
Complexity Theory
Complexity
Charles E. Hughes

COT6410 – Spring 2021 Notes

Graph Coloring
• Instance: A graph G = (V, E) and an integer k.
• Question: Can G be "properly colored" with at most k colors?

• Proper Coloring: one of the k colors is assigned to each vertex so
that adjacent vertices have different colors.

• Suppose we have two instances of this problem (1) is True (Yes)
and the other (2) is False (No).

• AND you know (1) is Yes and (2) is No. (Maybe you have a secret
program that has analyzed the two instance.)

4/7/21 © UCF CS 2

Checking a “Yes” Answer
• Without showing how your program works (you may not even know), how

can you convince someone else that instance (1) is, in fact, a Yes instance?
• We can assume the output of the program was an actual coloring of G. Just

give that to a doubter who can easily check that no adjacent vertices are
colored the same, and that no more than k colors were used.

• How about the No instance?

• What could the program have given that allows us to quickly "verify" (2) is a
No instance?

• No One Knows!!

• For all problems seem to be harder than there exists ones in many contexts
• Think re versus co-re

4/7/21 © UCF CS 3

Checking a “No” Answer
• The only thing anyone has thought of is to have it test all

possible ways to k-color the graph – all of which fail, of
course, if “No” is the correct answer.

• There are an exponential number of things (colorings) to
check.

• For some problems, there seems to be a big difference
between verifying Yes and No instances.

• To solve a problem efficiently, we must be able to solve
both Yes and No instances efficiently and so it would
seem we should be able to verify both quickly.

4/7/21 © UCF CS 4

Hard and Easy
• True Conjecture: If a problem is easy to solve, then it is

easy to verify (just solve it and compare).

• Contrapositive: If a problem is hard to verify, then it is
(probably) hard to solve.

• There is nothing magical about Yes and No instances –
sometimes the Yes instances are hard to verify and No
instances are easy to verify.

• And, of course, sometimes both are hard to verify.
4/7/21 © UCF CS 5

Easy Verification
• Are there problems in which both Yes and No instances

are easy to verify?

• Yes. For example: Search a list L of n values for a key x.
• Question: Is x in the list L?

• Yes and No instances are both easy to verify.

• In fact, the entire problem is easy to solve!!
• Analogy: recursive means re and co-re

4/7/21 © UCF CS 6

Verify vs Solve
• Conjecture: If both Yes and No instances are easy to verify, then

the problem is easy to solve.
• Analogy (Failure?): Does re/co-re imply recursive have analogy

here?

• No one has yet proven this claim, but most researchers believe it to
be true.

• Note: It is usually relatively easy to prove something is easy – just
write an algorithm for it and prove it is correct and that it is fast
(usually, we mean polynomial).

• But it is usually very difficult to prove something is hard – we may
not be clever enough yet. So, you will often see "appears to be
hard."

4/7/21 © UCF CS 7

A CS Grand Challenge
Does P=NP?

There are many equivalent ways to describe P and NP. For now, we
will use the following.
P is the set of decision problems (those whose instances have
“Yes”/ “No” answers) that can be solved in polynomial time on a
deterministic computer (no concurrency or guesses allowed).
NP is the set of decision problems that can be solved in polynomial
time on a non-deterministic computer (equivalently one that can
spawn an unbounded number of parallel threads; equivalently one
that can be verified in polynomial time on a deterministic computer).
Again, as “Does P=NP?” has just one question, it is solvable, we
just don’t yet know which solution, “Yes” or “No”, is the correct one.

4/7/21 © UCF CS 8

Decision vs Optimization
Two types of problems are of particular interest:

Decision Problems ("Yes/No" answers)

Optimization problems ("best" answers)

(there are other types)

4/7/21 © UCF CS 9

Vertex Cover (VC)
• Suppose we are in charge of a large network (a graph where edges

are links between pairs of cities (vertices). Periodically, a line fails.
To mend the line, we must call in a repair crew that goes over the
line to fix it. To minimize down time, we station a repair crew at one
end of every line. How many crews must you have and where
should they be stationed?

• This is called the Vertex Cover Problem. (Yes, it sounds like it
should be called the Edge Cover problem – something else already
had that name.)

• An interesting problem – it seems to a hard problems but may not
be.

4/7/21 © UCF CS 10

VC Decision vs Optimization
• As a Decision Problem:

– Instances: A graph G and an integer k.
– Question: Does G possess a vertex Cover with at most k vertices?

• As an Optimization Problem:

– Instances: A graph G.
– Question: What is the smallest k for which G possesses a vertex cover?

4/7/21 © UCF CS 11

Relation of VC Problems
• If we can (easily) solve either one of these problems, we can (easily)

solve the other. To solve the optimization version, just solve the
decision version with several different values of k. Use a binary
search on k between 1 and n. That is log(n) solutions of the
decision problem solves the optimization problem. It's simple to
solve the decision version if we can solve the optimization version.

• We say their time complexity differs by no more than a multiple of
log(n).

• If one is polynomial, then so is the other.
• If one is exponential, then so is the other.

• We say they are equally difficult (both poly. or both exponential).

4/7/21 © UCF CS 12

A Word about Time
An algorithm for a problem is said to be polynomial if
there exists integers k and N such that t(n), the
maximum number of steps required on any instance of
size n, is at most nk, for all n ≥ N.

Otherwise, we say the algorithm is exponential. Usually,
this is interpreted to mean t(n) ≥ cn for an infinite set of
size n instances, and some constant c > 1 (often, we
simply use c = 2).

4/7/21 © UCF CS 13

Three Classes of Problems
Problems proven to be in these three groups
(classes) are, respectively,

Undecidable, Exponential, and Polynomial.

Theoretically, all problems belong to exactly
one of these three classes.

4/7/21 © UCF CS 14

Unknown Complexity
Practically, there are a lot of problems (maybe, most)
that have not been proven to be in any of the classes
(Yet, maybe never will be).

Most currently "lie between" polynomial and exponential
– we know of exponential algorithms but have been
unable to prove that exponential algorithms are
necessary.

Some may have polynomial algorithms, but we have not
yet been clever enough to discover them.

4/7/21 © UCF CS 15

Subset Sum
• Problem – Subset Sum

• Instances: A list L of n integer values and an integer B.
• Question: Does L have a subset which sums exactly to B?

• No one knows of a polynomial (deterministic) solution to this problem.

• On the other hand, there is a very simple (dynamic programming) algorithm
that runs in O(nB) time.

• Why isn't this "polynomial"?
– Because the "length" of an instance is nlog(B) and
– nB > (nlog(B))^k for any fixed k.

4/7/21 © UCF CS 16

Research Territory
Decidable – vs – Undecidable

(area of Computability Theory)

Exponential – vs – polynomial
(area of Computational Complexity)

Algorithms for any of these
(area of Algorithm Design/Analysis)

4/7/21 © UCF CS 17

NonDeterminism

Models of Computation
Non-Determinism

Since we can't seem to find a model of computation that
is more powerful than a TM, can we find one that is
'faster'?

In particular, we want one that takes us from exponential
time to polynomial time.

Our candidate will be the Non-Deterministic Turing
Machine (NDTM).

4/7/21 © UCF CS 19

NDTMs
As NDTMs are automata, we only care about what they
accept and generally have just one accepting state. We
want to determine how long it takes to get to the accept
state - that's our only motive!!

So, what is a NDTM doing?
In a NDTM, like in a NFA or NPDA, what we are doing is
making, and testing, all of those choices at once by
'spawning' a different NDTM for each of them. Those
that don't work out, simply die (or something).

This is the ultimate in parallel programming.

4/7/21 © UCF CS 20

NDTM and Oracles
Another interpretation of non-determinism:

From the basic definition, we notice that out of every
state having a non-deterministic choice, at least one
choice is valid and all the rest sort of die off. That is, they
really have no reason for being spawned for this
instance. So, we station at each such state, an 'oracle'
(an all-knowing being) who only allows the correct NDTM
to be spawned.

An 'Oracle Machine.’
All we care about is the time associated with the right
choices. In fact, we can have a single oracle that makes
all the right choices in advance, if they exist.

4/7/21 © UCF CS 21

Checking an Oracle/Witness
For example, in the SubsetSum problem, we
ask the oracle to write down the subset of
objects whose sum is B (the desired sum).
Then we ask "Can we write a deterministic
polynomial algorithm to test the given
witness."

The answer for SubsetSum is Yes, we can,
i.e., the witness is verifiable in deterministic
polynomial time.

4/7/21 © UCF CS 22

NDTMs - Witnesses
Just what can we ask and expect of a "witness"?

The witness must be something that
(1) we can verify to be accurate (for the given

problem and instance) and
(2) we must be able to "finish off" the solution.

All in polynomial time.

4/7/21 © UCF CS 23

Witness and Graph Coloring
The information provided must be something we could
have come up with ourselves, but probably at an
exponential cost. And, it has to be enough so that we can
conclude the final answer Yes from it.

Consider a witness for the graph coloring problem:

Given: A graph G = (V, E) and an integer k.
Question: Can the vertices of G be assigned colors so that
adjacent vertices have different colors and use at most k
colors?

4/7/21 © UCF CS 24

Good and Bad Witnesses
The witness could just say Yes or No.

But that's not good enough - we don't know of a
polynomial algorithm for graph coloring.

