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Graph Coloring
• Instance: A graph G = (V, E) and an integer k.
• Question: Can G be "properly colored" with at most k colors?

• Proper Coloring: one of the k colors is assigned to each vertex so 
that adjacent vertices have different colors.

• Suppose we have two instances of this problem (1) is True (Yes) 
and the other (2) is False (No).

• AND, you know (1) is Yes and (2) is No. (Maybe you have a secret 
program that has analyzed the two instance.)
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Checking a “Yes” Answer
• Without showing how your program works (you may not even know), how 

can you convince someone else that instance (1) is, in fact, a Yes instance?

• We can assume the output of the program was an actual coloring of G. Just 
give that to a doubter who can easily check that no adjacent vertices are 
colored the same, and that no more than k colors were used.

• How about the No instance?

• What could the program have given that allows us to quickly "verify" (2) is a 
No  instance?

• No One Knows!!

• For all problems seem to be harder than there exists ones in many contexts
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Checking a “No” Answer
• The only thing anyone has thought of is to have it test all 

possible ways to k-color the graph – all of which fail, of 
course, if “No” is the correct answer.

• There are an exponential number of things (colorings) to 
check.

• For some problems, there seems to be a big difference 
between verifying Yes and No instances.

• To solve a problem efficiently, we must be able to solve 
both Yes and No instances efficiently and so it would 
seem we should be able to verify both quickly.
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Hard and Easy
• True Conjecture: If a problem is easy to solve, then it is 

easy to verify (just solve it and compare).

• Contrapositive: If a problem is hard to verify, then it is 
(probably) hard to solve.

• There is nothing magical about Yes and No instances –
sometimes the Yes instances are hard to verify and No 
instances are easy to verify.

• And, of course, sometimes both are hard to verify.
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Easy Verification
• Are there problems in which both Yes and No instances 

are easy to verify?

• Yes. For example: Search a list L of n values for a key x.
• Question: Is x in the list L?

• Yes and No instances are both easy to verify.

• In fact, the entire problem is easy to solve!!
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Verify vs Solve
• Conjecture: If both Yes and No instances are easy to verify, then the 

problem is easy to solve.

• No one has yet proven this claim, but most researchers believe it to 
be true.

• Note: It is usually relatively easy to prove something is easy – just 
write an algorithm for it and prove it is correct and that it is fast 
(usually,  we mean polynomial).

• But, it is usually very difficult to prove something is hard – we may  
not be clever enough yet. So, you will often see "appears to be 
hard."
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A CS Grand Challenge
Does P=NP?

There are many equivalent ways to describe P and NP. For now, we 
will use the following. 
P is the set of decision problems (those whose instances have 
“Yes”/ “No” answers) that can be solved in polynomial time on a 
deterministic computer (no concurrency or guesses allowed). 
NP is the set of decision problems that can be solved in polynomial 
time on a non-deterministic computer (equivalently one that  can 
spawn an unbounded number of parallel threads; equivalently one 
that can be verified in polynomial time on a deterministic computer). 
Again, as “Does P=NP?” has just one question, it is solvable, we 
just don’t yet know which solution, “Yes” or “No”, is the correct one.
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ORDER ANALYSIS
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Notion of “Order”
Throughout the complexity portion of this course, 
we will be interested in how long an algorithm 
takes on the instances of some arbitrary "size" 
n. Recognizing that different times can be 
recorded for two instance of size n, we only ask 
about the worst case. 

We also understand that different languages, 
computers, and even skill of the implementer 
can alter the "running time."
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Notion of “Order”
As a result, we really can never know "exactly" 
how long anything takes.

So, we usually settle for a substitute function, 
and say the function we are trying to measure is 
"of the order of" this new substitute function.  
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Notion of “Order”
"Order" is something we use to describe an upper bound 
upon something else (in our case, time, but it can apply 
to almost anything).

For example, let f(n) and g(n) be two functions. We say 
"f(n) is order g(n)" when there exists constants c and N
such that f(n) ≤ cg(n) for all n ≥ N.

What this is saying is that when n is 'large enough,' f(n)
is bounded above by a constant multiple of g(n).
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Notion of “Order”
This is particularly useful when f(n) is not known 
precisely, is complicated to compute, and/or difficult to 
use. We can, by this, replace f(n) by g(n) and know we 
aren't "off too far."

We say f(n) is "in the order of g(n)" or, simply, 
f(n) Î O(g(n)).

