φ that corresponds to a given 

CNF Φ constructed for Theorem 9 and Corollary 10 to prove that there exist a 

polynomial time algorithm that solves the minimal key generation problem for 

hypergraphs with edges sizes of two. This proves that a CNF Φ is satisfiable if and 

only if its represented graph is not a unique key graph, making the minimal key 

generation for hypergraphs of edges of dimension two co-NP-complete.



Bipartite graphs consist of two disjoint and independent vertex sets where every edge 

connects a pair of vertices from one set to another. This also means that no edges 

exists between a pair of vertices within the same set. Hypergraphs can be 

represented as bipartite graph, also known as incidence graphs in this type of context, 

if it contains fixed parts and no unconnected vertices. For a unique key graph, every 

maximal independent set of a unique key graph contains exactly one end vertex for 

every edge in the graph, creating a perfect matching bipartite graph.

The treewidth graphs consist of undirected edges with numbers associated with. This 

type of association is used for many applications commonly for the purpose of 

parameterized complexity analysis in graph algorithms. For unique key graphs and 

their CNF representations, the number associated with bounded treewidth graph 

should be clique-width size in this type of context. Given that there are maximal 

independent sets in a unique key graph, it can be solved using predicates to satisfy 

the conditions for a unique graph and the treewidth value can also represent the 

clique-width of a CNF.



An induced matching, or strong matching, in graphs is where a subset of edges of an 

undirected graph do not share any vertices other than its single pair of vertices 

connected in between within its subset. This definition matches the independent sets 

used for unique key graphs which compliments the topic. The induce matching in a 

graph is proportional to its size which also affects the number of independent sets. If 

the size is bounded by a constant, then checking all independent sets for a unique 

key graph takes polynomial time.



Given a directed graph representation of a pure Horn CNF Φ , it is guaranteed to be 

strongly connected with Lemma 15 and its proof. Knowing that, a generation 

algorithm provided by the research paper [1] can be used on a pure Horn CNF to 

generate all minimal keys with polynomial delay, where the polynomial delay is 

dependent o the inputted CNF. This leads into proving that the MIN-TSS problem can 

also be solved in polynomial delay if its bounded.



The minimum target set selection problem involves finding a minimum size initial set 

of Nodes/vertices 𝑆, also known as the target set, that will eventually activate the 

entire graph. The given graph is defined to be an undirected graph 𝐺 = (𝑉, 𝐸) and 

we are also given a threshold function 𝑡(𝑣). Initially, the subset 𝑆 ⊆ 𝑉 will be 

activated before activating the rest of the neighboring vertices. A vertex 𝑣 becomes 

activated if at least 𝑡(𝑣) of its neighbors are already active.

The following MIN-KEY and MIN-TSS problems can be proven to have strong 

relations by showing they are polynomial-time reducible to each other with proofs 

shown and their examples from Fig. 2 and Fig. 3. This leads into Corollary 19, by 

applying Theorems 16 and 17, showing that we can general minimal target sets of a 

given graph in polynomial delay.



The figure above shows an instance of Theorem 17, showing that based on a given 

graph of MIN-TSS, it can be converted to a graph associated with pure Horn CNF, 

while also showing that the minimal targets sets can be minimal keys in a unique key 

graph.



The figure above shows an instance of Theorem 18 by showing the construction of 

the new graph with new gadgets contain vertices with certain threshold values 

corresponding to clauses of pure Horn CNF. This is done to prove that minimal keys 

can also be targets sets of a given graph 𝐺 of a target selection problem, without 

having to change the size.



The research paper [1] is effective on elaborating the different definitions and 

notations of Sperner hypergraphs, pure Horn CNFs, unique key graphs, and unique 

key Horn functions when applying them to multiple Lemmas, Theorems, and 

Corollaries and their proofs. The presented cases of different types of graphs as 

unique key graphs under certain conditions give new representations of Sperner

hypergraphs which extends the research on different models of hypergraphs. The 

algorithms presented for both MIN-KEY and MIN-TSS problems are both very simple 

and explained really well on their similarities based on their polynomial-time 

reductions. The introductions of the new gadgets containing vertices and threshold 

values for activation, when reducing the MIN-Key problem to the MIN-TSS problem, is 

creative and can introduce a new type of reduction when regarding other problems 

that can potentially reduce to the MIN-TSS problem regarding constructed graphs, 

while also proving that those certain problems can be solved with polynomial delay.

There are a few weaknesses and criticisms that can be made of the research paper. 

[1] There is very little variety in regards of the presented cases of graphs that can be 

represented as hypergraphs, or unique key graphs, under certain conditions. This is 

because their proofs are all dependent on independent sets, creating similar graphs 

with little difference, thus lacking any meaningful variety when discussing cases of the 

graphs that can serve as Sperner hypergraphs, with the only difference being in how 

each graph functions outsides of its bounded conditions. Also, while the discussion of 

algorithms for both MIN-KEY and MIN-TSS are valid, the researchers do not go into 

detail of the polynomial delay in terms of the inputted CNF between outputs despite 



mentioning the exponential size of minimal keys in a pure Horn CNF and only 

presents one example for the associate of the MIN-KEY problem to other various 

problems.

For future research papers and extensions, a full survey paper discussing the many 

topics that have been done in regards of pure Horn CNFs, including the research 

presented here, giving an idea of its versatility. There could also be open discussion 

on different types of graphs that can be represent as Sperner hypergraphs, and 

maybe even unique key graphs given the right conditions, as well as potential for this 

approach to be associated with various problems to prove that certain problems can 

be solved with polynomial delay given the right conditions and presenting new 

reductions between the MIN-KEY problem. There could also be software 

implementations and a thorough analysis of the algorithms presented here can be 

done in extended research to get a full perspective of their effectiveness and 

efficiency given different inputted CNFs presented in graphed results.



In conclusion, the research paper [1] defines and characterizes both unique key 

graphs and their corresponding unique key Horn functions through multiple Lemmas, 

Theorems, and Corollaries. It also provided proofs that Sperner hypergraphs with 

edges of size two is co-NP-complete when finding whether or not it is a unique key 

graph, as well as for certain cases of graphs, that can be solved in polynomial time if 

it is a unique key graph based on certain conditions and requirements. Algorithms 

were also provided for both minimal key generation and minimal target set selection 

problems that are related to graphs and their pure Horn function CNF representations, 

showcasing that both problems have strong relations with each other and are 

polynomial-time reducible to each other. Overall, the research done provides major 

contributions to graph theory and database theory, as well as pure Horn functions in 

general, leaving opportunities and potential for future research to extend upon the 

presented topics as well as attribute to the versatility of pure Horn functions.



Here is the reference to the research paper used for this presentation, as well as the 

link if you want to read it for yourself.



Are there any questions?

Thank you for your time.