It could be "vertex 10 is colored Red."
That's not good enough either. Any single vertex
can be colored any color we want.

It could be a color assigned to each vertex.
That would work, because we can verify its validity
in polynomial time, and we can conclude the
correct answer of Yes.

4/7/21 © UCF CS 25

More on Witnesses
What if it was a color for all vertices but one?

That also is enough. We can verify the correctness of the
n-1 given to us, then we can verify that the one uncolored
vertex can be colored with a color not on any neighbor,
and that the total is not more than k.

What if all but 2, 3, or 20 vertices are colored
All are valid witnesses. (Potentially exponential but for a
constant, not a variable n)

What if half the vertices are colored?
Usually, No. There's not enough information. Sure, we
can check that what is given to us is properly colored, but
we don't know how to "finish it off” except perhaps in kn/2
time.

4/7/21 © UCF CS 26

Deterministic Exponential
Time

A major question remains: Do we have, in NDTMs,
a model of computation that solves all
deterministic exponential (DE) problems in
polynomial time (nondeterministic polynomial
time)??

It definitely solves some problems we think are DE
in nondeterministic polynomial time.

4/7/21 © UCF CS 27

DEXP Versus NEXP
But, so far, all problems that have been proven to
require deterministic exponential time also require
nondeterministic exponential time.

So, the jury is still out. In the meantime, NDTMs
are still valuable, because they might identify a
larger class of problems than does a deterministic
TM - the set of decision problems for which Yes
instances can be verified in polynomial time.

4/7/21 © UCF CS 28

Problem Classes
We now begin to discuss several different classes of
problems. The first two will be:

NP 'Nondeterministic' Polynomial
P 'Deterministic' Polynomial,

The 'easiest' problems in NP

Their definitions are rooted in the depths of Computability
Theory as just described, but it is worth repeating some of
it in the next few slides.

4/7/21 © UCF CS 29

Class – NP

First Significant Complexity
Class of Problems

Vertex Cover Definition
Consider two seemingly closely related statements
(versions) of a single problem. We show they are
actually very different. Let G = (V, E) be a graph.

Definition: X Í V(G) is a vertex cover if
every edge in G has at least one endpoint
in X.

4/7/21 © UCF CS 31

Variants of VC
Version 1. Given a graph G and an integer k.

Does G contain a vertex cover
with at most k vertices?

Version 2. Given a graph G and an integer k.
Does the smallest vertex cover of G
have exactly k vertices?

Suppose, for either version, the answer is "yes," and
someone also gives us a set X of vertices and claims

"X satisfies the conditions."
4/7/21 © UCF CS 32

Version 1 of VC
In Version 1, we can easily check that
the claim is correct – in polynomial
time.

That is, in polynomial time, we can
check that X has k vertices, and that
X is a vertex cover.

4/7/21 © UCF CS 33

Version 2 of VC
In Version 2, we can also easily check that X has
exactly k vertices and that X is a vertex cover.

But we don't know how to easily check that there is
not a smaller vertex cover!!

That seems to require exponential time.

These are very similar looking "decision" problems
(Yes/No answers), yet they are VERY different in
this one important respect.

4/7/21 © UCF CS 34

Version 1 in NP
Version 1 problems make up the class called NP

Definition: The Class NP is the set of all decision
problems for which answers to Yes instances can be
verified in polynomial time.

For historical reasons, NP means
"Nondeterministic Polynomial."

(Specifically, it does not mean "not polynomial").

4/7/21 © UCF CS 35

Version 3 of VC
Version 2 of the Vertex Cover problem is not unique.
There are other versions that exhibit this same property.
For example,

Version 3: Given: A graph G = (V, E) and an
integer k.

Question: Do all vertex covers of G
have more than k vertices?

What would/could a 'witness' for a Yes instance be?
Version 3 is the Complement Problem of Version 1.
It is a “for all not” versus a “there exist.”

4/7/21 © UCF CS 36

Characteristics of NP
All problems in NP are decidable.

That means there is an algorithm.

And the algorithm is no worse than O(2n).

4/7/21 © UCF CS 37

Non-NP
Version 2 and 3 problems are apparently not in
NP.

So, where are they??

We need more structure! {Again, later.}

First we look inward, within NP.

4/7/21 © UCF CS 38

Class – P

Second Significant Complexity
Class of Problems

P Contained in NP
Some decision problems in NP can be solved
(without knowing the answer in advance) - in
polynomial time. That is, not only can we verify a
correct answer in polynomial time, but we can
actually compute the correct answer in polynomial
time - from "scratch."

These are the problems that make up the class P.

P is a subset of NP.

4/7/21 © UCF CS 40

A Witness Analogy for P
Problems in P can also have a witness – we just
don't need one. This line of thought leads to an
interesting observation.

Given: A list L of n values and a key X.
Question: Is X in L?

An oracle can provide a "witness" for a Yes
instance by writing the index k for X.
We can verify the correctness with one simple
comparison Is L[k] = X?

4/7/21 © UCF CS 41

Complement of P
Now, consider the complement (Version 3) of this
problem:

Given: A list L of n values and a key X.
Question: Is X not in L?

Here, for any Yes instance, no 'witness' seems to
exist, but if the oracle simply writes down "Yes" we
can verify the correctness in polynomial time by
comparing X with each of the n values and report
"Yes, X is not in the list“ if that is so.

4/7/21 © UCF CS 42

P and Co-P
Therefore, both problems can be verified in
polynomial time and, hence, both are in NP.

This is a characteristic of any problem in P - both it
and its complement can be verified in polynomial
time (of course, they can both be 'solved' in
polynomial time, too.)

Therefore, we can again conclude P Í NP.

4/7/21 © UCF CS 43

NP and Co-NP
There is a popular conjecture that if any problem and its
complement are both in NP, then both are also in P.

This has been the case for several problems that for many
years were not known to be in P, but both the problem and
its complement were known to be in NP.

For example, Linear Programming (proven to be in P in the
1980’s).

A notable 'holdout' to date is Graph Isomorphism.

4/7/21 © UCF CS 44

Is P=NP?
At the moment, no one knows.

Some believe all problems in NP have polynomial
algorithms. Many do not (believe that).

The fundamental question in theoretical computer science
is:
Does P = NP?

There is an award of one million dollars for a proof.
– Either way, True or False.

4/7/21 © UCF CS 45

The "Key" to
Complexity Theory

'Reductions,'
'Reductions,'
'Reductions.'

Abstract Solution
For any problem X, let X(IX, AnswerX)
represents an algorithm for problem X – even if
none is known to exist.

IX is an arbitrary instance given to the
algorithm and AnswerX is the returned
answer determined by the algorithm.

4/7/21 © UCF CS 47

Polynomial Time Reductions
Definition: For problems A and B, a (Polynomial) Turing
Reduction is an algorithm A(IA, AnswerA) for solving all
instances of problem A and satisfies the following:
(1) Constructs zero or more instances of problem B and
invokes algorithm B(IB, AnswerB), on each.
(2) Computes the result, AnswerA, for IA.
(3) Except for the time required to execute algorithm B, the
execution time of algorithm A must be polynomial with
respect to the size of IA.

We say A ≤P B
4/7/21 © UCF CS 48

Best Algorithm for B
We may assume a 'best' algorithm for
problem B without actually knowing it.

If A(IA, AnswerA) can be written without
algorithm B, then problem A is simply a
polynomial problem.

4/7/21 © UCF CS 49

PolyTime Reductions

Theorem. If A ≤P B and problem B is
polynomial, then problem A is
polynomial.

Corollary. If A ≤P B and problem A is
exponential, then problem B is
exponential.

4/7/21 © UCF CS 50

PT Reduction Theorem
Theorem. If A ≤P B , then problem A is "no harder
than" problem B.
Proof: Let fX(n) be the inherent complexity of
problem X. Let tA(n) and tB(n) be the maximum
times for some algorithms to solve A and B.
Thus, fA(n) ≤ tA(n). Further, since we assume the
best algorithm for B, tB(n) = fB(n). Since A ≤P B,
there is a constant k such that tA(n) ≤ nktB(n).
Therefore, fA(n) ≤ tA(n) ≤ nktB(n) = nkfB(n). That
is, A is no harder than B within a polynomial factor.
4/7/21 © UCF CS 51

PT Reductions Properties
Theorem. (transitivity)

If A ≤P B and B ≤P C then A ≤P C.

Definition.
If A ≤P B and B ≤P A, then A and B
are polynomially equivalent. AºpB

Note reflexive as A ≤P A

4/7/21 © UCF CS 52

NP–Complete

Third Significant Complexity Class
of Problems

NP–Complete
• Polynomial Transformations enforce an

equivalence relationship on all decision
problems, particularly, those in the Class NP.
Class P is one of those classes and is the
"easiest" class of problems in NP.

• Is there a class in NP that is the hardest class in
NP?

• A problem B in NP such that A ≤P B for every A
in NP is called NP-Complete
(Analogy to re-complete)

4/7/21 © UCF CS 54

NP–Hard
• A problem B such that A ≤P B for every A in

NP-Complete is called NP-Hard
(Second Analogy to re-hard)

4/7/21 © UCF CS 55

Propositional Logic

How Hard Can That Be?

