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Constant time: 
Not amenable to Rice’s



Constant Time
• CTime = { M | $K [ M halts in at most K steps 

independent of its starting configuration ] }
• RT cannot be shown undecidable by Rice’s Theorem as 

it breaks property 2
– Choose M1 and M2 to each Standard Turing Compute (STC) 

ZERO
– M1 is R (move right to end on a zero)
– M2 is L R R (time is dependent on argument)
– M1 is in CTime; M2 is not , but they have same I/O behavior, so 

CTime does not adhere to property 2
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Quantifier Analysis
• CTime = { M | $K "C [ STP(M, C, K) ] }
• This would appear to imply that CTime is not 

even re. However, a TM that only runs for K 
steps can only scan at most K distinct tape 
symbols. Thus, if we use unary notation, CTime
can be expressed

• CTime = { M | $K "C|C|≤K [ STP(M, C, K) ] }
• We can dovetail over the set of all TMs, M, and 

all K, listing those M that halt in constant time.
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Mortal Turing Machines
• A TM, M, is mortal if it halts on all initial IDs, 

whether the tape is finitely or infinitely marked. 
• A TM is immortal if it is not mortal, that is, if 

there some starting configuration, with the tape 
either finitely or infinitely marked, on which it 
does not halt

• The possibility of infinitely marked tapes is 
essential to the idea of mortality
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Complexity of CTime
• Can show it is equivalent to the Mortality 

Problem for TM’s with Infinite Tapes (not 
unbounded but truly infinite and potentially 
infinitely marked)

• This was shown in 1966 to be undecidable*.
• It was also shown to be re, just as we have done 

so for CTime.
• Details Later
*P.K. Hooper, The undecidability of the Turing machine 
immortality problem, J. Symbolic Logic 31 (1966) 219-234.
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Finite Convergence for 
Concatenation of Context-Free 

Languages
Relation to Real-Time 

(Constant Time) Execution



Powers of CFLs
Let G be a context free grammar.
Consider L(G)n
Question1: Is L(G) = L(G)2?
Question2: Is L(G)n = L(G)n+1, for some 

finite n>0?
These questions are both undecidable.
Think about why question1 is as hard as 

whether or not L(G) is S*. 
Question2 requires much more thought.
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L(G) = L(G)2?

• The problem to determine if L = S* is Turing 
reducible to the problem to decide if 
L • L Í L, so long as L is selected from a 
class of languages C over the alphabet S for 
which we can decide if S È {l} Í L. 

• Corollary 1: 
The problem “is L • L = L, for L context free 
or context sensitive?” is undecidable 
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L(G) = L(G)2? is undecidable

• Question: Does L • L get us anything new?
– i.e., Is L • L = L?

• Membership in a CFL is decidable.
• Claim is that L = S* iff

(1) S È {l} Í L ; and
(2) L • L = L 

• Clearly, if L = S* then (1) and (2) trivially hold.
• Conversely, we have S* Í L*= È n³0 Ln Í L

– first inclusion follows from (1); second 
from (2)
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Finite Power Problem
• The problem to determine, for an arbitrary 

context free language L, if there exist a finite 
n such that Ln = Ln+1 is undecidable.

• Let M be some Turing Machine
• L1 = { C1# C2

R $ | C1, C2 are configurations },
• L2 = { C1#C2

R$C3#C4
R … $C2k-1#C2k

R$ | where 
k ³ 1 and, for some i, 1 £ i < 2k, Ci ÞM Ci+1 is 
false },

• L = L1 È L2 È {l}.
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Undecidability of $n Ln = Ln+1

• L is context free. 
• Any product of L1 and L2, which contains L2 at least 

once, is L2. For instance, L1 • L2 = L2 • L1 = L2 • L2 = 
L2.  

• This shows that (L1 È L2)n = L1
n È L2. 

