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Automated Decision Makers

The following decision makers were tested:

1.
2.

Black Box: The optimal decision policy in a non-strategic setting. No
counterfactual explanations were given to individuals.

Minimum Cost: The optimal decision policy in a non-strategic setting
the counterfactual explanation with minimum cost to the individual
was given.

Diverse: The optimal decision policy in a non-strategic setting, a
diverse set of counterfactual explanations with minimum cost to the
ll’;dl\/zlgijg} was used. Similar to previous work (Russel, 2019; Mothilal et
al., .

Algorithm 1: Approximates problem 1, the optimal decision policy in a
non-strategic setting was used.

. Algorithm 2: Approximates problem 2.
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(a) Utility vs. # feature values (b) Utility vs. # explanations (c) Individual cost vs. # expla-
nations

Figure taken from Tsirtsis et al. This figure shows the utility of the decision maker. It is clear
that Algorithm 2 vastly outperforms other decision makers and Algorithm 1 outperforms all
decision makers except Algorithm 2. Furthermore, increasing the size of the set of
counterfactual explanations results in a higher utility (b). Lastly, individual cost increases
with increasing utility of the decision maker (c). The authors argue the individual still

benefits from this.
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(a) Utility vs. « (b) Utility vs. # explanations (c) Utility vs. # explanations under leak-

Figure taken from Tsirtsis et al. This figure shows the utility of the decision maker on real
data. (a) shows that the gap between Algorithm 2 and other decision makers vastly
increases when individuals are more likely to adapt. (b) shows that the decision makers
perform similarly on real and simulated data. (c) shows that when individuals have a high
probability of counterfactual explanations leaking, the decision maker is better off sharing
providing less counterfactual explanations. This is meant to simulate communication
between individuals
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