4/7/21 © UCF CS 57

Propositional Calculus
• Mathematical of unquantified logical expressions
• Essentially Boolean algebra
• Goal is to reason about propositions
• Often interested in determining

– Is a well-formed formula (wff) a tautology?
– Is a wff refutable (unsatisfiable)?
– Is a wff satisfiable? (will show this is the

canonical NP-complete problem)

4/7/21 © UCF CS 58

Tautology and Satisfiability
• The classic approaches are:

– Truth Table
– Axiomatic System (axioms and inferences)

• Truth Table
– Clearly exponential in number of variables

• Axiomatic Systems Rules of Inference
– Substitution and Modus Ponens
– Resolution / Unification (1st order only)

4/7/21 © UCF CS 59

Proving Consequences
• Start with a set of axioms (all tautologies)
• Using substitution and MP

(P, P ÉQ Þ Q)
derive consequences of axioms (also
tautologies, but just a fragment of all
unless axioms are “complete”)

• Can create complete sets of axioms
• Need 3 variables for associativity, e.g.,

(p1 Ú p2) Ú p3 É p1 Ú (p2 Ú p3)

4/7/21 © UCF CS 60

Some Undecidables
• Given a set of axioms,

– Is this set complete?
– Given a tautology T, is T a consequent?

• The above are even undecidable with one
axiom and with only 2 variables. I will
show the latter result shortly.

4/7/21 © UCF CS 61

Refutation
• If we wish to prove that some wff, F, is a

tautology, we could negate it and try to
prove that the new formula is refutable
(cannot be satisfied; contains a logical
contradiction).

• This is often done using resolution.

4/7/21 © UCF CS 62

Resolution
• Put formula in Conjunctive Normal Form

(CNF)
• If have terms of conjunction

(P Ú Q), (R Ú ~Q)
then can determine that (P Ú R)

• If we ever get a null conclusion, we have
refuted the proposition

• Resolution is not complete for derivation,
but it is for refutation

4/7/21 © UCF CS 63

Axioms
• Must be tautologies
• Can be incomplete
• Might have limitations on them and on

WFFs, e.g.,
– Just implication
– Only n variables
– Single axiom

4/7/21 © UCF CS 64

Simulating Machines
• Linear representations require

associativity, unless all operations can be
performed on prefix only (or suffix only)

• Prefix and suffix-based operations are
single stacks and limit us to CFLs

• Can simulate Post normal Forms with just
3 variables. A PNF has rules aP ® Pb

4/7/21 © UCF CS 65

Diadic PIPC
• Diadic limits us to two variables
• PIPC means Partial Implicational

Propositional Calculus, and limits us to
implication as only connective

• Partial just means we get a fragment
• Problems

– Is fragment complete?
– Can F be derived by substitution and MP?

4/7/21 © UCF CS 66

Living without Associativity
• Consider a two-stack model of a TM
• Could somehow use one variable for left

stack and other for right
• Must find a way to encode a sequence as

a composition of forms – that’s the key to
this simulation

4/7/21 © UCF CS 67

Composition Encoding
• Consider (p É p), (p É (p É p)),

(p É (p É (p É p))), …
– No form is a substitution instance of any of the

other, so they can’t be confused
– All are tautologies

• Consider ((X É Y) É Y)
– This is just X Ú Y

4/7/21 © UCF CS 68

Encoding
• Use (p É p) as form of bottom of stack
• Use (p É (p É p)) as form for letter 0
• Use (p É (p É (p É p))) as form for 1
• Etc.
• String 01 (reading top to bottom of stack) is

– (((p É p) É ((p É p) É ((p É p) É (p É p)))) É
(((p É p) É ((p É p) É ((p É p) É (p É p)))) É
((p É p) É ((p É p) É ((p É p) É (p É p))))))

TM to Encode
• Tape alphabet {0,1} 0 is blank
• State set {q1, q2, … , qm}

– q1 is start state
– Machine halts if we reach a discriminant

(state, scanned symbol) with no associated
action

4/7/21 © UCF CS 69

Encoding Functions
I(p) abbreviates [p É p] // stack bottom
F0(p) is [p É I(p)] which is [p É [p É p]] // symbol 0
F1(p) is [p É F0(p)] // symbol 1
x1(p) is [p É F1(p)] // helper 1
x2(p) is [p É x1 (p)] // helper 2
x3(p) is [p É x2 (p)] // helper 3
y1(p) is [p É x3 (p)] // symbol q1

y2(p) is [p É y1 (p)] // symbol q2

…
ym(p) is [p É ym-1 (p)] // symbol qm

4/7/21 © UCF CS 70

Example TM ID
• Let a TM’s ID be

110 q5 1101
• Tape could be represented by two stacks

Stack 1 is right side, reading left to right
q5 1101

• Stack 2 is left side, reading right to left
011

4/7/21 © UCF CS 71

Excoded Example TM ID
• q5 1101 (stack 1, read left to right)
• 011 (stack 2, read left to right)
• y5(F1(F1(F0(F1(I (p1)))))) Ú F0(F1(F1(I (p2))))
• Consider a Turing Table entry q5 1 L q2

• We could have an implication like
[y5(F1(p1)) Ú F0(p2)] É [y2(F0(F1(p1))) Ú p2]

• Using substitution (see red) and MP
[y5(F1(F1(F0(F1(I(p1)))))) Ú F0(F1(F1(I(p1))))] Þ
[y5(F0(F1(F1(F0(F1(I(p1))))))) Ú F1(F1(I(p1)))]

• This mimics one step of forward computation

4/7/21 © UCF CS 72

Running Backwards
• The simulation we show actually will mimic the

TM running backwards so the rule on the
previous page will actually be
[y2(F0(F1(p1))) Ú p2] É [y5(F1(p1)) Ú F0(p2)]

• To kick things off, my rules want to allow me to
deduce any arbitrary halting ID

• We use three helper forms to do this; they are
x1(p), x2(p), and x3(p)

4/7/21 © UCF CS 73

x1 Sets Up Stack 2
• The only axiom that does not involve a form for which MP can be

applied is
1. [x1I(p1) Ú I(p1)]

• The above reflects two empty stacks
• Using x1 rules, we generate any and all possible left-hand sides of

tape in stack 2
• This guarantees that left side is either empty (rule 4) or starts with a

1 (rule 2)
• If we apply rule 2 then rule 3 can expand the left side

4/7/21 © UCF CS 74

x2 Starts Up Stack1
• Two possibilities follow

Either Rule 4 replaces x1 with x2 and assures that the
right side of tape (stack 1) has a 1 as its leftmost symbol
Or Rule 5 replaces x1 with x3 and assures that the right
side of tape (stack 1) has just a scanned symbol (can be
a 0 or 1)

• If we use x2 then rule 6 can expand the right side but at
some point we use rule 7 to switch to x3

4/7/21 © UCF CS 75

x3 Insures Terminal
Discriminamt

• Rule 8 replaces x3 with any yk such that qki halts (no
rule) and i, represented by Fi, is on the top of stack 1
(new wff will be of form yk(Fi(p1)) Ú p2

• This is the point where the simulation of the TM begins,
except we run TM in reverse via rules 9-13 (and their
subparts)

• While these rules can be a bit complex at first they are
just the same ones we used to map a TM to a semi-Thue
system or a PSG

4/7/21 © UCF CS 76

Putting it Together
• The main point is that the axioms produce a bunch of

items that are easy to check for validity (the stuff
involving the forms x1, x2, and x3 plus exactly those
representations of starting IDs for which the TM halts

• If we could decide what Tautologies are producible by
this Propositional System then we would be able to solve
the Halting Problem for TMs

• This proves the deducibility problem for Fragments of the
2-Variable Implicational Calculus (PIPC) is unsolvable

• This is true even though two variables are insufficient to
represent the basic notion of associativity!!!

4/7/21 © UCF CS 77

4/7/21 © UCF CS 78

Creating Terminal IDs

4/7/21 © UCF CS 79

Reversing Print and Left

4/7/21 © UCF CS 80

Reversing Right

Satisfiability

How Hard Can That Be?

Conjunctive Normal Form
U = {u1, u2,…, un}, Boolean variables.

C = {c1, c2,…, cm}, "OR clauses"
For example:

ci = (u4 Ú u35 Ú ~u18 Ú u3… Ú ~u6)

4/7/21 © UCF CS 82

Satisfiability Challenge

Can we assign Boolean values to the
variables in U so that every clause is TRUE?

There is no known polynomial time
algorithm!!

4/7/21 © UCF CS 83

Cook’s Theorem
Cooks Theorem:

1) SAT is in NP
2) For every problem A in NP,

A ≤P SAT

Thus, SAT is as hard as every problem
in NP.

4/7/21 © UCF CS 84

SAT as NP–Complete
Since SAT is itself in NP, that means SAT is a
hardest problem in NP (there can be more
than one.).

A hardest problem in a class is called the
"completion" of that class.

Therefore, SAT is NP–Complete.

4/7/21 © UCF CS 85

Ubiquity
Today, there are 1,000’s of problems that
have been proven to be NP–Complete. (See
Garey and Johnson, Computers and
Intractability: A Guide to the Theory of NP–
Completeness, for a list of over 300 as of
the early 1980's).

What about P = NP?
If P = NP then all problems in NP are
polynomial problems.

