
Complexity Theory
Complexity
Charles E. Hughes

COT6410 – Spring 2022 Notes

Graph Coloring
• Instance: A graph G = (V, E) and an integer k.
• Question: Can G be "properly colored" with at most k colors?

• Proper Coloring: one of the k colors is assigned to each vertex so
that adjacent vertices have different colors.

• Suppose we have two instances of this problem (1) is True (Yes)
and the other (2) is False (No).

• AND, you know (1) is Yes and (2) is No. (Maybe you have a secret
program that has analyzed the two instance.)

12/28/21 © UCF CS 2

Checking a “Yes” Answer
• Without showing how your program works (you may not even know), how

can you convince someone else that instance (1) is, in fact, a Yes instance?

• We can assume the output of the program was an actual coloring of G. Just
give that to a doubter who can easily check that no adjacent vertices are
colored the same, and that no more than k colors were used.

• How about the No instance?

• What could the program have given that allows us to quickly "verify" (2) is a
No instance?

• No One Knows!!

• For all problems seem to be harder than there exists ones in many contexts

12/28/21 © UCF CS 3

Checking a “No” Answer
• The only thing anyone has thought of is to have it test all

possible ways to k-color the graph – all of which fail, of
course, if “No” is the correct answer.

• There are an exponential number of things (colorings) to
check.

• For some problems, there seems to be a big difference
between verifying Yes and No instances.

• To solve a problem efficiently, we must be able to solve
both Yes and No instances efficiently and so it would
seem we should be able to verify both quickly.

12/28/21 © UCF CS 4

Hard and Easy
• True Conjecture: If a problem is easy to solve, then it is

easy to verify (just solve it and compare).

• Contrapositive: If a problem is hard to verify, then it is
(probably) hard to solve.

• There is nothing magical about Yes and No instances –
sometimes the Yes instances are hard to verify and No
instances are easy to verify.

• And, of course, sometimes both are hard to verify.
12/28/21 © UCF CS 5

Easy Verification
• Are there problems in which both Yes and No instances

are easy to verify?

• Yes. For example: Search a list L of n values for a key x.
• Question: Is x in the list L?

• Yes and No instances are both easy to verify.

• In fact, the entire problem is easy to solve!!

12/28/21 © UCF CS 6

Verify vs Solve
• Conjecture: If both Yes and No instances are easy to verify, then the

problem is easy to solve.

• No one has yet proven this claim, but most researchers believe it to
be true.

• Note: It is usually relatively easy to prove something is easy – just
write an algorithm for it and prove it is correct and that it is fast
(usually, we mean polynomial).

• But, it is usually very difficult to prove something is hard – we may
not be clever enough yet. So, you will often see "appears to be
hard."

12/28/21 © UCF CS 7

A CS Grand Challenge
Does P=NP?

There are many equivalent ways to describe P and NP. For now, we
will use the following.
P is the set of decision problems (those whose instances have
“Yes”/ “No” answers) that can be solved in polynomial time on a
deterministic computer (no concurrency or guesses allowed).
NP is the set of decision problems that can be solved in polynomial
time on a non-deterministic computer (equivalently one that can
spawn an unbounded number of parallel threads; equivalently one
that can be verified in polynomial time on a deterministic computer).
Again, as “Does P=NP?” has just one question, it is solvable, we
just don’t yet know which solution, “Yes” or “No”, is the correct one.

12/28/21 © UCF CS 8

ORDER ANALYSIS

12/28/21 © UCF CS 9

Notion of “Order”
Throughout the complexity portion of this course,
we will be interested in how long an algorithm
takes on the instances of some arbitrary "size"
n. Recognizing that different times can be
recorded for two instance of size n, we only ask
about the worst case.

We also understand that different languages,
computers, and even skill of the implementer
can alter the "running time."

12/28/21 © UCF CS 10

Notion of “Order”
As a result, we really can never know "exactly"
how long anything takes.

