
Complexity Theory
More Computability

Charles E. Hughes
COT6410 – Spring 2021 Notes

Constant time:
Not amenable to Rice’s

Constant Time
• CTime = { M | $K [M halts in at most K steps

independent of its starting configuration] }
• RT cannot be shown undecidable by Rice’s Theorem as

it breaks property 2
– Choose M1 and M2 to each Standard Turing Compute (STC)

ZERO
– M1 is R (move right to end on a zero)
– M2 is L R R (time is dependent on argument)
– M1 is in CTime; M2 is not , but they have same I/O behavior, so

CTime does not adhere to property 2

4/4/21 © UCF CS 3

Quantifier Analysis
• CTime = { M | $K "C [STP(M, C, K)] }
• This would appear to imply that CTime is not

even re. However, a TM that only runs for K
steps can only scan at most K distinct tape
symbols. Thus, if we use unary notation, CTime
can be expressed

• CTime = { M | $K "C|C|≤K [STP(M, C, K)] }
• We can dovetail over the set of all TMs, M, and

all K, listing those M that halt in constant time.

4/4/21 © UCF CS 4

Mortal Turing Machines
• A TM, M, is mortal if it halts on all initial IDs,

whether the tape is finitely or infinitely marked.
• A TM is immortal if it is not mortal, that is, if

there some starting configuration, with the tape
either finitely or infinitely marked, on which it
does not halt

• The possibility of infinitely marked tapes is
essential to the idea of mortality

4/4/21 © UCF CS 5

Complexity of CTime
• Can show it is equivalent to the Mortality

Problem for TM’s with Infinite Tapes (not
unbounded but truly infinite and potentially
infinitely marked)

• This was shown in 1966 to be undecidable*.
• It was also shown to be re, just as we have done

so for CTime.
• Details Later
*P.K. Hooper, The undecidability of the Turing machine
immortality problem, J. Symbolic Logic 31 (1966) 219-234.
4/4/21 © UCF CS 6

Finite Convergence for
Concatenation of Context-Free

Languages
Relation to Real-Time

(Constant Time) Execution

Powers of CFLs
Let G be a context free grammar.
Consider L(G)n
Question1: Is L(G) = L(G)2?
Question2: Is L(G)n = L(G)n+1, for some

finite n>0?
These questions are both undecidable.
Think about why question1 is as hard as

whether or not L(G) is S*.
Question2 requires much more thought.
4/4/21 © UCF CS 8

L(G) = L(G)2?

• The problem to determine if L = S* is Turing
reducible to the problem to decide if
L • L Í L, so long as L is selected from a
class of languages C over the alphabet S for
which we can decide if S È {l} Í L.

• Corollary 1:
The problem “is L • L = L, for L context free
or context sensitive?” is undecidable

4/4/21 © UCF CS 9

L(G) = L(G)2? is undecidable

• Question: Does L • L get us anything new?
– i.e., Is L • L = L?

• Membership in a CFL is decidable.
• Claim is that L = S* iff

(1) S È {l} Í L ; and
(2) L • L = L

• Clearly, if L = S* then (1) and (2) trivially hold.
• Conversely, we have S* Í L*= È n³0 Ln Í L

– first inclusion follows from (1); second
from (2)

4/4/21 © UCF CS 10

Finite Power Problem
• The problem to determine, for an arbitrary

context free language L, if there exist a finite
n such that Ln = Ln+1 is undecidable.

• Let M be some Turing Machine
• L1 = { C1# C2

R $ | C1, C2 are configurations },
• L2 = { C1#C2

R$C3#C4
R … $C2k-1#C2k

R$ | where
k ³ 1 and, for some i, 1 £ i < 2k, Ci ÞM Ci+1 is
false },

• L = L1 È L2 È {l}.

4/4/21 © UCF CS 11

Undecidability of $n Ln = Ln+1

• L is context free.
• Any product of L1 and L2, which contains L2 at least

once, is L2. For instance, L1 • L2 = L2 • L1 = L2 • L2 =
L2.

• This shows that (L1 È L2)n = L1
n È L2.