• Thus, Ln = {l} È L1 È L1
2 …  È L1

n È L2. 
• Analyzing L1 and L2 we see that L1

n È L2 ¹ L2 just in 
case there is a word C1 # C2

R $ C3 # C4
R … $ C2n-1 # 

C2n
R $ in L1

n that is not also in L2. 
• But then there is some valid trace of length 2n. 
• L has the finite power property iff M executes in 

constant time.
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Missing Step
• We have that CT (Constant-Time) is many-one reducible 

to Finite Power Problem (FPC) for CFLs
• This means that if CT is unsolvable, so is FPC for CFLs.
• However, we still lack a proof that CT is unsolvable. To 

achieve that we actually start with the 1966 result* that 
the mortality problem for TMs with potentially infinite
initial tape markings is re/non-recursive
Note that the uniform halting problem for TMs with finite
initial tape markings is not even re – This is TOTAL

*P.K. Hooper, The undecidability of the Turing machine immortality 
problem, J. Symbolic Logic 31 (1966) 219-234.
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Infinite Tape Markings
• If a TM halts for all tape markings, even if the TM’s initial 

tape is infinitely marked, then there is some fixed 
maximum amount of the tape that the machine can 
traverse

• Why is the above so?
• Well, informally, if there was no bound built into the TM’s 

table then it would be at the mercy of its data to decide 
when to stop and that would lead a search for a zero (a 
divider between items on the tape) to take an infinite 
amount of time
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Uniformly Halting
• A TM, M, uniformly halts if there is some n, 

dependent only on M, such that M halts in at 
most n steps no matter what initial finite input it 
is given

• Note that this concepts is restricted to normal 
TMs that start with a finitely marked tape

• Clearly, a TM that uniformly halts runs in 
constant time
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T uniformly halts iff T is mortal
• Let T be a TM that does not uniformly halt. If any finite ID does not 

lead to a halt, then clearly T is immortal. 
• Assume then that T does not uniformly halt but all finite ID’s cause it 

to halt.
• Let I be the set of all ID’s such that, for each I Î I, when T starts in 

I it will eventually scan each square of the tape containing a symbol 
of I before it scans a square not containing a symbol of I. 

• Let {q1, … , qm} be the states of T. We define a forest of m trees, 
one for each state of T, such that the j-th tree has root qj. 

• If I0, I1 Î I, and qj is a symbol of I0 and I1, and I1 = s I0 or I1 = I0 s ,
where s is a tape symbol, then I0 is a parent of I1 in the j-th tree. 

• Note that when T starts in I1, the square containing s is scanned 
after every other square of I1 but before any square not in I1. 
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T uniformly halts iff T is mortal
• Since T does not uniformly halt but every finite ID causes 

it to halt, at least one of the trees of the forest must be 
infinite. 

• The degree of each vertex in each tree is finite (it is 
bounded by the number of tape symbols). By Koenig's 
Infinity Lemma, at least one of the trees must have an 
infinite branch. Therefore, there exists an infinite ID 
which causes T to travel an infinite distance on the tape. 
It follows that T is immortal.
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Undecidability of Finite 
Convergence for Operators on 

Formal Languages
Relation to Real-Time 

(Constant Time) Execution
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Simple Operators
• Concatenation

– A • B = { xy | x Î A & y Î B }

• Insertion
– A w B = { xyz |  y Î A, xz Î B, x, y, z Î S*}
– Clearly, since x can be l, A • B Í A w B
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K-insertion 
• A w [ k ] B = { x1y1x2y2 … xkykxk+1 |  

y1y2 … yk Î A, 
x1x2 … xkxk+1 Î B, 
xi, yj Î S*}

• Clearly, B • A Í A w [ k ] B , for all k>0
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Iterated Insertion
• A (1) w[ n ] B = A w[ n ] B

• A (k+1) w[ n ] B = A w[ n ] (A (k) w[ n ] B)
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Shuffle
• Shuffle (product and bounded product)

– A ¯ B = È j ³ 1 A w[ j ] B 
– A ¯[ k ] B = È 1£j£k A w[ j ] B = A w[ k ] B 

• One is tempted to define shuffle product as 
A ¯ B = A w[ k ] B where 

k = µ y [ A w[ j ] B = A w[ j+1] B ]
but such a k may not exist – in fact, we will show 
the undecidability of determining whether or not 
k exists
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More Shuffles
• Iterated shuffle

– A ¯0 B = A
– A ¯k +1 B = (A ¯[ k ] B) ¯ B 

• Shuffle closure
– A ¯* B = È k ³ 0 (A ¯[ k ] B)
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Crossover
• Unconstrained crossover is defined by 

