
COT 6410 Spring2020 Sample Final Exam 
 

 1. Let set A be infinite recursive, B be re non-recursive and C be non-re. Using the terminology 
(REC) recursive, (RE) re, non-recursive, (NR) non-re (possibly co-re), categorize each set by 
dealing with the cases I present, saying whether or not the set can be of the given category and 
briefly, but convincingly, justifying each answer (BE COMPLETE). You may assume sets like À 
are infinite REC; K and K0 are RE; and TOTAL is non-re. You may also assume, for any set S, the 
existence of comparably hard sets  
SE  = {2x|xÎS} and SD = {2x+1|xÎS}.  

a.) A + B = { x | x = y + z, for some y Î A and some z Î B } 

REC:  A = À, B = K0, A+B = { x | x ³ min y Î K0 }.  
This is the complement of a finite set and is hence decidable as the finite set is. 

b.) A Ç C = { x | x Î A and x Î C} 

RE: A = E = {2x | x ÎÀ}, C = TOTALD È KE. 

A Ç C = KE which is RE. 
 
 2. Choosing from among (REC) recursive, (RE) re non-recursive, (coRE) co-re non-recursive, 

(NRNC) non-re/non-co-re, categorize each of the sets in a) through d). Justify your answer by 
showing some minimal quantification of some known recursive predicate.  

a) A = { <f,g> | $x jf(x)¯ and jg(x) = jf(x)  }. 

$<x,t > [STP(f,x,t) & STP(g,x,t) & Value(f,x,t) = Value(g,x,t)]   RE  

b.) B = { f |  range(jf) is empty } 

"<x,t > [~STP(f,x,t)]          co-RE  

c.) C = { <f ,x> | jf(x)¯ but takes at least 10 steps to do so } 

$t [STP(f,x,t) & ~STP(f,x,9)]        RE  

d.) D = { f | jf diverges for some value of x }  

$x "t [~STP(f,x,t) ]         NRNC  
 

 3. Looking back at Question 1, which of these are candidates for using Rice’s Theorem to show their 
unsolvability? Check all for which Rice Theorem might apply. 

 
   a)  Ö  b)  Ö c)   d)  Ö   
 
 4. Let S be an arbitrary semi-decidable set. By definition, S is the domain of some partial recursive 

function gS.  Using gS, constructively show that S is the range of some partial recursive function, fS. 
No proof is required; just the construction is needed here. 

 
  fS(x) = x * $t [ STP(x, gs, t) ] or 

  fS(x) = x * (gs(x) - gs(x) + 1) 
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 5. Using the definition that S is recursively enumerable iff S is the range of some effective procedure fS 

(partial recursive function), prove that if both S and its complement ~S are recursively enumerable 
(using enumerating effective procedures fS and f~S) then S is decidable. To get full credit, you must 
show the characteristic function for S, cS, in all cases. Also, be sure to discuss why your cS works. 
Look at end of this sample exam for alternative, simpler problems (this one is too hard). 

Define steps = µ <y, t>[(STP(fS,y,t) &  (VALUE(fS,y,t)= x)) or 
 (STP(f~S,y,t) &  (VALUE(f~S,y,t)= x)) ]) 

Define cS(x) = STP(fS,<steps>1, <steps>2) & (VALUE(fS,<steps>1, <steps>2) = x 

If x Î S then $y fS(y) = x and so $<y,t>[( STP(fS,y,t)&(VALUE(fS,y,t)= x))] and so cS(x) = 1 (true) 

If x Ï S then $y f~S(y)=x and so $<y,t>[ (STP(f~S,y,t) & (VALUE(f~S,y,t)= x)) &  
(~STP(fS,y,t) or (VALUE(fS,y,t)¹ x)) ]] and so cS(x)=0 (false) 

Because of this cS(x) always converges and produces 1 (true) iff xÎ S 

Thus, cS(x) meets our requirements. 

 6. Rice’s Theorem deals with attributes of certain types of problems P about partial recursive functions 
and their corresponding sets of indices SP. The following image describing a function fx,y,r is central 
to understanding Rice’s Theorem.  

 

 

 

 

 
Explain the meaning of this by indicating: 

 a.) What assumption do we make about what kind of functions are not in P?  
We assume no function with empty domain has property P.  

 b.) What is r, how is it chosen and how can we guarantee its existence?  
r is the index of some function with property P. One must exist since P is non-trivial. 

 c.) Using recursive function notations, write down precisely what fx,y,r computes for the Strong Form of 
Rice’s Theorem.  
fx,y,r (z) = jx(y) - jx(y) + jr(z) 

 How does this function fx,y,r behave with respect to x,y and r, and how does that relate to the 
original problem, P, and set, SP?  