So, we usually settle for a substitute function,
and say the function we are trying to measure is
"of the order of" this new substitute function.

12/28/21 © UCF CS 11

Notion of “Order”
"Order" is something we use to describe an upper bound
upon something else (in our case, time, but it can apply
to almost anything).

For example, let f(n) and g(n) be two functions. We say
"f(n) is order g(n)" when there exists constants c and N
such that f(n) ≤ cg(n) for all n ≥ N.

What this is saying is that when n is 'large enough,' f(n)
is bounded above by a constant multiple of g(n).

12/28/21 © UCF CS 12

Notion of “Order”
This is particularly useful when f(n) is not known
precisely, is complicated to compute, and/or difficult to
use. We can, by this, replace f(n) by g(n) and know we
aren't "off too far."

We say f(n) is "in the order of g(n)" or, simply,
f(n) Î O(g(n)).

Usually, g(n) is a simple function, like nlog(n), n3, 2n,
etc., that's easy to understand and use.

12/28/21 © UCF CS 13

Notion of “Order”
Order of an Algorithm: The maximum
number of steps required to find the
answer to any instance of size n, for any
arbitrary value of n.

For example, if an algorithm requires at
most 6n2+3n–6 steps on any instance of
size n, we say it is "order n2" or, simply,
O(n2).

12/28/21 © UCF CS 14

Order
Let the order of algorithm X be in O(fx(n)).

Then, for algorithms A and B and their respective order
functions, fA(n) and fB(n), consider the limit of fA(n)/fB(n)
as n goes to infinity.

If this value is

0 A is faster than B
constant A and B are "equally slow/fast"
infinity A is slower than B.

12/28/21 © UCF CS 15

Order of a Problem
Order of a Problem

The order of the fastest algorithm that can
ever solve this problem. (Also known as
the "Complexity" of the problem.)

Often difficult to determine, since this allows
for algorithms not yet discovered.

12/28/21 © UCF CS 16

Decision vs Optimization
Two types of problems are of particular interest:

Decision Problems ("Yes/No" answers)

Optimization problems ("best" answers)

(there are other types)

12/28/21 © UCF CS 17

Vertex Cover (VC)
• Suppose we are in charge of a large network (a graph where edges

are links between pairs of cities (vertices). Periodically, a line fails.
To mend the line, we must call in a repair crew that goes over the
line to fix it. To minimize down time, we station a repair crew at one
end of every line. How many crews must you have and where
should they be stationed?

• This is called the Vertex Cover Problem. (Yes, it sounds like it
should be called the Edge Cover problem – something else already
had that name.)

• An interesting problem – it is among the hardest problems, yet is
one of the easiest of the hard problems.

12/28/21 © UCF CS 18

VC Decision vs Optimization
• As a Decision Problem:

• Instances: A graph G and an integer k.
• Question: Does G possess a vertex Cover with at most k vertices?

• As an Optimization Problem:

• Instances: A graph G.
• Question: What is the smallest k for which G possesses a vertex

cover?

12/28/21 © UCF CS 19

Relation of VC Problems
• If we can (easily) solve either one of these problems, we can (easily)

solve the other. (To solve the optimization version, just solve the
decision version with several different values of k. Use a binary
search on k between 1 and n. That is log(n) solutions of the
decision problem solves the optimization problem. It's simple to
solve the decision version if we can solve the optimization version.

• We say their time complexity differs by no more than a multiple of
log(n).

• If one is polynomial then so is the other.
• If one is exponential, then so is the other.

• We say they are equally difficult (both poly. or both exponential).

12/28/21 © UCF CS 20

Smallest VC
• A "stranger version"

• Instances: A graph G and an integer k.
• Question: Does the smallest vertex cover of G have exactly k

vertices?
• This is a decision problem. But, notice that it does not seem to be

easy to verify either Yes or No instances!! (We can easily verify No
instances for which the VC number is less than k, but not when it is
actually greater than k.)