If P ≠ NP then all NP–C problems are at
least super-polynomial and perhaps
exponential. That is, NP-C problems could
require sub-exponential super-polynomial
time. (Example of super-polynomial, sub-
exponential is o(2o(n)), e.g., 2∛n
4/7/21 © UCF CS 87

Evidence for P = NP?
Why should P equal NP?
• There seems to be a huge "gap" between the known

problems in P and Exponential. That is, almost all
known polynomial problems are no worse than n3 or
n4.

• Where are the O(n50) problems?? O(n100)? Maybe
they are the ones in NP–Complete?

• It's awfully hard to envision a problem that would
require n100, but surely they exist?

• Some of the problems in NP–C just look like we
should be able to find a polynomial solution (looks
can be deceiving, though).

4/7/21 © UCF CS 88

Evidence for P ≠ NP?
Why should P not equal NP?
• P = NP would mean, for any problem in NP, that it is

just as easy to solve an instance form "scratch," as it is
to verify the answer if someone gives it to you. That
seems a bit hard to believe.

• There simply are a lot of awfully hard looking problems
in NP–Complete (and Co–NP-Complete) and some just
don't seem to be solvable in polynomial time.

• Many smart people have tried for a long time to find
polynomial algorithms for some of the problems in NP-
Complete - with no luck.

4/7/21 © UCF CS 89

4/7/21 COT 6410 © UCF 90

NP-Complete; NP-Hard
A decision problem, C, is NP-complete if:

C is in NP and
C is NP-hard. That is, every problem in NP is polynomially
reducible to C.

D polynomially reduces to C means that there is a deterministic
polynomial-time many-one algorithm, f, that transforms each instance x
of D into an instance f(x) of C, such that the answer to f(x) is YES if and
only if the answer to x is YES.
To prove that an NP problem A is NP-complete, it is sufficient to show
that an already known NP-complete problem polynomially reduces to A.
By transitivity, this shows that A is NP-hard.
A consequence of this definition is that if we had a polynomial time
algorithm for any NP-complete problem C, we could solve all problems
in NP in polynomial time. That is, P = NP.
Note that NP-hard does not necessarily mean NP-complete, as a given
NP-hard problem could be outside NP. Analogy to re-complete

4/7/21 COT 6410 © UCF 91

Returning to SAT
• SAT is the problem to decide of an arbitrary

Boolean formula (wff in the propositional
calculus) whether or not this formula is
satisfiable (has a set of variable assignments
that evaluate the expression to true).

• SAT clearly can be solved in time k2n, where k is
the length of the formula and n is the number of
variables in the formula.

• What we now show is that SAT is NP-complete,
providing us our first concrete example of an
NP-complete decision problem.

Simulating NDTM
• Given a NDTM, M, and an input w, we need to create a

formula, jM,w, containing a polynomial number of terms
that is satisfiable just in case M accepts w in polynomial
time.

• The formula must encode within its terms a trace of
configurations that includes
– A term for the starting configuration of the TM
– Terms for all accepting configurations of the TM
– Terms that ensure the consistency of each configuration
– Terms that ensure that each configuration after the first follows

from the prior configuration by a single move

4/7/21 © UCF CS 92

Tableaus
A tableau is an array of tape alphabet
symbols.

It represents a configuration history of one
branch of our NDTM’s nondeterminism.
If the NDTM runs in nk time, the tableau is an
(nk ´ nk) tableau.

It’s big enough downward because, well, the
TM runs in nk.
…and rightward because the TM can only
count to nk.

We assume that every configuration starts and
ends with a # symbol.
We think of our tableau as looking like this in
the “beginning”: the starting configuration
across the top, and the other configurations
blank.

(We quote “beginning” because SAT isn’t really
a stateful algorithm, but just go with it for now.)

But we’ve assumed that we can “represent”
alphabet symbols. How do we do that, in
SAT?

q0 w1 w2 … wn □ … □

↑nk↓

#
#
#
#
#
#
#
#
#

← nk →

4/7/21 © UCF CS 93

Encoding the Tableau: Basics
Consider a set comprised of:

The tape alphabet
The state set
The separator character

C = G È Q È { # }
Consider a cell variable:

xi,j,c
Turning this variable on corresponds to
setting cell (i, j) = c, for some c Î C.

1 2 3 4 5 6 7 8 9 10
1 # q0 w1 w2 … wn □ … □ #
2 # #
3 # #
4 # #
5 # #
6 # #
7 # #
8 # #
9 # #
10 # #

4/7/21 © UCF CS 94

Encoding the Tableau: Cells

Consider our tableau alphabet:
C = G È Q È { # }

Consider a cell and corresponding
variable:

xi,j,c
Now we need to make sure the tableau is
consistently encoded.

Create a clause for each cell (i, j).

The left demands xi,j,c be true for some c.
The right demands xi,j,c be true for only
one c.

1 2 3 4 5 6 7 8 9 10
1 # q0 w1 w2 … wn □ … □ #
2 # #
3 # #
4 # #
5 # #
6 # #
7 # #
8 # #
9 # #
10 # #

𝜙!"#$%! 𝑖, 𝑗 = &
&∈(

𝑥),+,& ∧)
&,,∈(
&-,

𝑥),+,& ⋁ 𝑥),+,,

4/7/21 © UCF CS 95

Encoding the Tableau: The
Tableau

Tableau alphabet: C = G È Q È { # }
Cell variable: xi,j,c
Create an encoding clause for each cell (i, j).

Now repeat the clause across the tableau.

This is our cell formula. It ensures that each
cell in the tableau is assigned a single
symbol.

1 2 3 4 5 6 7 8 9 10
1 # q0 w1 w2 … wn □ … □ #
2 # #
3 # #
4 # #
5 # #
6 # #
7 # #
8 # #
9 # #
10 # #

𝜙!"#$%! 𝑖, 𝑗 = &
&∈(

𝑥),+,& ∧)
&,,∈(
&-,

𝑥),+,& ⋁ 𝑥),+,,

𝜙#!../ =)
01),+12!

𝜙!"#$%! 𝑖, 𝑗

4/7/21 © UCF CS 96

Encoding the Tableau:
Complexity

We can create the single-cell
encoding formula in polynomial time
with a |C|2 iteration.

We can create the entire cell formula
in polynomial time with an n2k
iteration around that.
So we can say that fcells is satisfied
by, and only by, a properly
encoded tableau, and is created in
polynomial time.

1 2 3 4 5 6 7 8 9 10
1 # q0 w1 w2 … wn □ … □ #
2 # #
3 # #
4 # #
5 # #
6 # #
7 # #
8 # #
9 # #
10 # #

𝜙!"#$%! 𝑖, 𝑗 = &
&∈(

𝑥),+,& ∧)
&,,∈(
&-,

𝑥),+,& ⋁ 𝑥),+,,

𝜙#!../ =)
01),+12!

𝜙!"#$%! 𝑖, 𝑗

4/7/21 © UCF CS 97

Starting and Accepting
Starting and accepting are (comparatively) easy.
To start, take the start configuration padded to nk
length with blanks…

S = #q0w1w2…wn□…□# so that |S| = nk

…and require the first row be equal to the start
configuration:

Then to accept, just require an accept state
somewhere in the tableau.

1 2 3 4 5 6 7 8 9 10
1 # q0 w1 w2 … wn □ … □ #
2 # #
3 # #
4 # #
5 # w1 w2 … qA … □ … □ #
6 # #
7 # #
8 # #
9 # #
10 # #

𝜙!"#$" = #
%&'&(!

𝑥%,',*"

𝜙#++,-" = %
%&.,'&(!

𝑥.,',/#

4/7/21 UCF @ CS 98

Starting and Accepting

We can generate the start and accept
formulas in nk and (nk)2 time, both
polynomial.
So now we can say that:
fstart is satisfied by, and only by, a
tableau with the starting configuration
of M on w encoded as its first row,
and is created in polynomial time.

…and…
faccept is satisfied by, and only by, a
tableau encoding an accepting
configuration as one of its rows, and
is created in polynomial time.

1 2 3 4 5 6 7 8 9 10
1 # q0 w1 w2 … wn □ … □ #
2 # #
3 # #
4 # #
5 # z1 z2 … qA … □ … □ #
6 # #
7 # #
8 # #
9 # #
10 # #

𝜙!"#$" = #
%&'&(!

𝑥%,',*" 𝜙#++,-" = %
%&.,'&(!

𝑥.,',/#

4/7/21 © UCF CS 99

Transitions

Now, for transitions. Recall the discussions
we had about ID changes being limited to
three characters or six, when looking at
transitions..

A given 2x3 window is legal if it does not
violate our machine’s transition function.
Given the linear sets of states and tape
symbols, and the finite size of 2x3 windows,
we can make a polynomial-sized set of all
legal windows.

Let a sequence A = (a1, …, a6) be a 2x3
window, with a1 the top left cell, a2 the top
middle, etc.

We say that A is legal if it represents a legal
window. Here we have q0 a R q1

1 2 3 4 5 6 7 8 9 10
1 # q0 a b c a □ □ □ #
2 # a q1 b c a □ □ □ #
3 # #
4 # #
5 # #
6 # #
7 # #
8 # #
9 # #
10 # #

4/7/21 © UCF CS 100

Transitions
A given 2x3 window is legal if it does not
violate our machine’s transition function. We
have a polynomial-sized set of all legal
windows.
Let a sequence A = (a1, …, a6) be a 2x3
window. A is legal if it represents a legal
window.
Now we can come up with a formula to say that
the window top-centered at cell (i, j) is legal.