• Thus, Ln = {l} È L1 È L1
2 … È L1

n È L2.
• Analyzing L1 and L2 we see that L1

n È L2 ¹ L2 just in
case there is a word C1 # C2

R $ C3 # C4
R … $ C2n-1 #

C2n
R $ in L1

n that is not also in L2.
• But then there is some valid trace of length 2n.
• L has the finite power property iff M executes in

constant time.
4/4/21 © UCF CS 12

Missing Step
• We have that CT (Constant-Time) is many-one reducible

to Finite Power Problem (FPC) for CFLs
• This means that if CT is unsolvable, so is FPC for CFLs.
• However, we still lack a proof that CT is unsolvable. To

achieve that we actually start with the 1966 result* that
the mortality problem for TMs with potentially infinite
initial tape markings is re/non-recursive
Note that the uniform halting problem for TMs with finite
initial tape markings is not even re – This is TOTAL

*P.K. Hooper, The undecidability of the Turing machine immortality
problem, J. Symbolic Logic 31 (1966) 219-234.

4/4/21 © UCF CS 13

Infinite Tape Markings
• If a TM halts for all tape markings, even if the TM’s initial

tape is infinitely marked, then there is some fixed
maximum amount of the tape that the machine can
traverse

• Why is the above so?
• Well, informally, if there was no bound built into the TM’s

table then it would be at the mercy of its data to decide
when to stop and that would lead a search for a zero (a
divider between items on the tape) to take an infinite
amount of time

4/4/21 © UCF CS 14

Uniformly Halting
• A TM, M, uniformly halts if there is some n,

dependent only on M, such that M halts in at
most n steps no matter what initial finite input it
is given

• Note that this concepts is restricted to normal
TMs that start with a finitely marked tape

• Clearly, a TM that uniformly halts runs in
constant time

4/4/21 © UCF CS 15

T uniformly halts iff T is mortal
• Let T be a TM that does not uniformly halt. If any finite ID does not

lead to a halt, then clearly T is immortal.
• Assume then that T does not uniformly halt but all finite ID’s cause it

to halt.
• Let I be the set of all ID’s such that, for each I Î I, when T starts in

I it will eventually scan each square of the tape containing a symbol
of I before it scans a square not containing a symbol of I.

• Let {q1, … , qm} be the states of T. We define a forest of m trees,
one for each state of T, such that the j-th tree has root qj.

• If I0, I1 Î I, and qj is a symbol of I0 and I1, and I1 = s I0 or I1 = I0 s ,
where s is a tape symbol, then I0 is a parent of I1 in the j-th tree.

• Note that when T starts in I1, the square containing s is scanned
after every other square of I1 but before any square not in I1.

4/4/21 © UCF CS 16

T uniformly halts iff T is mortal
• Since T does not uniformly halt but every finite ID causes

it to halt, at least one of the trees of the forest must be
infinite.

• The degree of each vertex in each tree is finite (it is
bounded by the number of tape symbols). By Koenig's
Infinity Lemma, at least one of the trees must have an
infinite branch. Therefore, there exists an infinite ID
which causes T to travel an infinite distance on the tape.
It follows that T is immortal.

4/4/21 © UCF CS 17

Undecidability of Finite
Convergence for Operators on

Formal Languages
Relation to Real-Time

(Constant Time) Execution

19

Simple Operators
• Concatenation

– A • B = { xy | x Î A & y Î B }

• Insertion
– A w B = { xyz | y Î A, xz Î B, x, y, z Î S*}
– Clearly, since x can be l, A • B Í A w B

4/4/21 © UCF CS

20

K-insertion
• A w [k] B = { x1y1x2y2 … xkykxk+1 |

y1y2 … yk Î A,
x1x2 … xkxk+1 Î B,
xi, yj Î S*}

• Clearly, B • A Í A w [k] B , for all k>0

4/4/21 © UCF CS

21

Iterated Insertion
• A (1) w[n] B = A w[n] B

• A (k+1) w[n] B = A w[n] (A (k) w[n] B)

4/4/21 © UCF CS

22

Shuffle
• Shuffle (product and bounded product)

– A ¯ B = È j ³ 1 A w[j] B
– A ¯[k] B = È 1£j£k A w[j] B = A w[k] B

• One is tempted to define shuffle product as
A ¯ B = A w[k] B where

k = µ y [A w[j] B = A w[j+1] B]
but such a k may not exist – in fact, we will show
the undecidability of determining whether or not
k exists

4/4/21 © UCF CS

23

More Shuffles
• Iterated shuffle

– A ¯0 B = A
– A ¯k +1 B = (A ¯[k] B) ¯ B

• Shuffle closure
– A ¯* B = È k ³ 0 (A ¯[k] B)