• So, it would seem to be in a different category than either of the
other two. Yet, it also has the property that if we can easily solve
either of the first two versions, we can easily solve this one.

12/28/21 © UCF CS 21

Natural Pairs of Problems
Interestingly, these usually come in pairs

a decision problem, and

an optimization problem.

Equally easy, or equally difficult, to solve.

Both can be solved in polynomial time, or both require
exponential time.

12/28/21 © UCF CS 22

A Word about Time
An algorithm for a problem is said to be polynomial if
there exists integers k and N such that t(n), the
maximum number of steps required on any instance of
size n, is at most nk, for all n ≥ N.

Otherwise, we say the algorithm is exponential. Usually,
this is interpreted to mean t(n) ≥ cn for an infinite set of
size n instances, and some constant c > 1 (often, we
simply use c = 2).

12/28/21 © UCF CS 23

A Word about “Words”
Normally, when we say a problem is "easy" we mean
that it has a polynomial algorithm.

But, when we say a problem is "hard" or “apparently
hard" we usually mean no polynomial algorithm is
known, and none seems likely.

It is possible a polynomial algorithm exists for "hard"
problems, but the evidence seems to indicate otherwise.

12/28/21 © UCF CS 24

A Word about Abstractions
Problems we will discuss are usually "abstractions" of
real problems. That is, to the extent possible, non-
essential features have been removed, others have been
simplified and given variable names, relationships have
been replaced with mathematical equations and/or
inequalities, etc.

If an abstraction is hard, then the real problem is
probably even harder!!

12/28/21 © UCF CS 25

A Word about Toy Problems
This process, Mathematical Modeling, is a field of study
in itself, and not our interest here.

On the other hand, we sometimes conjure up artificial
problems to put a little "reality" into our work. This results
in what some call "toy problems."

Again, if a toy problem is hard, then the real problem is
probably harder.

12/28/21 © UCF CS 26

Very Hard Problems
Some problems have no algorithm (e. g., Halting
Problem.)

No mechanical/logical procedure will ever solve all
instances of any such problem!!

Some problems have only exponential algorithms
(provably so – they must take at least order 2n steps) So
far, only a few have been proven, but there may be
many. We suspect so.

12/28/21 © UCF CS 27

Easy Problems
Many problems have polynomial algorithms
(Fortunately).

Why fortunately? Because, most exponential
algorithms are essentially useless for problem
instances with n much larger than 50 or 60.
We have algorithms for them, but the best of
these will take 100's of years to run, even on
much faster computers than we now envision.

12/28/21 © UCF CS 28

Three Classes of Problems
Problems proven to be in these three groups
(classes) are, respectively,

Undecidable, Exponential, and Polynomial.

Theoretically, all problems belong to exactly
one of these three classes.

12/28/21 © UCF CS 29

Unknown Complexity
Practically, there are a lot of problems (maybe, most)
that have not been proven to be in any of the classes
(Yet, maybe never will be).

Most currently "lie between" polynomial and
exponential – we know of exponential algorithms,
but have been unable to prove that exponential
algorithms are necessary.

Some may have polynomial algorithms, but we have
not yet been clever enough to discover them.

12/28/21 © UCF CS 30

Why do we Care?
If an algorithm is O(nk), increasing the size of an
instance by one gives a running time that is O((n+1)k)

That’s really not much more.

With an increase of one in an exponential algorithm,
O(2n) changes to O(2n+1) = O(2*2n) = 2*O(2n) – that is, it
takes about twice as long.

12/28/21 © UCF CS 31

A Word about “Size”
Technically, the size of an instance is the minimum number of
bits (information) needed to represent the instance – its
"length."

This comes from early Formal Language researchers who
were analyzing the time needed to 'recognize' a string of
characters as a function of its length (number of
characters).

When dealing with more general problems there is usually a
parameter (number of vertices, processors, variables, etc.)
that is polynomially related to the length of the instance.
Then, we are justified in using the parameter as a measure
of the length (size), since anything polynomially related to
one will be polynomially related to the other.