Don’t be intimidated by this formula!
It’s just counting off the six cells of the
window and demanding that each be equal to
the corresponding cell in some legal window.

1 2 3 4 5 6 7 8 9 10
1 # q0 a b c a □ □ □ #
2 # a q1 b c a □ □ □ #
3 # #
4 # #
5 # #
6 # #
7 # #
8 # #
9 # #
10 # #

𝜙.!34.(𝑖, 𝑗) = &
56 7" ,…,7#
9/ .!34.

𝑥),+:0,7" ∧ 𝑥),+,7$ ∧ 𝑥),+;0,7% ∧
𝑥);0,+:0,7& ∧ 𝑥);0,+,7' ∧ 𝑥);0,+;0,7#

4/7/21 © UCF CS 101

Transitions
A given 2x3 window is legal if it does
not violate our machine’s transition
function.
We have a polynomial-sized set of all
legal windows.
Let a sequence A = (a1, …, a6) be a
2x3 window. A is legal if it represents
a legal window.

Since we have a polynomial number of
legal windows, this formula is also
polynomial. So we can say:
flegal (i, j) is satisfied by, and only by, a
tableau whose window top-centered at
(i, j) is legal; and is created in
polynomial time.

1 2 3 4 5 6 7 8 9 10
1 # q0 a b c a □ □ □ #
2 # a q1 b c a □ □ □ #
3 # #
4 # #
5 # #
6 # #
7 # #
8 # #
9 # #
10 # #

𝜙.!34.(𝑖, 𝑗) = &
56 7" ,…,7#
9/ .!34.

𝑥),+:0,7" ∧ 𝑥),+,7$ ∧ 𝑥),+;0,7% ∧
𝑥);0,+:0,7& ∧ 𝑥);0,+,7' ∧ 𝑥);0,+;0,7#

4/7/21 © UCF CS 102

Windows and Configurations

Consider any upper and lower configuration in the
tableau, so that the lower configuration is the one
immediately below – that is, following – the upper.
If all the windows top-centered on cells in the upper
configuration are legal, then:

The legality of the windows that don’t involve the state
symbol easily ensures the legality of the configuration
below them.
The window top-centered on the state symbol in the
upper configuration is sufficient to ensure that the state
symbol in the lower configuration makes a legal move.

The upper configuration yields the lower one if
and only if all the windows top-centered on cells
in the upper configuration are legal – and that
holds all the way down the tableau.

1 2 3 4 5 6 7 8 9 10
1 # q0 a b c a □ □ □ #
2 # a q1 b c a □ □ □ #
3 # #
4 # #
5 # #
6 # #
7 # #
8 # #
9 # #
10 # #

4/7/21 © UCF CS 103

Windows and Configurations

flegal (i, j) is satisfied by, and only by, a tableau
whose window top-centered at (i, j) is legal; and
is created in polynomial time.
An upper configuration yields a lower one iff all
the windows top-centered within the upper are
legal.

This holds all the way down the tableau.
Then we have:

And can say fmove is satisfied by, and only by,
a tableau that does not violate the machine’s
transition function; and is created in
polynomial time.

1 2 3 4 5 6 7 8 9 10
1 # q0 a b c a □ □ □ #
2 # a q1 b c a □ □ □ #
3 # #
4 # #
5 # #
6 # #
7 # #
8 # #
9 # #
10 # #

𝜙.!34.(𝑖, 𝑗) = &
56 7" ,…,7#
9/ .!34.

𝑥),+:0,7" ∧ 𝑥),+,7$ ∧ 𝑥),+;0,7% ∧
𝑥);0,+:0,7& ∧ 𝑥);0,+,7' ∧ 𝑥);0,+;0,7#

𝜙<$=! =)
01)>2! ,
0>+>2!

𝜙.!34.(𝑖, 𝑗)

4/7/21 © UCF CS 104

Pulling It Together
We have:
fcells is satisfied by, and only by, a
properly encoded tableau.
fstart is satisfied by, and only by, a
tableau with the starting configuration of
M on w encoded as its first row.
faccept is satisfied by, and only by, a
tableau encoding an accepting
configuration as one of its rows.
fmove is satisfied by, and only by, a
tableau that does not violate the
machine’s transition function.
All are created in polynomial time.

Then fNDTM is satisfied by, and only by,
a tableau encoding an accepting
computation history of M on w, and is
created in polynomial time.

𝜙+,00! = #
%&.,'&(!

𝜙,1+23, 𝑖, 𝑗

𝜙!"#$" = #
%&'&(!

𝑥%,',*"

𝜙#++,-" = %
%&.,'&(!

𝑥.,',/#

𝜙425, = #
%&.6(!,
%6'6(!

𝜙0,7#0(𝑖, 𝑗)

𝜙89:;= 𝜙+,00! ∧ 𝜙!"#$" ∧ 𝜙#++,-" ∧ 𝜙425,

4/7/21 © UCF CS 105

SAT is NP-Complete

fNDTM created from NDTM M and
input w is satisfied by, and only by,
a tableau encoding an accepting
computation history of M on w,
and is created in polynomial time.
This means that:

SAT accepts fNDTM if and only if
such a tableau exists…
…if and only if the NDTM we are
encoding into fNDTM accepts w.

We’ve just polynomially reduced
every possible NP language to
SAT.

Let’s convince ourselves of that a bit
more.

By definition, any NP language has an
NDTM M that decides it in polynomial
time.

We can decide any NP language
with a result from SAT using the
following algorithm:
On input <M, w>:

Create fNDTM from M and w.
Run the decider for SAT on fNDTM.
Accept if SAT accepts, reject if it
rejects.

SAT is NP-complete.

𝜙89:; = 𝜙+,00! ∧ 𝜙!"#$" ∧ 𝜙#++,-" ∧ 𝜙425,

4/7/21 © UCF CS 106

4/7/21 COT 6410 © UCF 107

Cook’s Theorem
• jM,w = fcells Ù fstart Ù faccept Ù fmove

• See the following for another detailed
description and discussion of the four
terms that make up this formula.

• http://www.cs.tau.ac.il/~safra/Complexity/Cook.ppt

NP–Complete
Within a year, Richard Karp added 22 problems to this
special class.

We will focus on:
3-SAT
Integer Linear Programming
SubsetSum
Partition
Vertex Cover
Independent Set
K-Color
Multiprocessor Scheduling

4/7/21 © UCF CS 108

Co-NP
• A problem is in co-NP if its complement is in NP

– This is like co-RE, with respect to RE problems.

• An example is the problem to determine if a
Boolean expression is a tautology.
– If the answer to the problem "is B in TAUT ?" is NO, then B is in

the complement of SAT.

• A more direct example of a co-NP problem is to
determine if a Boolean expression is self-
contradictory.
– This is the complement of the notion of satisfiability but not of an

instance of satisfiability as the complement of an expression in
SAT can also be in SAT.

4/7/21 © UCF CS 109

SAT to 3SAT
• 3-SAT means that each clause has exactly three

terms
• If one term, e.g., (p), expand to (pÚpÚp)
• If two terms, e.g., (pÚq), expand to (pÚqÚp)
• Any clause with three terms is fine
• If n > three terms, can reduce to two clauses, one

with three terms and one with n-1 terms, e.g.,
(p1Úp2Ú…Úpn) to
(p1Úp2Úz) & (p3Ú…ÚpnÚ~z), where z is a new
variable. If n=4, we are done, else apply this
approach again with the clause having n-1 terms

4/7/21 © UCF CS 110

3SAT Growth is Linear
• Let’s make sure we have not grown the length of the

expression going from an instance E of SAT to
3SAT by more than a polynomial amount.

• Let N be the number of clauses in E and let n be
number of variables in E. Worst case length of E is
then nN literals.

• If a clause in E has k≥3 literals, we want to define
G(k)=number of literals in the 3SAT version, E’.

• G(3)=3; G(4)=G(3)+G(3)=6; G(5)=G(4)+G(3)=9;
G(6)=G(5)+G(3)=12;…; G(k)=3(k-2), k≥3.

• The worst case is bounded above by 3nN literals in
E’ which is polynomial (linear) growth.

