Assignment#4 Sample Key
1. Show S is the range of a monotonically increasing function

Let $f_S(x+1) > f_S(x)$, and $\text{Range}(f_S(x)) = S$. S is decided by the characteristic function

$$\chi_S(x) = \exists y \leq x \ [f_S(y) = x]$$

The above works as x must show up within the first $x+1$ numbers listed since f_S is monotonically increasing.

Let S be infinite recursive. As S is recursive, it has a characteristic function where $\chi_S(x)$ is true iff x is in S.

Define the monotonically increasing enumerating function $f_S(x)$ where

$$f_S(0) = \mu x \ [\chi_S(x)]$$
$$f_S(y+1) = \mu x > f_S(y) \ [\chi_S(x)]$$

As required, this enumerates the elements of S in order, low to high.
2. If S is infinite re, then S has an infinite recursive subset R

• Let f_S be an algorithm where $S = \text{range}(f_S)$ is an infinite set

• Define the monotonically increasing function $f_R(x)$ by

$$f_R(0) = f_S(0)$$
$$f_R(y+1) = f_S(\mu x \ [f_S(x) > f_R(y)])$$

• The above is monotonically increasing because each iteration seeks a larger number and it will always succeed since S is itself infinite and so has no largest value. Also, R is clearly a subset of S since each element is in the range of f_S.

• From #2, R is infinite recursive as it is the range of a monotonically increasing algorithm f_R.

• Combining, R is an infinite recursive subset of S, as was desired.
3. NotDominating(ND) = \{ f \mid \text{for some } x, f(x) < x \}.

a.) Show some minimal quantification of some known primitive recursive predicate that provides an upper bound for the complexity of ND.

\[\exists <x,t> \ [\text{STP}(f,x,t) \land (\text{VALUE}(f,x,t) < x)] \]

b.) Use Rice's Theorem to prove that ND is undecidable. Be Complete.

ND is non-trivial as C0(x) = 0 \in ND and S(x) = x+1 \notin ND

Let f,g be two arbitrary indices of procedures such that \(\forall x f(x) = g(x) \)

f \in ND iff \(\exists x f(x) < x \) iff \(f(x_0) < x_0 \) for some \(x_0 \)

f \notin ND iff \(\forall x [f(x) \downarrow \text{implies } f(x) > x] \) iff \(\forall x [g(x) \downarrow \text{implies } g(x) > x] \)

f \in ND implies \(\exists x F_f(x) = 0 \) implies \(F_f \in K \)

f \notin ND implies \(\forall x F_f(x) \text{ diverges} \) implies \(F_f \notin K \).

Thus, K \leq_m ND

d.) Show that ND is many-one reducible to K = \{ f \mid f(f) \text{ converges} \}

Let f be an arbitrary index. From f, define \(\forall y F_f(y) = \exists <x,t> \ [\text{STP}(f,x,t) \land (\text{VALUE}(f,x,t) < x)] \)

f \in ND implies \(\forall y F_f(y) \text{ converges} \) implies \(F_f(F_f) \text{ converges} \) implies \(F_f \in K \)

f \notin ND implies \(\forall y F_f(y) \text{ diverges} \) implies \(F_f \notin K \).

Thus, ND \leq_m K
4. **AlwaysDominates(AD) = \{ f \mid \text{for all } x, f(x) > x \}**

a.) Show some minimal quantification of some known primitive recursive predicate that provides an upper bound for the complexity of AD.

\[\forall x \exists t \ [\text{STP}(f,x,t) \land (\text{VALUE}(f,x,t) > x)] \]

b.) Use Rice’s Theorem to prove that AD is undecidable. Be Complete.

AD is non-trivial as \(S(x) = x+1 \in AD \) and \(C0(x) = 0 \notin AD \)

Let \(f,g \) be two arbitrary indices of procedures such that \(\forall x \ f(x) = g(x) \)

\(f \in AD \iff \forall x \ f(x) < x \iff \forall x \ g(x) < x \iff g \in AD \)

AD is non-trivial as \(S(x) = x+1 \in AD \) and \(C0(x) = 0 \notin AD \)

Let \(f,g \) be two arbitrary indices of procedures such that \(\forall x \ f(x) = g(x) \)

\(f \in AD \iff \forall x \ f(x) < x \iff \forall x \ g(x) < x \iff g \in AD \)

c.) Show that \(TOT = \{ f \mid \text{for all } x, f(x) \text{ converges} \} \) is many-one reducible to AD.

Let \(f \) be an arbitrary index. From \(f \), define \(\forall x \ F_f(x) = f(x) - f(x) + x + 1. \)

\(f \in TOT \) implies \(\forall x \ F_f(x) = x+1 \) implies \(F_f \in AD. \)

\(f \notin TOT \) implies \(\exists x \ F_f(x) \text{ diverges} \) implies \(F_f \notin AD. \)

Thus, \(TOT \leq_m AD \)

d.) Show that AD is many-one reducible to \(TOT = \{ f \mid \text{for all } x, f(x) \text{ converges} \} \)

Let \(f \) be an arbitrary index. From \(f \), define \(\forall x \ F_f(x) = \mu y [f(x) > x] \)

\(f \in AD \) implies \(\forall x \ F_f(x) \text{ converges} \) implies \(F_f \in TOT \)

\(f \notin AD \) implies \(\exists x \ F_f(x) \text{ diverges} \) implies \(F_f \notin TOT. \)

Thus, \(AD \leq_m TOT \)