12/28/21 © UCF CS 32

The Subtlety of “Size”
But, be careful.

For instance, if the "value" (magnitude) of n is both
the input and the parameter, the 'length' of the input
(number of bits) is log2(n). So, an algorithm that
takes n time is running in n = 2log2(n) time, which is
exponential in terms of the length, log2(n), but linear
(hence, polynomial) in terms of the "value," or
magnitude, of n.

It's a subtle, and usually unimportant difference, but
it can bite you.

12/28/21 © UCF CS 33

Subset Sum
• Problem – Subset Sum

• Instances: A list L of n integer values and an integer B.
• Question: Does L have a subset which sums exactly to B?

• No one knows of a polynomial (deterministic) solution to this problem.

• On the other hand, there is a very simple (dynamic programming) algorithm
that runs in O(nB) time.

• Why isn't this "polynomial"?
• Because, the "length" of an instance is nlog(B) and
• nB > (nlog(B))^k for any fixed k.

12/28/21 © UCF CS 34

Why do we Care?
When given a new problem to solve (design an algorithm
for), if it's undecidable, or even exponential, you will
waste a lot of time trying to write a polynomial solution
for it!!

If the problem really is polynomial, it will be worthwhile
spending some time and effort to find a polynomial
solution.

You should know something about how hard a problem
is before you try to solve it.

12/28/21 © UCF CS 35

Research Territory
Decidable – vs – Undecidable

(area of Computability Theory)

Exponential – vs – polynomial
(area of Computational Complexity)

Algorithms for any of these
(area of Algorithm Design/Analysis)

12/28/21 © UCF CS 36

Complexity Theory

Second Part of Course

Models of Computation
NonDeterminism

Since we can't seem to find a model of computation
that is more powerful than a TM, can we find one that
is 'faster'?

In particular, we want one that takes us from
exponential time to polynomial time.

Our candidate will be the NonDeterministic Turing
Machine (NDTM).

12/28/21 © UCF CS 38

NDTM's
In the basic Deterministic Turing Machine (DTM) we
make one major alteration (and take care of a few
repercussions):

The 'transition functon' in DTM's is allowed to
become a 'transition mapping' in NDTM's.

This means that rather than the next action being
totally specified (deterministic) by the current state
and input character, we now can have many next
actions - simultaneously. That is, a NDTM can be in
many states at once. (That raises some interesting
problems with writing on the tape, just where the
tape head is, etc., but those little things can be
explained away).

12/28/21 © UCF CS 39

NDTM's
We also require that there be only one halt state - the
'accept' state. That also raises an interesting
question - what if we give it an instance that is not
'acceptable'? The answer - it blows up (or goes into
an infinite loop).

The solution is that we are only allowed to give it
'acceptable' input. That means

NDTM's are only defined for decision problems
and, in particular, only for Yes instances.

12/28/21 © UCF CS 40

NDTM's
We want to determine how long it takes to get to the
accept state - that's our only motive!!

So, what is a NDTM doing?

In a normal (deterministic) algorithm, we often have
a loop where each time through the loop we are
testing a different option to see if that "choice" leads
to a correct solution. If one does, fine, we go on to
another part of the problem. If one doesn't, we return
to the same place and make a different choice, and
test it, etc.

12/28/21 © UCF CS 41

NDTM's
If this is a Yes instance, we are guaranteed that an
acceptable choice will eventually be found and we
go on.

In a NDTM, what we are doing is making, and testing,
all of those choices at once by 'spawning' a different
NDTM for each of them. Those that don't work out,
simply die (or something).

This is kind of like the ultimate in parallel
programming.

12/28/21 © UCF CS 42

NDTM's
To allay concerns about not being able
to write on the tape, we can allow each
spawned NDTM to have its own copy of
the tape with a read/write head.

