6.1. In each case below, consider \(R1 \) to be Regular, \(R2 \) to be finite, and \(L1 \) and \(L2 \) to be non-regular CFLs. Fill in the three columns with \(Y \) or \(N \), indicating what kind of language \(L \) can be. No proofs are required. Read \(\subseteq \) as “contained in and may equal.”
Put \(Y \) in all that are possible and \(N \) in all that are not.

<table>
<thead>
<tr>
<th>Definition of (L)</th>
<th>Regular?</th>
<th>CFL, non-Regular?</th>
<th>Not even a CFL?</th>
</tr>
</thead>
<tbody>
<tr>
<td>(L = L1 \cap L2)</td>
<td>(Y)</td>
<td>(Y)</td>
<td>(Y)</td>
</tr>
<tr>
<td>(L = L1 - R2)</td>
<td>(Y)</td>
<td>(Y)</td>
<td>(N)</td>
</tr>
<tr>
<td>(L = \Sigma^* - R1)</td>
<td>(Y)</td>
<td>(N)</td>
<td>(N)</td>
</tr>
<tr>
<td>(L \subseteq R1)</td>
<td>(Y)</td>
<td>(Y)</td>
<td>(Y)</td>
</tr>
</tbody>
</table>

3.2. Choosing from among (D) decidable, (U) undecidable, categorize each of the following decision problems. No proofs are required. \(L \) is a language over \(\Sigma \).

<table>
<thead>
<tr>
<th>Problem / Language Class</th>
<th>Regular</th>
<th>Context Free</th>
<th>Context Sensitive</th>
<th>Phrase Structured</th>
</tr>
</thead>
<tbody>
<tr>
<td>(L) contains (\Sigma) ?</td>
<td>(D)</td>
<td>(D)</td>
<td>(D)</td>
<td>(U)</td>
</tr>
<tr>
<td>(</td>
<td>L</td>
<td>) is infinite ?</td>
<td>(D)</td>
<td>(D)</td>
</tr>
</tbody>
</table>

4.3. Prove that any class of languages, \(C \), closed under union, concatenation, intersection with regular languages, homomorphism and substitution (e.g., the Context-Free Languages) is closed under **Cut with Regular Sets**, denoted by the operator \(|| \), where \(L \in C \), \(R \) is Regular, \(L \) and \(R \) are both over the alphabet \(\Sigma \), and
\[
L||R = \{ x_1 x_2 \ldots x_k \mid k \geq 1, \forall i, y_i \in R \text{ and } x_1 y_1 x_2 y_2 \ldots x_k y_k \in L \text{ where each } x_i \in \Sigma^+ \}.
\]
You may assume substitution \(f(a) = \{ a, a' \} \), and homomorphisms \(g(a) = a' \) and \(h(a) = a, h(a') = \lambda \). Here \(a \in \Sigma \) and \(a' \) is a new character associated with each such \(a \in \Sigma \).
You only need give me the definition of \(L||R \) in an expression that obeys the above closure properties; you do not need to prove or even justify your expression.

\[
L||R = h(f(L) \cap (\Sigma^+ g(R))^+)
\]

4.4. Specify True (T) or False (F) for each statement.

<table>
<thead>
<tr>
<th>Statement</th>
<th>T or F</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Context Sensitive Languages are closed under union</td>
<td>(T)</td>
</tr>
<tr>
<td>The Post Correspondence Problem is undecidable if (</td>
<td>\Sigma</td>
</tr>
<tr>
<td>The function (\text{Univ}(f,x) = \phi(x)) is primitive recursive</td>
<td>(F)</td>
</tr>
<tr>
<td>If (\text{Halt} \leq_m P) then (P) must be RE</td>
<td>(F)</td>
</tr>
<tr>
<td>The RE sets are closed under complement</td>
<td>(F)</td>
</tr>
<tr>
<td>Myhill-Nerode proves that every regular language has a minimum state DFA</td>
<td>(T)</td>
</tr>
<tr>
<td>If (P) is solvable then Rice’s Theorem cannot apply to (P)</td>
<td>(T)</td>
</tr>
<tr>
<td>The incorrect traces of a Turing Machine’s Computations form a CFL</td>
<td>(T)</td>
</tr>
</tbody>
</table>
Let $P = \langle x_1, x_2, \ldots, x_n, y_1, y_2, \ldots, y_n \rangle$, $x_i, y_1 \in \Sigma^+$, be an arbitrary instance of PCP. We can use PCP’s undecidability to show the undecidability of the problem to determine if the language associated with a Context Sensitive Grammar is non-empty. Present a grammar, G, associated with an arbitrary instance of PCP, P, such that $L(G)$ is non-empty if and only if there is a solution to P.