A Äu B = { wz, yx | wxÎA and yzÎB}

• Constrained crossover is defined by
A Äc B = { wz, yx | wxÎA and yzÎB, 

|w| = |y|, |x| = |z| }
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Who Cares?
• People with no real life (me?)
• Insertion and a related deletion operation are 

used in biomolecular computing and 
dynamical systems

• Shuffle is used in analyzing concurrency as 
the arbitrary interleaving of parallel events

• Crossover is used in genetic algorithms
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Some Known Results
• Regular languages, A and B

– A • B is regular
– A w [ k ] B is regular, for all k>0
– A ¯ B is regular
– A ¯* B is not necessarily regular 

• Deciding whether or not A ¯* B is regular is an 
open problem
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More Known Stuff
• CFLs, A and B

– A • B is a CFL
– A w B is a CFL
– A w [ k ] B is not necessarily a CFL, for k>1

• Consider A=anbn; B = cmdm and k=2
• Trick is to consider (A w [ 2 ] B) Ç a*c*b*d*

– A ¯ B is not necessarily a CFL
– A ¯* B is not necessarily a CFL 

• Deciding whether or not A ¯* B is a CFL is an open problem
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Immediate Convergence

• L = L2 ?
• L = L wL ?
• L = L ¯ L ?
• L = L ¯* L ?
• L = L Äc L ?
• L = L Äu L ?
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Finite Convergence
• $k>0 Lk = Lk+1

• $k³0 L (k) w L = L (k+1) w L 
• $k³0 L w[ k ] L = L w[ k+1 ] L
• $k³0 L ¯k  L = L ¯k +1 L
• $k³0 L (k) Äc L = L (k+1) Äc L 
• $k³0 L (k) Äu L = L (k+1) Äu L 

• $k³0 A (k) w B = A (k+1) w B
• $k³0 A w[ k ] B = A w[ k+1 ] B 
• $k³0 A ¯k  B = A ¯k +1 B
• $k³0 A (k) Äc B = A (k+1) Äc B 
• $k³0 A (k) Äu B = A (k+1) Äu L 
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Finite Power of CFG
• Let G be a context free grammar.
• Consider L(G)n

• Question1: Is L(G) = L(G)2?
• Question2: Is L(G)n = L(G)n+1, for some finite 

n>0?
• These questions are both undecidable.
• We showed that question1 is as hard as whether 

or not L(G) is S*. 
• Question2 required more work.
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1981 Results
• Theorem 1:

The problem to determine if L = S* is Turing 
reducible to the problem to decide if 
L • L Í L, so long as L is selected from a class 
of languages C over the alphabet S for which we 
can decide if S È {l} Í L. 

• Corollary 1: 
The problem “is L • L = L, for L context free or 
context sensitive?” is undecidable 
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Proof #1
• Question: Does L • L get us anything new?

– i.e., Is L • L = L?
• Membership in a CSL is decidable.
• Claim is that L = S* iff  

(1) S È {l} Í L ; and
(2) L • L = L 

• Clearly, if L = S* then (1) and (2) trivially hold.
• Conversely, we have S* Í L*= È n³0 Ln Í L

– first inclusion follows from (1); second from (2)  
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Subsuming •
• Let Å be any operation that subsumes 

concatenation, that is A • B Í A Å B. 
• Simple insertion is such an operation, 

since A • B Í A w B. 
• Unconstrained crossover also subsumes 
•, 
A Äc B = { wz, yx | wxÎA and yzÎB}
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L = L Å L ?
• Theorem 2: 

The problem to determine if L = S* is 
Turing reducible to the problem to decide if 
L Å L Í L, so long as 
L • L Í L Å L and L is selected from a 
class of languages C over S for which we 
can decide if 
S È {l} Í L. 
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Proof #2
• Question: Does L Å L get us anything new?