Usually, g(n) is a simple function, like nlog(n), n3, 2n, 
etc., that's easy to understand and use.
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Notion of “Order”
Order of an Algorithm: The maximum 
number of steps required to find the 
answer to any instance of size n, for any 
arbitrary value of n. 

For example, if an algorithm requires at 
most 6n2+3n–6 steps on any instance of 
size n, we say it is "order n2" or, simply, 
O(n2).
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Order
Let the order of algorithm X be in O(fx(n)).

Then, for algorithms A and B and their respective order 
functions, fA(n) and fB(n), consider the limit of fA(n)/fB(n)
as n goes to infinity.

If this value is

0 A is faster than B
constant A and B are "equally slow/fast"
infinity  A is slower than B.
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Order of a Problem
Order of a Problem 

The order of the fastest algorithm that can 
ever solve this problem. (Also known as 
the "Complexity" of the problem.)

Often difficult to determine, since this allows 
for algorithms not yet discovered.
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Decision vs Optimization
Two types of problems are of particular interest: 

Decision Problems   ("Yes/No" answers)

Optimization problems  ("best" answers)

(there are other types)
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Vertex Cover (VC)
• Suppose we are in charge of a large network (a graph where edges 

are links between pairs of cities (vertices). Periodically, a line fails. 
To mend the line, we must call in a repair crew that goes over the  
line to fix it. To minimize down time, we station a repair crew at one 
end of every line. How many crews must you have and where 
should they be stationed?

• This is called the Vertex Cover Problem. (Yes, it sounds like it  
should be called the Edge Cover problem – something else already 
had that name.)

• An interesting problem – it is among the hardest problems, yet is 
one of the easiest of the hard problems.
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VC Decision vs Optimization
• As a Decision Problem:

• Instances: A graph G and an integer k.
• Question: Does G possess a vertex Cover with at most k vertices?

• As an Optimization Problem:

• Instances: A graph G.
• Question: What is the smallest k for which G possesses a vertex 

cover?
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Relation of VC Problems
• If we can (easily) solve either one of these problems, we can (easily) 

solve the other. (To solve the optimization version, just solve the  
decision version with several different values of k. Use a binary 
search on  k between 1 and  n.  That is log(n) solutions  of the  
decision problem solves the  optimization problem. It's simple to 
solve the  decision version if we can  solve the  optimization version.

• We say their time complexity differs by no more than a multiple of 
log(n).

• If one is polynomial then so is the other.
• If one is exponential, then so is the other.

• We say they are equally difficult (both poly. or both exponential).
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Smallest VC
• A "stranger version"

• Instances: A graph G and an integer k.
• Question: Does the smallest vertex cover of G have exactly k

vertices?
• This is a decision problem. But, notice that it does not seem to be 

easy to verify either Yes or No instances!! (We can easily verify No 
instances for which the VC number is less than k, but not when it is 
actually greater than k.)

• So, it would seem to be in a different category than either of the  
other two. Yet, it also has the property that if we can easily solve 
either of the first two versions, we can easily solve this one.
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Natural Pairs of Problems
Interestingly, these usually come in pairs 

a decision problem, and

an optimization problem.

Equally easy, or equally difficult, to solve.

Both can be solved in polynomial time, or both require 
exponential time.
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A Word about Time
An algorithm for a problem is said to be polynomial if 
there exists integers k and N such that t(n), the 
maximum number of steps required on any instance of 
size n, is at most nk, for all n ≥ N.

Otherwise, we say the algorithm is exponential. Usually, 
this is interpreted to mean t(n) ≥ cn for an infinite set of 
size n instances, and some constant c > 1 (often, we 
simply use c = 2).
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A Word about “Words”
Normally, when we say a problem is "easy" we mean 
that it has a polynomial algorithm. 

But, when we say a problem is "hard" or “apparently 
hard" we usually mean no polynomial algorithm is 
known, and none seems likely. 

It is possible a polynomial algorithm exists for "hard" 
problems, but the evidence seems to indicate otherwise.
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A Word about Abstractions
Problems we will discuss are usually "abstractions" of 
real problems. That is, to the extent possible, non-
essential features have been removed, others have been 
simplified and given variable names, relationships have 
been replaced with mathematical equations and/or 
inequalities, etc.

If an abstraction is hard, then the real problem is 
probably even harder!!
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A Word about Toy Problems
This process, Mathematical Modeling, is a field of study 
in itself, and not our interest here. 

