Assignment#2 Key
1a. ProperPrefix(L) = \{ x | w \text{ is in } L, y \text{ is not lambda and } w = xy \}

- Let L be a Regular language over the finite alphabet Σ. For each a∈Σ, define f(a) = \{a, a'\}, g(a) = a' and h(a) = a, h(a') = \lambda. f is a substitution, g and h are homomorphisms.
 ProperPrefix(L) = h(f(L) \cap (Σ* g(Σ+)))

- Why this works:
 f(L) gets us every possible random priming of letters of strings in L.
 Σ* g(Σ+) gets every word that ends with at least one letter primed and starts in a sequence (possibly null) of unprimed letters. Intersecting this with f(L) gets strings in L with non-null suffixes primed and the rest (the proper prefix) unprimed.
 Applying the homomorphism h erases all primed letters getting proper prefixes. This works as Regular Languages are closed under intersection, concatenation, *, +, substitution, and homomorphism.

- Can also create an NFA from DFA for L, but that’s too much work.
1a. ProperSuffix(L) = \{ x \mid w \text{ is in } L, y \text{ is not lambda and } w = xy \text{ or } w = yx \}

- Let L be a Regular language over the finite alphabet \(\Sigma \). For each \(a \in \Sigma \), define
 \(f(a) = \{ a, a' \} \), \(g(a) = a' \) and \(h(a) = a \), \(h(a') = \lambda \),

 \(f \) is a substitution, \(g \) and \(h \) are homomorphisms.

 \[\text{ProperSuffix}(L) = h(f(L) \cap (g(\Sigma^+ \Sigma^*)) \right]

 - Why this works:
 \(f(L) \) gets us every possible random priming of letters of strings in \(L \).
 \(g(\Sigma^+ \Sigma^*) \) gets every word that starts with at least one letter primed and ends in a sequence (possibly null) of unprimed letters. Intersecting this with \(f(L) \) gets strings in \(L \) with non-null prefixes primed and the restThe proper suffix) unprimed.
 Applying the homomorphism \(h \) erases all primed letters getting proper suffixes. This works as Regular Languages are closed under intersection, concatenation, *, +, substitution, and homomorphism.

- Can also create an NFA from DFA for \(L \), but that’s too much work.
1a. \(\text{ProperPreOrSuffix}(L) = \{ x \mid w \text{ is in } L, y \text{ is not lambda and } w = yx \} \)

- Let \(L \) be a Regular language over the finite alphabet \(\Sigma \). For each \(a \in \Sigma \), define \(f(a) = \{ a, a' \} \), \(g(a) = a' \) and \(h(a) = a \), \(h(a') = \lambda \), \(f \) is a substitution, \(g \) and \(h \) are homomorphisms.
 \(\text{ProperPreOrSuffix}(L) = h(f(L) \cap (\Sigma^* g(\Sigma^+) \cup (g(\Sigma^+) \Sigma^*))) \)

- Why this works:
 Look back at ProperPrefix and ProperSuffix. This works as Regular Languages are closed union, intersection, concatenation, \(\ast \), \(+ \), substitution, and homomorphism.

- Can also create an NFA from DFA for \(L \), but that’s too much work.
1b. LastHalf(L) = \{ y \mid \text{there exists a string} \ x, \ |x| = |y| \text{ and } xy \text{ is in } L \}

• Let L be a Regular language over the finite alphabet \(\Sigma \). Assume L is recognized by the DFA
 \(A_1 = (Q, \Sigma, \delta_1, q_1, F) \). Define the NFA
 \(A_2 = ((Q \times Q \times Q) \cup \{q_0\}, \Sigma, \delta_2, q_0, F') \), where
 \(\delta_2(q_0, \lambda) = \text{union}(q \in Q) \{<q_1, q, q>\} \) and
 \(\delta_2(<s, t, u>, b) = \text{union}(a \in \Sigma) \{<\delta_1(s, a), \delta_1(t, b), u>\}, s, t, u \in Q \)
 \(F' = \text{union}(q \in Q) \{<q, f, q>\}, f \in F \)

• Why this works:
 The first part of a state \(<s, t, u>\) tracks \(A_1 \) for all possible strings that are the same length as what
 \(A_2 \) is reading in parallel. We guess it will end up in state \(q \) and so \(u=q \) to remember that guess.
 The second part of state \(<s, t, u>\) tracks \(A_1 \) as if it has read a string that ended in state \(q \) \((u=q)\).

• Thus, we start with a guess \((q)\) as to what state \(A_1 \) might end up in reading a string of length \(x \). The guess is checked by requiring us to start up in state \(q \) in the mid part which reads \(y \), where
 \(|x| = |y| \).

• The final states check that our guess was correct, and that we could end in a final state of \(A_1 \), with
 using the guess when we started reading the second part.
2. Use Regular Equations to Solve for B

\[A = \lambda \]
\[B = Aa + Ca = a + Ba^* (ba^*)^* a = a(a^* (ba^*)^* a)^* \]
\[C = B + Da = B + (Cb + B) a^* = B + B a^* + Cba^* = (B + B a^*) (ba^*) = Ba^* (ba^*)^* \]
\[D = Cb + E = Cb + B + Da = (Cb + B) a^* \]
\[E = B + Da \]

\[L = B = a(a^* (ba^*)^* a)^* \]
2. Use Lambda Closure and Regular Equations to Solve for B (which becomes $<\text{BCDE}_a>$)

\[\begin{align*}
A &= \lambda \\
<\text{BCDE}> &= Aa + <\text{CDE}>a + <\text{BCDE}>a = a + <\text{BCDE}> (a + b(ab)*a) = a(a + b(ab)*a)* \\
D &= <\text{BCDE}>b + <\text{CDE}>b \\
<\text{CDE}> &= Da = <\text{BCDE}>b + Dab = <\text{BCDE}>b(ab)* \\
L &= <\text{BCDE}> = a(a + b(ab)*a) = a(a*(ba^*)a)* \\
\text{Proof of equivalent can be done by mutual inclusion.}
\end{align*} \]
3. \(L = \{ ba^n ab^n \mid n > 0 \} \)

a.) Use the **Pumping Lemma for Regular Languages** to show \(L \) is not Regular.

Assume \(L \) is Regular

Let \(N > 0 \) be value provided by PL

Choose \(ba^N ab^N \) as a string in \(L \)

PL splits \(ba^N ab^N \) into \(xyz \) such that \(|xy| \leq N \) and \(|y| > 0 \).

I have two cases:

- \(y \) contains a \(b \). This means the \(b \) is the starting character as \(|xy| \leq N \)

 Let \(i = 0 \) then we erase the starting \(b \) and the resulting string is not in \(L \).

- \(y \) is strictly over \(a \)’s. Set \(i = 0 \) and we get \(ba^{N-|y|} ab^N \) but then the starting \(a \)’s don’t match the ending \(b \) in number and so the resulting string is not in \(L \).

That two cases cover all possible cases, given the constraints, and so we get a contradiction for all possibilities and so \(L \) is not Regular based on the PL.
3. \(L = \{ ba^n ab^n \mid n > 0 \} \)

b.) Use the **Myhill-Nerode Theorem** to show \(L \) **is not** Regular.
Define the equivalence classes \([ba^i], i > 0\)
Clearly \(ba^i ab^i \) is in \(L \), but \(ba^j ab^i \) is not in \(L \) when \(j \neq i, i, j > 0 \)
Thus, \([a^i] \neq [a^j]\) when \(j \neq i, i, j > 0 \) and so the index of \(R_L \) is infinite.
By Myhill-Nerode, \(L \) is not Regular.