4/4/21 © UCF CS

24

Crossover
• Unconstrained crossover is defined by

A Äu B = { wz, yx | wxÎA and yzÎB}

• Constrained crossover is defined by
A Äc B = { wz, yx | wxÎA and yzÎB,

|w| = |y|, |x| = |z| }

4/4/21 © UCF CS

25

Who Cares?
• People with no real life (me?)
• Insertion and a related deletion operation are

used in biomolecular computing and
dynamical systems

• Shuffle is used in analyzing concurrency as
the arbitrary interleaving of parallel events

• Crossover is used in genetic algorithms

4/4/21 © UCF CS

26

Some Known Results
• Regular languages, A and B

– A • B is regular
– A w [k] B is regular, for all k>0
– A ¯ B is regular
– A ¯* B is not necessarily regular

• Deciding whether or not A ¯* B is regular is an
open problem

4/4/21 © UCF CS

27

More Known Stuff
• CFLs, A and B

– A • B is a CFL
– A w B is a CFL
– A w [k] B is not necessarily a CFL, for k>1

• Consider A=anbn; B = cmdm and k=2
• Trick is to consider (A w [2] B) Ç a*c*b*d*

– A ¯ B is not necessarily a CFL
– A ¯* B is not necessarily a CFL

• Deciding whether or not A ¯* B is a CFL is an open problem

4/4/21 © UCF CS

28

Immediate Convergence

• L = L2 ?
• L = L wL ?
• L = L ¯ L ?
• L = L ¯* L ?
• L = L Äc L ?
• L = L Äu L ?

4/4/21 © UCF CS

29

Finite Convergence
• $k>0 Lk = Lk+1

• $k³0 L (k) w L = L (k+1) w L
• $k³0 L w[k] L = L w[k+1] L
• $k³0 L ¯k L = L ¯k +1 L
• $k³0 L (k) Äc L = L (k+1) Äc L
• $k³0 L (k) Äu L = L (k+1) Äu L

• $k³0 A (k) w B = A (k+1) w B
• $k³0 A w[k] B = A w[k+1] B
• $k³0 A ¯k B = A ¯k +1 B
• $k³0 A (k) Äc B = A (k+1) Äc B
• $k³0 A (k) Äu B = A (k+1) Äu L

4/4/21 © UCF CS

30

Finite Power of CFG
• Let G be a context free grammar.
• Consider L(G)n

• Question1: Is L(G) = L(G)2?
• Question2: Is L(G)n = L(G)n+1, for some finite

n>0?
• These questions are both undecidable.
• We showed that question1 is as hard as whether

or not L(G) is S*.
• Question2 required more work.

4/4/21 © UCF CS

31

1981 Results
• Theorem 1:

The problem to determine if L = S* is Turing
reducible to the problem to decide if
L • L Í L, so long as L is selected from a class
of languages C over the alphabet S for which we
can decide if S È {l} Í L.

• Corollary 1:
The problem “is L • L = L, for L context free or
context sensitive?” is undecidable

4/4/21 © UCF CS

32

Proof #1
• Question: Does L • L get us anything new?

– i.e., Is L • L = L?
• Membership in a CSL is decidable.
• Claim is that L = S* iff

(1) S È {l} Í L ; and
(2) L • L = L

• Clearly, if L = S* then (1) and (2) trivially hold.
• Conversely, we have S* Í L*= È n³0 Ln Í L

– first inclusion follows from (1); second from (2)

4/4/21 © UCF CS

33

Subsuming •
• Let Å be any operation that subsumes

concatenation, that is A • B Í A Å B.
• Simple insertion is such an operation,

since A • B Í A w B.
• Unconstrained crossover also subsumes
•,
A Äc B = { wz, yx | wxÎA and yzÎB}

4/4/21 © UCF CS

34

L = L Å L ?
• Theorem 2:

The problem to determine if L = S* is
Turing reducible to the problem to decide if
L Å L Í L, so long as
L • L Í L Å L and L is selected from a
class of languages C over S for which we
can decide if
S È {l} Í L.

4/4/21 © UCF CS

35

Proof #2
• Question: Does L Å L get us anything new?