On the other hand, we sometimes conjure up artificial 
problems to put a little "reality" into our work. This results 
in what some call "toy problems."

Again, if a toy problem is hard, then the real problem is 
probably harder.
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Very Hard Problems
Some problems have no algorithm (e. g., Halting 
Problem.) 

No mechanical/logical procedure will ever solve all 
instances of any such problem!!

Some problems have only exponential algorithms 
(provably so – they must take at least order 2n steps) So 
far, only a few have been proven, but there may be 
many. We suspect so.
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Easy Problems
Many problems have polynomial algorithms 
(Fortunately). 

Why fortunately? Because, most exponential 
algorithms are essentially useless for problem 
instances with n much larger than 50 or 60. 
We have algorithms for them, but the best of 
these will take 100's of years to run, even on 
much faster computers than we now envision.
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Three Classes of Problems
Problems proven to be in these three groups 
(classes) are, respectively,

Undecidable, Exponential, and Polynomial.

Theoretically, all problems belong to exactly 
one of these three classes. 
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Unknown Complexity
Practically, there are a lot of problems (maybe, most) 
that have not been proven to be in any of the classes 
(Yet, maybe never will be). 

Most currently "lie between" polynomial and 
exponential – we know of exponential algorithms, 
but have been unable to prove that exponential 
algorithms are necessary. 

Some may have polynomial algorithms, but we have 
not yet been clever enough to discover them.
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Why do we Care?
If an algorithm is O(nk), increasing the size of an 
instance by one gives a running time that is O((n+1)k)

That’s really not much more.

With an increase of one in an exponential algorithm, 
O(2n) changes to O(2n+1) = O(2*2n) = 2*O(2n) – that is, it 
takes about twice as long.
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A Word about “Size”
Technically, the size of an instance is the minimum number of 
bits (information) needed to represent the instance – its 
"length." 

This comes from early Formal Language researchers who 
were analyzing the time needed to 'recognize' a string of 
characters as a function of its length (number of 
characters).

When dealing with more general problems there is usually a 
parameter (number of vertices, processors, variables, etc.) 
that is polynomially related to the length of the instance. 
Then, we are justified in using the parameter as a measure 
of the length (size), since anything polynomially related to 
one will be polynomially related to the other. 
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The Subtlety of “Size”
But, be careful.

For instance, if the "value" (magnitude) of n is both 
the input and the parameter, the 'length' of the input 
(number of bits) is log2(n). So, an algorithm that 
takes n time is running in n = 2log2(n) time, which is 
exponential in terms of the length, log2(n), but linear 
(hence, polynomial) in terms of the "value," or 
magnitude, of n.

It's a subtle, and usually unimportant difference, but 
it can bite you.
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Subset Sum
• Problem – Subset Sum

• Instances: A list L of n integer values and an integer B.
• Question: Does L have a subset which sums exactly to B?

• No one knows of a polynomial (deterministic) solution to this  problem.

• On the other hand, there is a very simple (dynamic programming) algorithm 
that runs in O(nB) time.

• Why isn't this "polynomial"? 
• Because, the "length" of an instance is nlog(B) and
• nB > (nlog(B))^k for any fixed k.
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Why do we Care?
When given a new problem to solve (design an algorithm 
for), if it's undecidable, or even exponential, you will 
waste a lot of time trying to write a polynomial solution 
for it!!

If the problem really is polynomial, it will be worthwhile 
spending some time and effort to find a polynomial 
solution.

You should know something about how hard a problem 
is before you try to solve it.
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Research Territory
Decidable – vs – Undecidable     

(area of Computability Theory)

Exponential – vs – polynomial   
(area of Computational Complexity)

Algorithms for any of these         
(area of Algorithm Design/Analysis)

12/28/21 © UCF CS 36



Complexity Theory

Second Part of Course



Models of Computation
NonDeterminism

Since we can't seem to find a model of computation 
that is more powerful than a TM, can we find one that 
is 'faster'?

In particular, we want one that takes us from 
exponential time to polynomial time.

Our candidate will be the NonDeterministic Turing 
Machine (NDTM).
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NDTM's
In the basic Deterministic Turing Machine (DTM) we 
make one major alteration (and take care of a few 
repercussions): 

The 'transition functon' in DTM's is allowed to 
become a 'transition mapping' in NDTM's.