4/7/21 © UCF CS 111

Linear Programming (LP)
• Linear Programming (LP) is like solving a set of linear

equations but allows not just equality (=) but also
inequality (>, <, ≥, ≤)

• In fact, LP usually also includes an optimization function,
but we are limiting ourselves to decision problems

• Example:
x + y > 7
x - y ≥ 4
Has many solutions, some of which are integral, e.g.,
x=7, y=1

4/7/21 © UCF CS 112

Integer LP (ILP)
• Integer Linear Programming (ILP) just constrains the

solutions to an LP problem to be integral values
• This constraint, on the surface, may seem to make the

problem easier but, in fact, makes it harder
• This is even true when we view this as a decision

problem where we just ask
“Is there a solution to this instance of ILP”

• We will see this complexity play out in the next few slides

4/7/21 © UCF CS 113

0-1 ILP
• 0-1 ILP constrains the solution space to variable values of 0 or 1
• Start with an instance of SAT (or 3SAT), assuming

variables v1,…, vn and clauses c1,…, cm
• For each variable vi, have the constraint that 0 ≤ vi ≤ 1
• For each clause we provide a constraint that it must be satisfied

(evaluate to at least 1). For example, if clause cj is
v2 ∨ ~v3 ∨ v5 ∨ v6 then add the constraint
v2 + (1-v3) + v5 + v6 ≥ 1

• A solution to this set of integer linear constraints implies a solution to
the instance of SAT and vice versa

• Note this works for any SAT instance not just 3SAT

4/7/21 © UCF CS 114

0-1 ILP is NP-Complete
• Previous page just show 0-1 ILP is NP-

Hard
• Must show it is in NP
• Can do by trying all 2k 0-1 assignments to

k variables
• Or can show that verifying a solution is in

P – it’s really just linear

4/7/21 © UCF CS 115

0-1 ILP Example
• Original SAT: E = (a+b+~c+d+e)(~b)(~a+~d)(b+c+~e)
• 0 £ a £ 1; 0 £ b £ 1; 0 £ c £ 1;

0 £ d £ 1; 0 £ e £ 1
• a+b+(1-c)+d+e ≥ 1;

alternatively, a+b-c+d+e ≥ 0
• 1-b ≥ 1;

alternatively, b = 0
• (1-a)+(1-d) ≥ 1;

alternatively, a+d £ 1
• b+c+(1-e) ≥ 1;

alternatively, b+c-e ≥ 0
4/7/21 © UCF CS 116

What about ILP?
• As we said, ILP just constrains the solution

to integers not to binary values
• Clearly ILP is NP-Hard as the constrained

version of 0-1 ILP is NP-Hard
• Showing ILP is in NP is easy using a

verifier; you give me a proposed solution
and I can check it in linear time

4/7/21 © UCF CS 117

What about Linear
Programming (LP) #1?

• Linear programming just requires that
solution be real number values

• The only constraints are in the
simultaneous inequalities (and equalities)

• If you limit LP to equalities, then it has a
well-known complexity of O(N3) using
Gaussian Elimination or one of its variants

4/7/21 © UCF CS 118

What about Linear
Programming (LP) #2?

• The problem of solving LP appeared to be exponential
for a long time and was, and still is, generally attacked
using the Simplex Method which involves adding slack
variables, e.g.,
x + y < 7 iff x + y + e = 7 for some e > 0 and
x + y ≤ 7 iff x + y + f = 7 for some f ≥ 0

• One can show cases where the Simplex Method takes
exponential time, but its average case is O(N√d) time
where N is the number of variables and d is bounded
above by the size of the input in bits

4/7/21 © UCF CS 119

What about Linear
Programming (LP) #3?

• In 1984, LP was shown to be of polynomial complexity
• Complexity is O(N3.5 L lg L lglg L) where N is number of

variables and L is the size of the input in bits
• Simplex is still used much as QuickSort is used for

sorting even though its worst case is O(N2) as its
expected performance is O(N lg N) and it often
converges in O(N)

• Note neither Simplex nor QuickSort are heuristics as
each gives the correct result. I bring that up as later we
will talk about heuristics for NP-Hard problems. There
are some nice cases and some strange ones.

4/7/21 © UCF CS 120

SubsetSum
S = {s1, s2, …, sn}

set of positive integers
and an integer G.

Question: Does S have a subset whose
values sum to the goal G?

Note: This is really a Bag (Multiset) not a Set
No one knows of a polynomial algorithm.
{No one has proven there isn’t one, either!!}

4/7/21 © UCF CS 121

SubsetSum is in NP
• You give me a “solution” to [{s1, s2, …, sn}, G]
• Your solution is just a subset of the set of integers {1 .. n}
• I make sure that each number you give me is unique and in

the correct range (that takes me n units of time). If not, I reject
your “solution”

• I then add the selected numbers together. That takes the sum
of the log based 2 of the numbers you selected. I then check
that the sum equals G. If so, I verify; if not, I reject.

• Note that the original representation is of length the sum of
the log based 2 of the si’s and G so my growth of time is
linear

• Thus, I can verify in polynomial time

Example SubsetSum
• Instance

[(15, 17, 27, 11, 4, 12, 33, 5, 6, 21, 2), 57]
• A solution is 15, 17, 11, 12, 2 (or with indices just 1,2,4,6,11)
• Note that an item can only be chosen once
• Note that we can try a heuristic like sorting low to high

[(2, 4, 5, 6, 11, 12, 15, 17, 21, 27, 33), 57]
• But an attack with that might have us choose

2, 4, 5, 6, 11, 12, 15 and we are stuck
• In above, one can backtrack to remove 15 and replace by 17 works,

but backtracking is in general exponential
• Try high to low [(33, 27, 21, 17, 15, 12, 11, 6, 5, 4, 2), 57]

33, 27 (Fail), 33, 21, 17 (Fail), 33, 21, 15 (Fail), etc.
• Clearly all these are potentially exponential approaches
4/7/21 © UCF CS 123

SAT ≤P 3SAT ≤P
SubsetSum ≡p Partition

Theorem. SAT ≤P ILP ≤P LP
Theorem. SAT ≤P 3SAT
Theorem. 3SAT ≤P SubsetSum
Theorem. SubsetSum ≤P Partition
Theorem. Partition ≤P SubsetSum (for fun)

Therefore, not only is SAT in NP–Complete,
but so are ILP, LP, 3SAT, Partition, and
SubsetSum.

4/7/21 © UCF CS 124

3SAT ≤p SubsetSum
Assuming a 3SAT expression (a + ~b + c) (~a + b + ~c)

a b c a+~b+c ~a+b+~c
a 1 0 0 1 0

~a 1 0 0 0 1
b 0 1 0 0 1

~b 0 1 0 1 0
c 0 0 1 1 0

~c 0 0 1 0 1
C1 0 0 0 1 0
C1’ 0 0 0 1 0
C2 0 0 0 0 1
C2’ 0 0 0 0 1

1 1 1 3 3
4/7/21 © UCF CS 125

SubsetSum Matrix
• One column per variable and one column per clause
• Two rows per variable (true/false so only one can be

chosen per variable) and two rows per clause (optional
pads to get to 3’s in clause columns, provided we are
already at least a 1).

• Each row is a number and summing them never results
in carry to next column, so each column is independent
of other and only influenced by rows we select.

• Goal of 1 … 1 3… 3 forces one choice (true or false per
variable) and satisfiability for every clause (must have a
1 in at least one variable row of each clause column)

4/7/21 © UCF CS 126

How it works
• Satisfying (a + ~b + c) (~a + b + ~c)
• Make a, b and c true (satisfies)

Rows a, b and c get us 11121
Padding with C1, C2 and C2’ gets 11133

• Make a, ~b and c true (does not satisfy)
Rows a, ~b and c get us 11130
No amount of padding can get the last
column to be 3 (2 is max)

4/7/21 © UCF CS 127

Partition
• Given a Multiset S = {s1, s2, …, sn}, where

each si is a positive integer, can we
partition it into two sub-bags P1, P2 such
that P1 ∪ P2 = S and P1 ∩ P2 = ∅ ?

• Note: If S contains multiple copies of some
integer, each is considered distinct and
thus does not unduly influence the
intersection and union operators above

4/7/21 © UCF CS 128

SubsetSum≡pPartition Details
• Partition is polynomial equivalent to SubsetSum

– Let i1, i2, .., in , G be an instance of SubsetSum. This
instance has answer “yes” iff
i1, i2, .., in , 2*Sum(i1, i2, .., in) – G,Sum(i1, i2, .., in) + G
has answer “yes” in Partition. Here we assume that
G ≤ Sum(i1, i2, .., in), for, if not, the answer is “no.”

– Let i1, i2, .., in be an instance of Partition. This instance
has answer “yes” iff
i1, i2, .., in , Sum(i1, i2, .., in)/2
has answer “yes” in SubsetSum

4/7/21 © UCF CS 129

SubsetSum ≡p Partition
• [(15, 17, 27, 11, 4, 12, 33, 5, 6, 21, 2), 57]
• A solution is 15, 17, 11, 12, 2
• Sum of all is 153
• Mapping to Partition is

– (15, 17, 27, 11, 4, 12, 33, 5, 6, 21, 2, 306-57, 153+57)
– (15, 17, 27, 11, 4, 12, 33, 5, 6, 21, 2, 249, 210)
– (15+17+11+12+2+249) = 306
– (27+4+33+5+6+21+210) = 306

• Going other direction map above to
– [(15, 17, 27, 11, 4, 12, 33, 5, 6, 21, 2, 249, 210), 306]

4/7/21 © UCF CS 130

VERTEX COVERING (VC)
DECISION PROBLEM IS NP-HARD

4/7/21 © UCF CS 131

3SAT to Vertex Cover
• Vertex cover seeks a set of vertices that cover every edge in some

graph
• Let I3-SAT be an arbitrary instance of 3-SAT. For integers n and m,

U = {u1, u2, …, un} and Ci = {zi1, zi2, zi3} for 1 ≤ i ≤ m,
where each zij is either a uk or uk' for some k.

• Construct an instance of VC as follows.
• For each i, 1 ≤ i ≤ n, construct two vertices, ui and ui' with an edge

between them.
• For each clause Ci = {zi1, zi2, zi3}, 1 ≤ i ≤ m, construct three vertices zi1,

zi2, and zi3 and form a "triangle on them. Each zij is one of the Boolean
variables uk or its complement uk'. Draw an edge between zij and the
Boolean variable (whichever it is). Each zij has degree 3. Finally, set k
= n+2m.

