Midterm Topics

Formal Languages & Automata Theory 1

* Regular Languages: DFA, NFA as acceptors; Regular (right or left linear) Grammars
as generators; regular expressions and regular equations as descriptors; For
language L, Pumping Lemma for Regular Languages and Right Invariant
Equivalence Relation R, where
XR y< Vz([xz € L<>yz € L] as evidence Lis NOT Regular. Uniqueness of
minimal state DFA based on Myhill-Nerode.

* Context Free Languages: Deterministic versus Non-Deterministic PDAs; Bottom-
Up versus Top-Down Parsing; Context Free Grammars including reduced
grammars and Chomsky Normal Form; CKY Dynamic Programming O(N3) parsing

* Context Sensitive Languages: Linear Bounded Automata; Context Sensitive
Grammars

* Phrase Structure (re) Languages: Turing Machines; Phrase Structured Grammars

Formal Languages & Automata Theory 2

* Closures and Decision Problems for Each Language Class
e Use of closure under substitution, homomorphism and intersection

with Regular Template

* h(f(L) ™ Regular Language) with homomorphism g often used in

Regular Language

* | will not ask you to create any automata or grammars (except maybe
for a PCP application) but | do expect you to be able to apply the

Pumping Lemmas, Myhil

-Nerode, CKY and to understand the closure

and decision problem properties for Regular, CFL, CSL and PSL (re),

and to be able to apply t
substitution, homomorp

he method involving closure under

nism and intersection with Regular..

Computability 1

e Basic Notions of solved, solvable, unsolved, unsolvable, re, non-re
* Relations between rec, re, co-re, re-complete, non-re/non-co-re

* Proofs about relations, e.g., re & co-re => decidable; . .
union of re and rec is re but can be rec; what about intersection, exclusive
union, +, * -7?

* Use of quantified decidable predicates to categorize complexity (be able to
do these)

e Reduction (many-one)

* Rice’s Theorem (including its proof)

* Applications of Rice’s Theorem (be able to do these)

* Proof of re-completeness (re and known re-complete reduces to problem)

Computability 2

 Basic decidability results in formal grammars (know them)

e Post Correspondence Problem (details) — Note PCP over One-letter is decidable
* Semi-Thue word problem to PCP (no details)

* PCP and context free grammars

* From any PCP instance, P, can specify CFGs, G1 and G2, such that
L(G1) N L(G2) # & iff P has a solution — note: L(G1) N L(G2) can be a CSL

* Merging these together to new grammar G with start symbol S and rule
S—> Sl% S2 where S1 is start symbol of G1 and S2 is start symbol og G2 we have
that G is ambiguous iff P has a solution

* PCP and context sensitive grammars
From any PCP instance, P, can specify CSG, G, such that
L(G) = & iff P has a solution; it is also the case that L(G) is infinite if so
Note that this is second proof of undecidability of emptiness for CSG

Computability 3

* Trace languages (CSL) and complement of trace languages (CFL)
L =>* for CFL, L # & for CSL
For CFLL,L=1L2"7

 Partial Trace Languages (CFL) get every other pair right

Given TM, M, can specify CFGs, G1 and G2, such that
L(G1) / L(G2) = L(M)

Given TM, M, can specify CFG, G, such that
An>0 L(G)" = L(G)"L iff M € CT = {M | M halts in constant time }