This means that rather than the next action being 
totally specified (deterministic) by the current state 
and input character, we now can have many next 
actions - simultaneously. That is, a NDTM can be in 
many states at once. (That raises some interesting 
problems with writing on the tape, just where the 
tape head is, etc., but those little things can be 
explained away).
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NDTM's
We also require that there be only one halt state - the 
'accept' state. That also raises an interesting 
question - what if we give it an instance that is not 
'acceptable'? The answer - it blows up (or goes into 
an infinite loop). 

The solution is that we are only allowed to give it 
'acceptable' input. That means

NDTM's are only defined for decision problems
and, in particular, only for Yes instances.
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NDTM's
We want to determine how long it takes to get to the 
accept state - that's our only motive!!

So, what is a NDTM doing?

In a normal (deterministic) algorithm, we often have 
a loop where each time through the loop we are 
testing a different option to see if that "choice" leads 
to a correct solution. If one does, fine, we go on to 
another part of the problem. If one doesn't, we return 
to the same place and make a different choice, and 
test it, etc.

12/28/21 © UCF CS 41



NDTM's
If this is a Yes instance, we are guaranteed that an 
acceptable choice will eventually be found and we 
go on.

In a NDTM, what we are doing is making, and testing, 
all of those choices at once by 'spawning' a different 
NDTM for each of them. Those that don't work out, 
simply die (or something).

This is kind of like the ultimate in parallel 
programming.

12/28/21 © UCF CS 42



NDTM's
To allay concerns about not being able 
to write on the tape, we can allow each 
spawned NDTM to have its own copy of 
the tape with a read/write head. 

The restriction is that nothing can be 
reported back except that the accept 
state was reached.
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NDTM's
Another interpretation of nondeterminism:

From the basic definition, we notice that out of 
every state having a nondeterministic choice, at 
least one choice is valid and all the rest sort of die 
off. That is they really have no reason for being 
spawned (for this instance - maybe for another). 
So, we station at each such state, an 'oracle' (an 
all knowing being) who only allows the correct 
NDTM to be spawned.

An 'Oracle Machine.'

12/28/21 © UCF CS 44



NDTM's
This is not totally unreasonable. We can look 
at a non deterministic decision as a 
deterministic algorithm in which, when an 
"option" is to be tested, it is very lucky, or 
clever, to make the correct choice the first 
time.

In this sense, the two machines would work 
identically, and we are just asking "How long 
does a DTM take if it always makes the 
correct decisions?"
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NDTM's
As long as we are talking magic, we might as 
well talk about a 'super' oracle stationed at 
the start state (and get rid of the rest of the 
oracles) whose task is to examine the given 
instance and simply tell you what sequence 
of transitions needs to be executed to reach 
the accept state. 

He/she will write them to the left of cell 0 (the 
instance is to the right).
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NDTM's
Now, you simply write a DTM to run back and 
forth between the left of the tape to get the 
'next action' and then go back to the right half 
to examine the NDTM and instance to verify 
that the provided transition is a valid next 
action. As predicted by the oracle, the DTM will 
see that the NDTM would reach the accept 
state and can report the number of steps 
required.
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NDTM's
All of this was originally designed with 
Language Recognition problems in mind. It 
is not a far stretch to realize the Yes 
instances of any of our more real word-like 
decision problems defines a language, and 
that the same approach can be used to 
"solve" them.

Rather than the oracle placing the sequence 
of transitions on the tape, we ask him/her to 
provide a 'witness' to (a 'proof' of) the 
correctness of the instance. 
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NDTM's
For example, in the SubsetSum problem, we 
ask the oracle to write down the subset of 
objects whose sum is B (the desired sum). 
Then we ask "Can we write a deterministic 
polynomial algorithm to test the given 
witness." 

The answer for SubsetSum is Yes, we can, 
i.e., the witness is verifiable in deterministic 
polynomial time.
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NDTM's - Witnesses
Just what can we ask and expect of a 

"witness"?

The witness must be something that 
(1) we can verify to be accurate (for the given 

problem and instance) and
(2) we must be able to "finish off" the solution.

All in polynomial time.
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NDTM's - Witnesses
The witness can be nothing!

Then, we are on our own. We have to "solve the 
instance in polynomial time."

The witness can be "Yes."
Duh. We already knew that. We have to now 
verify the yes instance is a yes instance (same 
as above).

The witness has to be something other than nothing 
and Yes.

12/28/21 © UCF CS 51



NDTM's - Witnesses
The information provided must be something we could 
have come up with ourselves, but probably at an 
exponential cost. And, it has to be enough so that we 
can conclude the final answer Yes from it.