• Theorem. The given instance of 3-SAT is satisfiable if and only if the
constructed instance of VC has a vertex cover with at most k vertices.

4/7/21 © UCF CS 132

VC Variable Gadget

X ~X

4/7/21 © UCF CS 133

To cover the edge in between x and ~x, at least one of these must be chosen

VC Clause Gadget

a ~c

b

a + b + ~c

4/7/21 © UCF CS 134

To cover the edges here, at least two of three vertices must be chosen

VC Gadgets Combined

UCF @ CS4/7/21 135

Goal is to cover all variables (really edges) with v + 2c nodes (minimum needed);
v=#variables; c = #clauses; for above that is 2 + 2*3 = 8: Light blue are choices

Why VC Gadgets Work
• For each variable gadget, we must either choose the variable or its

complement to cover the edge connecting them; Choosing both is
wasteful

• For each clause gadget, we must cover its internal edges. This
requires 2 per clause, but also need to cover all edges entering from
variable gadgets, if not already covered by the selection of the
corresponding variable gadget

• If we can cover all edges, with just v+2c nodes then we have
attained the minimum possible and guaranteed that each clause has
at least one of its literals true. This allows the corresponding variable
selection (true/false) to cover the incoming edge allowing the three
internal edges to be covered by the other two variable nodes in the
clause. If more than one literal is covered, you have a choice of
which covered internal node to not choose for the clause gadget

4/7/21 © UCF CS 136

Explaining Example

4/7/21 © UCF CS 137

Solution choses ~x1, x2; By choosing those variable gadget nodes we cover both
variable gadgets. We know we must cover all clause gadgets and the edges entering
them from the variable gadgets. For the first clause, we do not need to cover the edge
entering from variable gadget x2, but we must cover the other two external edges and the
three internal edges. Choosing the two x1 nodes in clause 1 covers all external and
internal edges. Had we chosen ~x1 in the x1 variable gadget and ~x2 in the x2 variable
gadget we would have had to chose x2 in the first clause gadget thereby exceeding our
quota of v + 2c. I leave it to you to see why the others work and to understand why we
had no actual constraints in the third clause gadget (any two would have worked).

VC Just the Gadgets

4/7/21 © UCF CS 138

a ~a

~b

b ~b c ~c

~ca

b

~c~a

~b

c~a

Requires |V| + 2*|C|
Trivial to reach goal if no other edges

(a,~b,~c)(~a,b,~c)(~a,~b,c)

VC + Variable/Clause Edges

4/7/21 © UCF CS 139

a ~a

~b

b ~b c ~c

~ca

b

~c~a

~b

c~a

GOAL = 3 + 3*2 = 9
The choice of variable assignments influences which

nodes in clauses must be chosen to cover external edges

(a,~b,~c)(~a,b,~c)(~a,~b,c)

VC with Forced Solution

4/7/21 © UCF CS 140

a ~a

~b

b ~b c ~c

~ca

b

~c~a

~b

c~a

GOAL = 3 + 3*2 = 9
Assignment is a, b, c

(a,~b,~c)(~a,b,~c)(~a,~b,c)

VC Partially Forced Soln

4/7/21 © UCF CS 141

a ~a

~b

b ~b c ~c

~ca

b

~c~a

~b

c~a

(a,~b,~c)(~a,b,~c)(~a,~b,c)

GOAL = 3 + 3*2 = 9
Assignment is ~a, ~b, ~c

VC Ex#2 Bad Assign

4/7/21 © UCF CS 142

GOAL = 3 + 3*2 = 9
Assignment is ~a, b, c

FAIL!!!

(a,~b,~c)(~a,b,~c)(~a,~b,c)

a ~a

~b

b ~b c ~c

~ca

b

~c~a

~b

c~a

Independent Set
• Independent Set

– Given Graph G = (V, E), a subset S of the vertices is
independent if there are no edges between vertices in
S

– The k-IS problem is to determine for a k>0 and a
graph G, whether G has an independent set of k
nodes

• Note there is a related NP-Hard optimization
problem to find a Maximum Independent Set. It
is even hard to approximate a solution to the
Maximum Independent Set Problem.

4/7/21 © UCF CS 143

IS (VC) Clause Gadget

4/7/21 UCF @ CS 144

a ~c

a + b + ~c

b

3SAT to IS
(a + ~b + c) (~a + b + ~c)(a + b + c), k=3
(k=number of clauses, not variables)

a c

~b
~a ~c

b

a c

b

4/7/21 © UCF CS 145

Explaining the example

In each clause gadget we can only chose one node, else we would be
choosing two nodes with a shared edge. Assume we select a in clause
1, we cannot choose ~a in any other clause as they have a shared
edge. After choosing a in clause 1, we could choose either b or ~c in
clause 2. Assume we select ~c in clause 2, we cannot choose c in any
other clause as they have a shared edge. To reach three (the number
of clauses, we need a choice left for clause 3. Fortunately, we have two
choices, either a or b (I chose b in this case).

4/7/21 © UCF CS 146

a c

~b

~a ~c

b

a c

b

K-COLOR (KC) DECISION
PROBLEM IS NP-HARD

4/7/21 UCF @ CS 147

K-Coloring
Given:
A graph G = (V, E) and an integer k.
Question:
Can the vertices of G be assigned colors
from a palette of size k, so that adjacent
vertices have different colors and use at
most k colors?

3Coloring (3C) uses k=3
4/7/21 © UCF CS 148

3C Super Gadget

T F

B

4/7/21 © UCF CS 149

3C Super + Variables Gadget

4/7/21 © UCF CS 150

A Simple OR Gadget

4/7/21 © UCF CS 151

?

What if a, b?

4/7/21 © UCF CS 152

?

What if a, b, T?

4/7/21 © UCF CS 153

T

B

F

What if a, b, F?

4/7/21 © UCF CS 154

F

B

?

What if a, b, B?

4/7/21 © UCF CS 155

B

F

?

What if ~a, ~b?

4/7/21 © UCF CS 156

?

What if ~a, ~b, F?

4/7/21 © UCF CS 157

F

B

T

What if ~a, ~b, T?

4/7/21 © UCF CS 158

T

B

?

What if ~a, ~b, B?

4/7/21 © UCF CS 159

B

T

?

What if a, ~b?

4/7/21 © UCF CS 160

?

What if a, ~b, T?

4/7/21 © UCF CS 161

T

B

F

What if a, ~b, B?

4/7/21 © UCF CS 162

B

T

F

What if a, ~b, F?

4/7/21 © UCF CS 163

F

T

B

What if ~a, b? same as a, ~b

4/7/21 © UCF CS 164

B/T/
F

3C Clause Gadget

4/7/21 © UCF CS 165

Consider a, b, c

T
T

F

B

T
B/F

F/BT

T

4/7/21 © UCF CS 166

Consider a, b, ~c

F
T

B

F

T

4/7/21 © UCF CS 167

Consider ~a, b, c or a, ~b, c

T
T

F

B

T/B/F

F

T

4/7/21 © UCF CS 168

Consider ~a, b, ~c or a, ~b, ~c

F
T

B

F

T/B/F

F

T

4/7/21 © UCF CS 169

Consider ~a, ~b, c

T
T

F

B

F

F

F

4/7/21 © UCF CS 170

Consider ~a, ~b, ~c

F
T

B

F

F

4/7/21 © UCF CS 171

F

F

X

KC Gadgets Combined

B

K = 3

(u + ~v + w) (v + x + ~y)

4/7/21 © UCF CS 172

Register Allocation
• Liveness: A variable is live if its current assignment may be used at

some future point in a program’s flow
• Optimizers often try to keep live variables in registers
• If two variables are simultaneously live, they need to be kept in

separate registers
• Consider the K-coloring problem (can the nodes of a graph be colored

with at most K colors under the constraint that adjacent nodes must
have different colors?)

• Register Allocation reduces to K-coloring by mapping each variable to
a node and inserting an edge between variables that are
simultaneously live

• K-coloring reduces to Register Allocation by interpreting nodes as
variables and edges as indicating concurrent liveness

• This is a simple mapping because it’s an isomorphism

4/7/21 © UCF CS 173

Live Variable Analysis
Code
a = 1;
b = 2;
c = a * b;
d = a + 3;
e = c * 2;
f = e / c;
Print e, f;

No Optimization
T1 = 1
T2 = 2
T3 = T1 * T2
T4 = T1 + 3
T5 = T3 * T4
T6 = T5 / T3
OUT T5
OUT T6

4/7/21 © UCF CS 174

T1

T4 T5

T2
T3

Minimum colors are 3
so need 3 registers to
avoid spilling to
memory and reloading

T6

PROCESSOR SCHEDULING
IS NP-HARD

4/7/21 UCF @ CS 175

Processor Scheduling
• A Process Scheduling Problem can be described by
– m processors P1, P2, …, Pm,
– processor timing functions S1, S2, …, Sm, each describing how the

corresponding processor responds to an execution profile,
– additional resources R1, R2, …, Rk, e.g., memory
– transmission cost matrix Cij (1 £ i , j £ m), based on proc. data sharing,
– tasks to be executed T1, T2, …, Tn,
– task execution profiles A1, A2, …, An,
– a partial order defined on the tasks such that Ti < Tj means that Ti must

complete before Tj can start execution,
– communication matrix Dij (1 £ i , j £ n); Dij can be non-zero only if Ti <

Tj,
– weights W1, W2, …, Wn -- cost of deferring execution of task.