The restriction is that nothing can be
reported back except that the accept
state was reached.

12/28/21 © UCF CS 43

NDTM's
Another interpretation of nondeterminism:

From the basic definition, we notice that out of
every state having a nondeterministic choice, at
least one choice is valid and all the rest sort of die
off. That is they really have no reason for being
spawned (for this instance - maybe for another).
So, we station at each such state, an 'oracle' (an
all knowing being) who only allows the correct
NDTM to be spawned.

An 'Oracle Machine.'

12/28/21 © UCF CS 44

NDTM's
This is not totally unreasonable. We can look
at a non deterministic decision as a
deterministic algorithm in which, when an
"option" is to be tested, it is very lucky, or
clever, to make the correct choice the first
time.

In this sense, the two machines would work
identically, and we are just asking "How long
does a DTM take if it always makes the
correct decisions?"

12/28/21 © UCF CS 45

NDTM's
As long as we are talking magic, we might as
well talk about a 'super' oracle stationed at
the start state (and get rid of the rest of the
oracles) whose task is to examine the given
instance and simply tell you what sequence
of transitions needs to be executed to reach
the accept state.

He/she will write them to the left of cell 0 (the
instance is to the right).

12/28/21 © UCF CS 46

NDTM's
Now, you simply write a DTM to run back and
forth between the left of the tape to get the
'next action' and then go back to the right half
to examine the NDTM and instance to verify
that the provided transition is a valid next
action. As predicted by the oracle, the DTM will
see that the NDTM would reach the accept
state and can report the number of steps
required.

12/28/21 © UCF CS 47

NDTM's
All of this was originally designed with
Language Recognition problems in mind. It
is not a far stretch to realize the Yes
instances of any of our more real word-like
decision problems defines a language, and
that the same approach can be used to
"solve" them.

Rather than the oracle placing the sequence
of transitions on the tape, we ask him/her to
provide a 'witness' to (a 'proof' of) the
correctness of the instance.

12/28/21 © UCF CS 48

NDTM's
For example, in the SubsetSum problem, we
ask the oracle to write down the subset of
objects whose sum is B (the desired sum).
Then we ask "Can we write a deterministic
polynomial algorithm to test the given
witness."

The answer for SubsetSum is Yes, we can,
i.e., the witness is verifiable in deterministic
polynomial time.

12/28/21 © UCF CS 49

NDTM's - Witnesses
Just what can we ask and expect of a

"witness"?

The witness must be something that
(1) we can verify to be accurate (for the given

problem and instance) and
(2) we must be able to "finish off" the solution.

All in polynomial time.

12/28/21 © UCF CS 50

NDTM's - Witnesses
The witness can be nothing!

Then, we are on our own. We have to "solve the
instance in polynomial time."

The witness can be "Yes."
Duh. We already knew that. We have to now
verify the yes instance is a yes instance (same
as above).

The witness has to be something other than nothing
and Yes.

12/28/21 © UCF CS 51

NDTM's - Witnesses
The information provided must be something we could
have come up with ourselves, but probably at an
exponential cost. And, it has to be enough so that we
can conclude the final answer Yes from it.

Consider a witness for the graph coloring problem:

Given: A graph G = (V, E) and an integer k.
Question: Can the vertices of G be assigned colors so
that adjacent vertices have different colors and use at
most k colors?

12/28/21 © UCF CS 52

NDTM's - Witnesses
The witness could be nothing, or Yes.

But that's not good enough - we don't know of
a polynomial algorithm for graph coloring.

It could be "vertex 10 is colored Red."
That's not good enough either. Any single
vertex can be colored any color we want.

It could be a color assigned to each vertex.
That would work, because we can verify its
validity in polynomial time, and we can
conclude the correct answer of Yes.

12/28/21 © UCF CS 53

NDTM's - Witnesses
What if it was a color for all vertices but one?