Consider a witness for the graph coloring problem:

Given: A graph G = (V, E) and an integer k.
Question: Can the vertices of G be assigned colors so 
that adjacent vertices have different colors and use at 
most k colors?
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NDTM's - Witnesses
The witness could be nothing, or Yes.

But that's not good enough - we don't know of 
a polynomial algorithm for graph coloring.

It could be "vertex 10 is colored Red." 
That's not good enough either.  Any single 
vertex can be colored any color we want.

It could be a color assigned to each vertex. 
That would work, because we can verify its 
validity in polynomial time, and we can 
conclude the correct answer of Yes.
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NDTM's - Witnesses
What if it was a color for all vertices but one?

That also is enough. We can verify the 
correctness of the n-1 given to us, then we can 
verify that the one uncolored vertex can be 
colored with a color not on any neighbor, and 
that the total is not more than k.

What if all but 2, 3, or 20 vertices are colored
All are valid witnesses.

What if half the vertices are colored? 
Usually,  No. There's not enough information. 
Sure, we can check that what is given to us is 
properly colored, but we don't know how to 
"finish it off."
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NDTM's - Witnesses
An interesting question: For a given 
problem, what are the limits to what 
can be provided that still allows a 
polynomial verification?
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NDTM's
A major question remains: Do we have, in 
NDTMs, a model of computation that solves all 
deterministic exponential (DE) problems in 
polynomial time (nondeterministic polynomial 
time)??

It definitely solves some problems we think are 
DE in nondeterministic polynomial time.
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NDTM's
But, so far, all problems that have been proven
to require deterministic exponential time also 
require nondeterministic exponential time.

So, the jury is still out. In the meantime, NDTMs 
are still valuable, because they might identify a 
larger class of problems than does a 
deterministic TM - the set of decision problems 
for which Yes instances can be verified in 
polynomial time.
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Problem Classes
We now begin to discuss several different classes of 
problems. The first two will be: 

NP 'Nondeterministic' Polynomial
P   'Deterministic' Polynomial,

The 'easiest' problems in NP

Their definitions are rooted in the depths of 
Computability Theory as just described, but it is worth 
repeating some of it in the next few slides.
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Problem Classes
We assume knowledge of Deterministic and 
Nondeterministic Turing Machines. (DTM's and 
NDTM's)

The only use in life of a NDTM is to scan a string of 
characters X and proceed by state transitions until an 
'accept' state is entered.

X must be in the language the NDTM is designed to 
recognize. Otherwise, it blows up!!
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Problem Classes
So, what good is it? 

We can count the number of transitions on the 
shortest path (elapsed time) to the accept 
state!!!

If there is a constant k for which the number of 
transitions is at most |X|k, then the language is 
said to be 'nondeterministic polynomial.'
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Problem Classes
The subset of YES instances of the set of instances of a decision 
problem, as we have described them above, is a language.

When given an instance, we want to know that it is in the subset of 
Yes instances. (All answers to Yes instances look alike - we don't 
care which one we get or how it was obtained).

This begs the question "What about the No instances?"

The answer is that we will get to them later. (They will actually 
form another class of problems.)

12/28/21 © UCF CS 61



Problem Classes
This actually defines our first Class, NP, the set of decision 
problems whose Yes instances can be solved by a 
Nondeterministic Turing Machine in polynomial time.

That knowledge is not of much use!! We still don't know 
how to tell (easily) if a problem is in NP. And, that's our 
goal.

Fortunately, all we are doing with a NDTM is tracing the 
correct path to the accept state. Since all we are interested 
in doing is counting its length, if someone just gave us the 
correct path and we followed it, we could learn the same 
thing - how long it is.
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Problem Classes
It is even simpler than that (all this has been proven 
mathematically). Consider the following problem:

You have a big van that can carry 10,000 lbs. You 
also have a batch of objects with weights w1, w2, …, 
wn lbs. Their total sum is more than 10,000 lbs, so 
you can't haul all of them.

Can you load the van with exactly 10,000 lbs?
(WOW. That's the SubsetSum problem.)
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Problem Classes
Now, suppose it is possible (i.e., a Yes instance) and 
someone tells you exactly what objects to select.

We can add the weights of those selected objects and 
verify the correctness of the selection.

This is the same as following the correct path in a 
NDTM. (Well, not just the same, but it can be proven to 
be equivalent.)

Therefore, all we have to do is count how long it takes 
to verify that a "correct" answer" is in fact correct.
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