– i.e., Is L Å L = L?
• Membership in a CSL is decidable.
• Claim is that L = S* iff

(1) S È {l} Í L ; and
(2) L Å L = L

• Clearly, if L = S* then (1) and (2) trivially hold.
• Conversely, we have S* Í L*= È n³0 Ln Í L

– first inclusion follows from (1); second from (1), (2)
and the fact that L • L Í L Å L

4/4/21 © UCF CS

Quotients of CFLs

Quotients of CFLs (Trace-Like
Sequences)

Let L1 = L(G1) = { $ # Y0 # Y1 # Y2 # Y3 # … # Y2j #
Y2j+1 # }
where Y2i Þ Y2i+1 , 0 ≤ i ≤ j.
This checks the even/odd steps of an even length
computation.
Now, let L2=L(G2)=
{X0 $ # X0 # X1 # X2 # X3 # X4 # … # X2k-1 # X2k# Z0 #}
where X2i-1 Þ X2i , 1 ≤ i ≤ k and Z0 is a unique halting
configuration.
This checks the odd/steps of an even length
computation and includes an extra copy of the
starting number prior to its $.

4/4/21 37© UCF CS

If a Turing Machine Trace
Let L1 = L(G1) = { $ # Y0

R # Y1 # Y2
R # Y3 # … # Y2j

R # Y2j+1 # }
where Y2i Þ Y2i+1 , 0 ≤ i ≤ j.
This checks the even/odd steps of an even length
computation.

Now, let L2=L(G2)=
{X0 $ # X0

R # X1 # X2
R # X3 # X4

R # … # X2k-1 # X2k
R# Z0 #}

where X2i-1 Þ X2i , 1 ≤ i ≤ k and Z0 is a unique halting
configuration.

This checks the odd/steps of an even length computation
and includes an extra copy of the starting number prior to its
$.

4/4/21 38© UCF CS

Quotients of CFLs (results)
L1 = { $ # Y0 # Y1 # Y2 # Y3 # Y4 # … #Y2k-1 # Y2j # Y2j+1 # }
L2 = {X0 $ # X0 # X1 # X2 # X3 # X4 # … # X2k-1 # X2k# Z0 #}
Now, consider the quotient of L2 / L1 . The only way a member of L1 can
match a final substring in L2 is to line up the $ signs. But then they serve
to check out the validity and termination of the computation. Moreover,
the quotient leaves only the starting point (the one on which the machine
halts.) Thus,

L2 / L1 = { X0 | the system being traced halts}.

Since deciding the members of an re set is in general undecidable, we
have shown that membership in the quotient of two CFLs is also
undecidable.
Note: Intersection of two CFLs is a CSL but quotient of two CFLs is an re
set and, in fact, all re sets can be specified by such quotients.

4/4/21 39© UCF CS

40

Quotients of CFLs (precise)
• Let (n, ((a1,b1,c1,d1) , … ,(ak,bk,ck,dk)) be some factor replacement

system with residues. Define grammars G1 and G2 by using the 4k+4 rules
G : Fi ® 1aiFi1ci | 1ai+bi#1ci+di 1 ≤ i ≤ k

T1 ® # Fi T1 | # Fi # 1 ≤ i ≤ k
A ® 1 A 1 | $ #
S1 ® $T1
S2 ® A T1 # 1z0 # Z0 is 0 for us

G1 starts with S1 and G2 with S2
• Thus, using the notation of writing Y in place of 1Y,

L1 = L(G1) = { $ #Y0 # Y1 # Y2 # Y3 # … # Y2j # Y2j+1 # }
where Y2i Þ Y2i+1 , 0 ≤ i ≤ j.
This checks the even/odd steps of an even length computation.
But, L2 = L(G2) = {X0 $ #X0 # X1 # X2 # X3 # X4 # … # X2k-1 # X2k# Z0 # }
where X2i-1 Þ X2i , 1 ≤ i ≤ k and X = X0
This checks the odd/steps of an even length computation, and

includes an extra copy of the starting number prior to its $.

4/4/21 © UCF CS

41

Summarizing Quotient
Now, consider the quotient L2 / L1 where L1
and L2 are the CFLs on prior slide. The only
way a member of L1 can match a final substring
in L2 is to line up the $ signs. But then they
serve to check out the validity and termination of
the computation. Moreover, the quotient leaves
only the starting number (the one on which the
machine halts.) Thus,
L2 / L1 = { X | the system F halts on zero }.
Since deciding the members of an re set is in
general undecidable, we have shown that
membership in the quotient of two CFLs is also
undecidable.

4/4/21 © UCF CS