That also is enough. We can verify the
correctness of the n-1 given to us, then we can
verify that the one uncolored vertex can be
colored with a color not on any neighbor, and
that the total is not more than k.

What if all but 2, 3, or 20 vertices are colored
All are valid witnesses.

What if half the vertices are colored?
Usually, No. There's not enough information.
Sure, we can check that what is given to us is
properly colored, but we don't know how to
"finish it off."

12/28/21 © UCF CS 54

NDTM's - Witnesses
An interesting question: For a given
problem, what are the limits to what
can be provided that still allows a
polynomial verification?

12/28/21 © UCF CS 55

NDTM's
A major question remains: Do we have, in
NDTMs, a model of computation that solves all
deterministic exponential (DE) problems in
polynomial time (nondeterministic polynomial
time)??

It definitely solves some problems we think are
DE in nondeterministic polynomial time.

12/28/21 © UCF CS 56

NDTM's
But, so far, all problems that have been proven
to require deterministic exponential time also
require nondeterministic exponential time.

So, the jury is still out. In the meantime, NDTMs
are still valuable, because they might identify a
larger class of problems than does a
deterministic TM - the set of decision problems
for which Yes instances can be verified in
polynomial time.

12/28/21 © UCF CS 57

Problem Classes
We now begin to discuss several different classes of
problems. The first two will be:

NP 'Nondeterministic' Polynomial
P 'Deterministic' Polynomial,

The 'easiest' problems in NP

Their definitions are rooted in the depths of
Computability Theory as just described, but it is worth
repeating some of it in the next few slides.

12/28/21 © UCF CS 58

Problem Classes
We assume knowledge of Deterministic and
Nondeterministic Turing Machines. (DTM's and
NDTM's)

The only use in life of a NDTM is to scan a string of
characters X and proceed by state transitions until an
'accept' state is entered.

X must be in the language the NDTM is designed to
recognize. Otherwise, it blows up!!

12/28/21 © UCF CS 59

Problem Classes
So, what good is it?

We can count the number of transitions on the
shortest path (elapsed time) to the accept
state!!!

If there is a constant k for which the number of
transitions is at most |X|k, then the language is
said to be 'nondeterministic polynomial.'

12/28/21 © UCF CS 60

Problem Classes
The subset of YES instances of the set of instances of a decision
problem, as we have described them above, is a language.

When given an instance, we want to know that it is in the subset of
Yes instances. (All answers to Yes instances look alike - we don't
care which one we get or how it was obtained).

This begs the question "What about the No instances?"

The answer is that we will get to them later. (They will actually
form another class of problems.)

12/28/21 © UCF CS 61

Problem Classes
This actually defines our first Class, NP, the set of decision
problems whose Yes instances can be solved by a
Nondeterministic Turing Machine in polynomial time.

That knowledge is not of much use!! We still don't know
how to tell (easily) if a problem is in NP. And, that's our
goal.

Fortunately, all we are doing with a NDTM is tracing the
correct path to the accept state. Since all we are interested
in doing is counting its length, if someone just gave us the
correct path and we followed it, we could learn the same
thing - how long it is.

12/28/21 © UCF CS 62

Problem Classes
It is even simpler than that (all this has been proven
mathematically). Consider the following problem:

You have a big van that can carry 10,000 lbs. You
also have a batch of objects with weights w1, w2, …,
wn lbs. Their total sum is more than 10,000 lbs, so
you can't haul all of them.

Can you load the van with exactly 10,000 lbs?
(WOW. That's the SubsetSum problem.)

12/28/21 © UCF CS 63

Problem Classes
Now, suppose it is possible (i.e., a Yes instance) and
someone tells you exactly what objects to select.

We can add the weights of those selected objects and
verify the correctness of the selection.

This is the same as following the correct path in a
NDTM. (Well, not just the same, but it can be proven to
be equivalent.)

Therefore, all we have to do is count how long it takes
to verify that a "correct" answer" is in fact correct.
12/28/21 © UCF CS 64