Define $G = (\{S, T\} \cup \Sigma, \{\ast\}, R, S)$ where R is the set of rules (this is your job):

$$
\begin{align*}
S & \rightarrow x_i S y_i^R \mid x_i T y_i^R \\
a \ T \ a & \rightarrow \ast \ T \ast \\
a \ast & \rightarrow \ast \ \alpha \\
\ast \ a & \rightarrow \alpha \ast \\
T & \rightarrow \ast
\end{align*}
$$

Choosing from among (REC) recursive, (RE) re non-recursive, (coRE) co-re non-recursive, (NRNC) non-re/non-co-re, categorize each of the sets in a) through d). Justify your answer by showing some minimal quantification of some known recursive predicate.

a.) $D = \{ <f, x> \mid \varphi(x) \text{ converges in at most } 10 \text{ steps} \}$

$$
\begin{array}{c}
\text{STP}(f, x, 10) \quad \text{REC}
\end{array}
$$

b.) $B = \{ f \mid \varphi f \text{ is not total} \}$

$$
\begin{array}{c}
\exists x \ \forall t \ \neg \text{STP}(f, x, t) \quad \text{NRNC}
\end{array}
$$

c.) $C = \{ f \mid \text{domain}(\varphi f) \text{ is non-empty} \}$

$$
\begin{array}{c}
\exists <x, t> \ \text{STP}(f, x, t) \quad \text{RE}
\end{array}
$$

d.) $A = \{ f \mid |\text{range}(\varphi f)| \leq 1 \}$

$$
\begin{array}{c}
\forall <x, y, t> \ [\text{STP}(f, x, t) \& \text{STP}(f, y, t) \Rightarrow \text{VALUE}(f, x, t) = \text{VALUE}(f, y, t)] \quad \text{CO-RE}
\end{array}
$$

Looking back at Question 6, which of these are candidates for using Rice’s Theorem to show their unsolvability? Check all for which Rice Theorem might apply.

a) ____ b) \times c) \times d) \times
8. We wish to prove that, if S and its complement S' are both be non-empty and recursively enumerable, then S is recursive (decidable). There are two approaches. The first is based on the fact that there are algorithms, f_S and $f_{S'}$, that enumerate S and S', respectively. The second is based on the fact that there are procedures (partial recursive functions), g_S and $g_{S'}$, whose domains are S and S', respectively.

3a.) Define a characteristic function for S based on the existence of f_S and $f_{S'}$.

$$\chi_S(x) = f_S (\mu y | f_S(y) = x || f_{S'}(y) = x) = x$$

3b.) Define a characteristic function for S based on the existence of g_S and $g_{S'}$.

$$\chi_S(x) = \text{STP} (g_S, x, \mu t | \text{STP}(g_S, x, t) || \text{STP}(g_{S'}, x, t))$$

6 9. Let sets A be a non-empty recursive (decidable) set and let B be re non-recursive (undecidable). Consider $C = \{ z | z = \min(x,y), \text{where } x \in A \text{ and } y \in B \}$. For (a)-(c), either show sets A and B and the resulting set C, such that C has the specified property (argue convincingly that it has the correct property) or demonstrate (prove by construction) that this property cannot hold.

a. Can C be recursive? Circle Y or N.

$A = \{ 0 \} \quad B = K$

$C = A = \{ 0 \} \text{ which is recursive}$

b. Can C be re non-recursive? Circle Y or N.

$A = \{ 2x \mid x \in \mathbb{N} \} \quad B = \{ 2x + 1 \mid x \in K \}$

$C = A \cup B \text{ as they are disjoint sets and each elements un each set is the minimum of some pair with the other set. The membership problem for K reduces to that of C and vice versa. Thus, C is re, non-recursive}$

c. Can C be non-re? Circle Y or N.

You may assume $A = \text{range}(f_A), B = \text{range}(f_B)$, for some algorithms f_A, f_B.

$$f_{\min(A,B)} (<x, y>) = \min (f_A(x), f_B(y))$$

The range of $f_{\min(A,B)}$ is then the set of minimums of the sets A and B. This shows C is the range of some procedure and so is RE
10. Define PseudoFIB (PF) = \{ f \mid \text{for some input } x, f(x+2) = f(x+1)+f(x) \}.

2 a.) Show some minimal quantification of some known recursive predicate that provides an upper bound for the complexity of this set. (Hint: Look at c.) and d.) to get a clue as to what this must be.

\[\exists <x, t> \{ \text{STP}(f, x+2, t) \& \text{STP}(f, x+1, t) \& \text{STP}(f, x, t) \& \]
\[\text{VALUE}(f, x+2, t) = \text{VALUE}(f, x+2, t) + \text{VALUE}(f, x, t) \} \]

5 b.) Use Rice’s Theorem to prove that PF is undecidable.

First, PF is non-trivial as C0 \in PF and C1 \notin PF

Next, let f and g, be arbitrary function indices such that \forall x f(x) = g(x)

\[f \in PF \iff \exists x [f(x+2) = f(x)+g(x+1)] \iff \]
\[\exists x [g(x+2) = g(x)+g(x+1) \text{ since } \forall x f(x) = g(x) \]
\[\iff g \in PF \]

By the Strong Form of Rice’s Theorem, PF is thus shown to be undecidable

5 c.) Show that K \leq_m PF, where K = \{ f \mid f(f) \uparrow \}.

Let f be an arbitrary function index

Define \forall x F_f (x) = f(f) – f(f)

\[f \in K \iff \forall x F_f (x) = 0 \Rightarrow F_f \in PF \]
\[f \notin K \iff \forall x F_f (x) \uparrow \Rightarrow F_f \notin PF \]

Thus K \leq_m PF as was to be shown

1 d.) From a.) through c.) what can you conclude about the complexity of PF (Recursive, RE, RE-Complete, CO-RE, CO-RE-Complete, NON-RE/NON-CO-RE)?

RE-Complete since PF is RE, K \leq_m PF, and K is RE-Complete