 If jx(y)¯ then fx,y,r (z) = jr(z) "z and fx,y,r Î SP. 

 If jx(y)­ then fx,y,r (z)­ "z and fx,y,r Ï SP. 
  Thus, we could decide the halting problem if we could decide membership in SP, so P is an 

undecidable problem. 
  

x 
y 

j
x
(y) 

j
r
(z) z

 

f
x,y,r

(z) 



COT 6410: Spring 2020 – 3 – Sample Final – Hughes 
 

 7. Define NAT = { f | range(f) = À }. That is, f ÎNAT iff f’s range includes every natural number. 
 a.) Show some minimal quantification of some known recursive predicate that provides an upper bound 

for the complexity of NAT. 

"k $ <x, t> [STP(f,x,t) && (Value(f,x,t) == k)] 

 b.) Use Rice’s Theorem to prove that NAT is undecidable. 
First, NAT is non-trivial as the identity, I(x)=x, is in NAT and the Constant Zero, Z(x)=0, is not. 

Second, let f and g be arbitrary indices of arbitrary effective procedures, such that range(jf) =  
range(jg).  

f is in NAT iff range(jf) = À iff range(jg) = À if g is in NAT  
This means NAT satisfies both properties of the weak form of Rice’s Theorem associated with 
ranges and is therefore undecidable. 

 c.) Show that TOT ≤m NAT, where TOT = { f | "x jf(x)¯ }. 

Let f be arbitrary. Define an algorithmic mapping Gf from indices to indices as  
Gf (x) = f(x)-f(x)+x.  

Now, Gf (x) = I(x) (the Identity function) iff f Î TOTAL and  
$x xÏ range(Gf) iff f Ï TOTAL This will be any x where jf(x)­.  
Thus, f is in TOT iff Gf is in NAT. Thus,  TOTAL ≤m NAT. 

 
 8. Why does Rice’s Theorem have nothing to say about the following? Explain by showing some 

condition of Rice’s Theorem that is not met by the stated property.  
  AT-LEAST-LINEAR = { f | "y jf(y) converges in no fewer than y steps }. 

We can deny the 2nd condition of Rice’s Theorem since 
Z, where Z(x) = 0, implemented by the TM R converges in one step no matter what x is and 
hence is not in AT-LEAST-LINEAR 
Z’, defined by the TM L R R, is in AT-LEAST-LINEAR  
However, "x [ Z(x) = Z’(x) ], so they have the same I/O behavior and yet one is in and the 
other is out of AT-LEAST-LINEAR, denying the 2nd condition of Rice’s Theorem 

 
 9. Consider the following set of independent tasks with associated task times: 

(T1,4), (T2,5), (T3,2), (T4,7), (T5,1), (T6,4), (T7,8) 
Fill in the schedules for these tasks under the associated strategies below. 
Greedy using the list order above: 

T1 T1 T1 T1 T3 T3 T5 T6 T6 T6 T6 T7 T7 T7 T7 T7 T7 T7 T7                    

T2 T2 T2 T2 T2 T4 T4 T4 T4 T4 T4 T4                           
Greedy using a reordering of the list so that longest running tasks appear earliest in the list: 

T7 T7 T7 T7 T7 T7 T7 T7 T1 T1 T1 T1 T6 T6 T6 T6                    

T4 T4 T4 T4 T4 T4 T4 T2 T2 T2 T2 T2 T3 T3 T5                     
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 10. We described the proof that 3SAT is polynomial reducible to Subset-Sum. You must repeat that. 

 a.) Assuming a 3SAT expression (a + a + ~b) (~a + b + c), fill in all omitted values (zeroes elements 
can be left as omitted) of the reduction from 3SAT to Subset-Sum. 

 a b c a + a + ~b ~a + b + c 
a 1   1 or 2  

~a 1    1 
b  1   1 

~b  1  1  
c   1  1 

~c   1   
C1    1  
C1’    1  
C2     1 
C2’     1 

 1 1 1 3 3 

 b.) List some subset of the numbers above (each associated with a row) that sums to 1 1 1 3 3. Indicate 
what the related truth values are for a, b and c. 

  a = T ; b = T ; c = T 
  1 0 0 1 0  or 1 0 0 2 0 
  0 1 0 0 1  0 1 0 0 1 
  0 0 1 0 1  0 0 1 0 1 
  0 0 0 1 0  0 0 0 1 0 
  0 0 0 1 0  0 0 0 0 1 
  0 0 0 0 1 

 11. Present a gadget used in the reduction of 3-SAT to some graph theoretic problem where the gadget 
guarantees that each variable is assigned either True or False, but not both. Of course, you must tell 
me what graph theoretic problem is being shown NP-Complete and you must explain why the 
gadget works. 