– i.e., Is L Å L = L?
• Membership in a CSL is decidable.
• Claim is that L = S* iff  

(1) S È {l} Í L ; and
(2) L Å L = L 

• Clearly, if L = S* then (1) and (2) trivially hold.
• Conversely, we have S* Í L*= È n³0 Ln Í L

– first inclusion follows from (1); second from (1), (2) 
and the fact that L • L Í L Å L 
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Quotients of CFLs



Quotients of CFLs (Trace-Like 
Sequences)

Let L1 =  L( G1 ) = { $ # Y0 # Y1 # Y2 # Y3 # … # Y2j # 
Y2j+1 # }
where Y2i Þ Y2i+1 , 0 ≤ i ≤ j.  
This checks the even/odd steps of an even length 
computation.
Now, let L2=L( G2 )=
{X0 $ # X0 # X1 # X2 # X3 # X4 # … # X2k-1 # X2k# Z0 #}
where X2i-1 Þ X2i , 1 ≤ i ≤ k and Z0 is a unique halting 
configuration.
This checks the odd/steps of an even length 
computation and includes an extra copy of the 
starting number prior to its $.
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If a Turing Machine Trace
Let L1 =  L( G1 ) = { $ # Y0

R # Y1 # Y2
R # Y3 # … # Y2j

R # Y2j+1 # }
where Y2i Þ Y2i+1 , 0 ≤ i ≤ j.  
This checks the even/odd steps of an even length 
computation.

Now, let L2=L( G2 )=
{X0 $ # X0

R # X1 # X2
R # X3 # X4

R # … # X2k-1 # X2k
R# Z0 #}

where X2i-1 Þ X2i , 1 ≤ i ≤ k and Z0 is a unique halting 
configuration.

This checks the odd/steps of an even length computation 
and includes an extra copy of the starting number prior to its 
$.
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Quotients of CFLs (results)
L1 =     { $ # Y0 # Y1 # Y2 # Y3 # Y4 # … #Y2k-1 # Y2j # Y2j+1 # }
L2 = {X0 $ # X0 # X1 # X2 # X3 # X4 # … # X2k-1 # X2k#   Z0 #} 
Now, consider the quotient of L2 / L1 .  The only way a member of L1 can 
match a final substring in L2 is to line up the $ signs.  But then they serve 
to check out the validity and termination of the computation.  Moreover, 
the quotient leaves only the starting point (the one on which the machine 
halts.)  Thus,

L2 / L1  = { X0 | the system being traced halts}. 

Since deciding the members of an re set is in general undecidable, we 
have shown that membership in the quotient of two CFLs is also 
undecidable. 
Note: Intersection of two CFLs is a CSL but quotient of two CFLs is an re 
set and, in fact, all re sets can be specified by such quotients.
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Quotients of CFLs (precise)
• Let (n, ((a1,b1,c1,d1) , … ,(ak,bk,ck,dk) ) be some factor replacement 

system with residues.  Define grammars G1 and G2 by using the 4k+4 rules
G : Fi ® 1aiFi1ci |  1ai+bi#1ci+di 1 ≤ i ≤ k

T1 ® # Fi T1 |  # Fi # 1 ≤ i ≤ k
A ® 1 A 1 | $ #
S1 ® $T1
S2 ® A T1 # 1z0 # Z0 is 0 for us

G1 starts with S1 and G2 with S2
• Thus, using the notation of writing Y in place of 1Y, 

L1 =  L( G1 ) = { $ #Y0 # Y1 # Y2 # Y3 # … # Y2j # Y2j+1 # }
where Y2i Þ Y2i+1 , 0 ≤ i ≤ j.  
This checks the even/odd steps of an even length computation.
But, L2 =  L( G2 ) = {X0 $ #X0 # X1 # X2 # X3 # X4 # … # X2k-1 # X2k# Z0 # }
where X2i-1 Þ X2i , 1 ≤ i ≤ k and X = X0
This checks the odd/steps of an even length computation, and 

includes an extra copy of the starting number prior to its $.  
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Summarizing Quotient
Now, consider the quotient L2 / L1 where L1
and L2 are the CFLs on prior slide.  The only 
way a member of L1 can match a final substring 
in L2 is to line up the $ signs.  But then they 
serve to check out the validity and termination of 
the computation.  Moreover, the quotient leaves 
only the starting number (the one on which the 
machine halts.)  Thus,
L2 / L1  = { X | the system F halts on zero }. 
Since deciding the members of an re set is in 
general undecidable, we have shown that 
membership in the quotient of two CFLs is also 
undecidable.
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