  Vertex Cover     3-Color 
  Must Cover each Edge    Cannot choose B for either a or ~a 
  Set goal to min vertices    So one must be T and other F 
  Must choose one but not both are needed  
  This translates to choosing a or ~a 

 

 

  

~a  a 

~a  a 

 B 

 T  F 
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 12. Let Q be some problem (an optimization or decision problem). Assuming ≤ p means many-one 

reducible in polynomial time and ≤ tp means Turing-reducible in polynomial time, categorize Q as 
being in one of P, NP, co-NP, NP-Complete, NP-Easy, NP-Hard, or NP-Equivalent (see first two 
pages for definitions of each of these concepts). For each case, choose the most precise category. I 
filled in one answer already. 

Description of Q Category 
Q is decidable in deterministic polynomial time P 
For some R in NP, Q ≤ tp  R NP-Easy 
Q is both NP-Easy and NP-Hard NP-Equivalent 
Q is in NP and if R is in NP then R ≤ p Q NP-Complete 
A solution to Q is verifiable in deterministic polynomial time NP 
Q’s complement is in NP Co-NP 

 
 13. A graph G is k-Colorable if its vertices can be colored using just k (or fewer colors) such that 

adjacent vertices have different colors. The Chromatic Number of a graph G is the smallest number 
k for which G is k-Colorable. k-Colorable is a decision problem that has parameters (G, k), 
whereas the Chromatic Number problem is a function with a single parameter G. In all cases, 
assume G has n vertices. 

 a.) Show that k-Colorable ≤ tp Chromatic Number (≤ tp means Turing reducible in polynomial time). 

G is k-Colorable iff its Chromatic Number is some j £ k 
This can be checked by just one invocation of the Oracle for Chromatic Number 

 b.) Show that Chromatic Number ≤ tp k-Colorable (≤ tp means Turing reducible in polynomial time). 
G’s Chromatic Number is no worse than n, the number of vertices. Doing a binary search, we 
can make at most log2n calls to the oracle for k-Colorable to determine the smallest number 
for which G is k-colorable 

 
 14. Partition refers to the decision problem as to whether some set of positive integers S can be 

partitioned into two disjoint subsets whose elements have equal sums. Subset-Sum refers to the 
decision problem as to whether there is a subset of some set of positive integers S that precisely 
sums to some goal number G. 

 a.) Show that Partition ≤p Subset-Sum. 
  Look at notes 

 b.) Show that Subset-Sum ≤p Partition. 
  Look at notes 
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 15. QSAT is the decision problem to determine if an arbitrary fully quantified Boolean expression is 

true. Note: SAT only uses existential, whereas QSAT can have universal qualifiers as well so it 
includes checking for Tautologies as well as testing Satisfiability. What can you say about the 
complexity of QSAT (is it in P, NP, NP-Complete, NP-Hard)? Justify your conclusion. 

  QSAT is NP-Hard. This is so since SAT trivially reduces to QSAT (it is a subproblem of 
QSAT). Since SAT is known to be NP-Complete then some NP-Complete problem 
polynomially reduces to QSAT. This makes QSAT NP-Hard. As we cannot (at least not yet) 
show QSAT is in NP, then NP-Hard is the best we can do. 

 16. Given the following instance of 2SAT, E=(a ∨ b) ∧ (¬a ∨ ¬b) ∧ (¬a ∨ ¬c) ∧ (a ∨ c), display the 
associated implication graph, show its strongly connected components and then show how this leads 
to an assignment of variables that satisfies E. 

 

a = T, b = F, c = F      or     a=F, b=T, c=T 

 17. Specify True (T) or False (F) for each statement. 

Statement T or F 
Every Regular Language is also a Context Free Language T 
Phrase Structured Languages are the same as RE Languages T 
The Context Free Languages are closed under Complement F 
A language is recursive iff it and its complement are re T 
PCP is undecidable even for one letter systems F 
Membership in Context Sensitive Languages is undecidable F 
Every RE language is Turing reducible to its complement  T 
Emptiness is undecidable for Context Sensitive Languages T 
The complement of a trace language is Context Free T 
The word problem for two-letter Semi-Thue Systems is decidable F 

 
  

a 

~a 

~b 

b ~c 

c 
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 18. Consider the following graph. We wish to show it has vertex cover solution of 3. Our approach is to 
reduce this to the 2SAT related problem of determine if we can satisfy some associated positive 
2SAT expression, S, so that the minimum solution for S involves at most 3 variables being set to 
true? What is that corresponding positive 2SAT expression S? What is a minimal positive solution 
for the expression S and the vertex cover solution for the graph with which we started? 

 
 
S = (AÚB),(BÚD),(DÚE),(DÚF),(EÚF) 
Solutions are same for S and graph. They are B, D, E or B, E, F. For S the choice of a variable 
means it is set to true. 
  

 19. Let L be an arbitrary CFL. Show that L = L2 is undecidable by reducing L = S* to L = L2. 

Claim is that L = S* iff   

(1) S È {l} Í L; and 

(2) L = L2 

Clearly, if L = S* then (1) and (2) trivially hold. 

Conversely, we have S* Í L*= È n³0 Ln Í L 

first inclusion follows from (1); second from (2) 

 

 20. Let P = <<x1,x2,…,xn>, <y1,y2,…,yn>>, xi,y1 Î S+, 1≤i≤n , be an arbitrary instance of PCP. We can 
use PCP’s undecidability to show the undecidability of the problem to determine if a Context 
Sensitive Grammar generates a non-empty language. I will start the grammar, G. You must 
complete it so it maps an instance of PCP to the non-emptiness problem for this L(G). 
Define G = ({S, T} È S, {*}, S, R), where R is the set of rules: 
S ® xi S yiR | xi T yiR  1 ≤ i ≤ n  (Note: the superscripted R means Reversed) 
// Write the rules for the rest of this CSG. 

a T a ® * T *  " a Î S 
* a ® a *  " a Î S 
a * ® * a  " a Î S 
T ® *   

  
  

A 

B 

E 

D 

C 

F 
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 21. Let set A be a non-empty Regular Language, and let B be a non-Regular Context-Free 

Language. For each of (REG) Regular, and (CFL) non-Regular Context-Free, specify if the 
language C can or cannot be of the given language type and prove your assertions. As always, 
assume A, B and C are over some finite alphabet, S.  

C = B/A = { x | w = xy, where w Î B and y Î A } 
Note: / is called Quotient and was extensively discussed in Class. 
You may use any well-known Regular and Context-Free Languages. E.g., every language described 
by a Regular Expression is Regular and the set { anbn | n>0 } is a CFL. 

REG: (Big Hint: C can be Regular so show A and B where B/A is Regular.  
Explicitly describe languages A, B and C and you are done). 

 B = { an bn | n>0 } A = {c}  C = Æ, which is clearly regular 
CFL: (Big Hint: C can be a CFL, so show A and B where B/A is a CFL.  
Explicitly describe languages A, B and C and you are done). 

 B = { an bn | n>0 } A = {l}  C = { an bn | n>0 }, which is clearly a non-regular CFL 

 

Alternative 1 to #5 
 5. Using the definition that S is a recursively enumerable, non-empty set iff S is the range of some 

algorithm fS, prove that if both S and its complement ~S are recursively enumerable (using 
enumerating algorithms fS and f~S) then S is decidable. To get full credit, you must show the 
characteristic function for S, cS, in all cases. Also, be sure to discuss why your cS works 

Define cS(x) = fS( µ y [ fS(y)=x or f~S(y)=x] ) == x 

As fS and f~S are both algorithms, each converges on all y. Since S and ~S are mutually exclusive 
and their union is all natural numbers, one and only one of them produces x for some input y. If 
that one is fS then cS(x) = 1 (true); else cS(x) = 0 (false) 

Thus, cS(x) meets our requirements. 

Alternative 2 to #5 
 5. Using the definition that S is a recursively enumerable, non-empty set iff S is the domain of some 

effective procedure fS, prove that if both S and its complement ~S are recursively enumerable (using 
the domains of procedures fS and f~S) then S is decidable. To get full credit, you must show the 
characteristic function for S, cS, in all cases. Also, be sure to discuss why your cS works 

Define cS(x) = STP(fS, x, µ  t [(STP(fS,x,t) or (STP(f~S,x,t)]) 

Since S and ~S are mutually exclusive and their union is all natural numbers, µ  t [(STP(fS,x,t) or 
(STP(f~S,x,t)] will converge for some value of t. As one and only one of fS(x) and f~S(x) converges 
then just one of these STP functions ever returns true. If that one is for fS then fS(x)¯ and cS(x) = 
1 (true); else f~S(x)¯  and cS(x) = 0 (false) 

Thus, cS(x) meets our requirements. 

 