4/7/21 © UCF CS 176

Complexity Overview
• The intent of a scheduling algorithm is to minimize the sum of

the weighted completion times of all tasks, while obeying the
constraints of the task system. Weights can be made large to
impose deadlines.

• The general scheduling problem is quite complex, but even
simpler instances, where the processors are uniform, there are
no additional resources, there is no data transmission, the
execution profile is just processor time and the weights are
uniform, are very hard.

• In fact, if we just specify the time to complete each task and we
have no partial ordering, then finding an optimal schedule on
two processors is an NP-complete problem. It is essentially the
optimization version of the Partition or equally can be viewed
as a SubsetSum problem.

4/7/21 © UCF CS 177

2 Processor Scheduling
The problem of optimally scheduling n tasks T1, T2, …, Tn onto 2
processors with an empty partial order < is the same as that of
dividing a set of positive whole numbers into two subsets, such that
the numbers are as close to evenly divided. So, for example, given the
numbers
3, 2, 4, 1
we could try a “greedy” approach as follows:
put 3 in set 1
put 2 in set 2
put 4 in set 2 (total is now 6)
put 1 in set 1 (total is now 4)
This is not the best solution. A better option is to put 3 and 2 in one
set and 4 and 1 in the other. Such a solution would have been attained
if we did a greedy solution on a sorted version of the original
numbers. In general, however, sorting doesn’t work.

4/7/21 © UCF CS 178

2 Processor Nastiness
Try the unsorted list (result is no worse than opt * (2-1/m))
7, 7, 6, 6, 5, 4, 4, 5, 4
Greedy (Always in one that is least used)
7, 6, 5, 5 = 23
7, 6, 4, 4, 4 = 25
Optimal
7, 6, 6, 5 = 24
7, 4, 4, 4, 5 = 24
Sort it (non-increasing) (opt * (4/3-1/3m)) Sort it (non-decreasing) (opt*(2-1/m))
7, 7, 6, 6, 5, 5, 4, 4, 4 4, 4, 4, 5, 5, 6, 6, 7, 7
7, 6, 5, 4, 4 = 26 4, 4, 5, 6, 7 = 26
7, 6, 5, 4 = 22 4, 5, 6, 7 = 22

Both sorts are even worse than greedy unsorted !! (not a general result)

4/7/21 © UCF CS 179

Challenge Problem
Consider the simple scheduling problem where we have a set of independent tasks
running on a fixed number of processors, and we wish to minimize finishing time.
How would a list (first fit, no preemption) strategy schedule tasks with the following IDs
and execution times onto four processors? Answer using Gantt chart.
(T1,4) (T2,1) (T3,3) (T4,6) (T5,2) (T6,1) (T7,4) (T8,5) (T9,7) (T10,3) (T11,4) (2-1/m)

Now show what would happen if the times were sorted non-decreasing. (2-1/m)

Now show what would happen if the times were sorted non-increasing. (4/3-1/3m)

4/7/21 © UCF CS 180

2 Processor with partial order

4/7/21 © UCF CS 181

Anomalies everywhere

4/7/21 © UCF CS 182

More anomalies

4/7/21 © UCF CS 183

Critical path or level strategy
A UET is a Unit Execution Tree. Our Tree is funny. It has a
single leaf by standard graph definitions.

1. Assign L(T) = 1, for the leaf task T
2. Let labels 1, …, k-1 be assigned. If T is a task with lowest

numbered immediate successor then define L(T) = k (non-
deterministic)
This is an order n labeling algorithm that can easily be
implemented using a breadth first search.

Note: This can be used for a forest as well as a tree. Just add a
new leaf. Connect all the old leafs to be immediate parents of the
new one. Use the above to get priorities, starting at 0, rather than
1. Then delete the new node completely.
Note: This whole thing can also be used for anti-trees. Make a
schedule, read it backwards. You cannot just reverse priorities.
4/7/21 © UCF CS 184

Level strategy and UET

4/7/21 © UCF CS 185

Theorem: Level Strategy is optimal for unit execution, m arbitrary, forest
precedence

Level – DAG with unit time
1. Assign L(T) = 1, for an arbitrary leaf task T
2. Let labels 1, …, K-1 be assigned. For each task T such that

{ L(T’) is defined for all T’ in Successor(T) = S(T) }

Let N(T) be decreasing sequence of set members in
{S(T’) | T’ is in S(T)}

Choose T* with least N(T*).
Define L(T*) = K.
This is an order n2 labeling algorithm. Scheduling with it involves n union /
find style operations. Such operations have been shown to be
implementable in nearly constant time using an “amortization” algorithm.

Theorem: Level Strategy is optimal for unit execution, m=2, dag precedence.

4/7/21 © UCF CS 186

Thought Experiment
Looking back at the UET example, consider adding two additional
tasks numbered 15 and 16 that are siblings of 13 and 14. These
four tasks must be completed before 12 is started.
a) Show the Gantt chart that reflects the new schedule associated
with this enhanced tree
b) Show the Gantt chart that is associated with the corresponding
anti-tree, in which all arcs are turned in the opposite direction. Use
the technique of reversing the schedule from (a)
c) Show the Gantt chart associated with the anti-tree of b), where
we now use the priorities obtained by treating lower numbered
tasks as higher priority ones
d) Comment on the results seen in (b) versus (c), providing insight
as to why they are different and why one is better than the other.

4/7/21 © UCF CS 187

NP Co-NP

UNIVERSE OF SETS

PNP-
Complete

HAMILTONIAN CIRCUIT (HC)
DECISION PROBLEM IS NP-HARD

4/7/21 © UCF CS 189

Hamiltonian Path/Circuit
• A Hamiltonian Path is a path through a graph

from one node ‘start’ to another node ‘end’ that
visits every node in the graph just once.

• A Hamiltonian Circuit is a Hamiltonian Path
whose end node is adjacent to its start node. It
can also be viewed that the start and end nodes
are the same and that the only repeated node is
the start node with its only repetition being at the
end of the path.

4/7/21 © UCF CS 190

HC Variable Gadget

4/7/21 © UCF CS 191

This has many Hamiltonian Circuits

HC Gadgets Combined

4/7/21 © UCF CS 192

This has a Hamiltonian Circuit iff all clauses are satisfied with consistent
assignments to each variable. Note left to right assigns Xi as true; right to left
assigns ¬Xi as true. There are filler nodes on left and right and between clauses.

We will set convention on xi true to be left to right and xi false to be right to
left (can fix for opposite)

Hamiltonian Path
• Note we can split an arbitrary node, v, into

two (v’,v’’) – one, v’, has in-edges of v,
other, v’’, has out-edges. Path (not cycle)
must start at v’’ and end at v’ and goal is
still K (the number of vertices).

4/7/21 © UCF CS 193

Travelling Salesman
• Travelling Salesman Problem:

Given a list of cities and the distances between
each pair of cities, what is the shortest possible
route that visits each city and returns to the
origin city?

• This is a Hamiltonian Cycle with weights on
edges and we seek minimum weight for cycle.

• The decision problem version involves setting a
goal weight, L, and asking is we can achieve it.

4/7/21 © UCF CS 194

Travelling Salesman and HC
• Start with HC = (V,E), K=|V|
• Set edges from HC instance to 1
• Add edges between pairs that lack such

edges and make those weights 2 (often
people make these K+1); this means that
the reverse of unidirectional links also get
weight 2

• Goal weight is K for cycle

4/7/21 © UCF CS 195

Knapsack 0-1 Problem
� The goal is to

maximize the value of
a knapsack that can
hold at most W units
(i.e. lbs or kg) worth of
goods from a list of
items I0, I1, … In-1.
◦ Each item has 2

attributes:
1) Value – let this be vi for

item Ii
2) Weight – let this be wi for

item Ii
Thanks to Arup Guha

4/7/21 © UCF CS 196

Knapsack 0-1 Problem
� The difference

between this problem
and the fractional
knapsack one is that
you CANNOT take a
fraction of an item.

◦ You can either take it
or leave it.

◦ Hence the name
Knapsack 0-1
problem.

4/7/21 © UCF CS 197

Knapsack Optimize vs Decide
• The optimization problem is to have the

sum of the chosen values, vi, to be as
large as possible with the constraint that
the sum of the corresponding weights, wi,
cannot exceed W.

• We can restate as decision problem to
determine if there exists a set of items,
each with equal weights and values < W,
that reaches some fixed goal value, W.

4/7/21 © UCF CS 198

Knapsack and SubsetSum
• Let vi = wi for each item Ii.
• By doing so, the value is maximized when the

Knapsack is filled as close to capacity.
• The related decision problem is to determine if

we can attain capacity (W).
• Clearly then, given an instance of the

SubsetSum problem, we can create an instance
of the Knapsack decision problem problem, such
that we reach the goal sum, G, iff we can attain
a Knapsack value of G.

4/7/21 © UCF CS 199

Knapsack Decision Problem
• The reduction from SubsetSum shows that

the Knapsack decision problem is at least
as hard as SubsetSum, so it is NP-
Complete if it is in NP.

• Think about whether or not it is in NP.
• Now, think about the optimization problem.

4/7/21 © UCF CS 200

Related Bin Packing
• Have a bin capacity of B.
• Have item set S = {s1, s2, …, sn}
• Use all items in S, minimizing the number of

bins, while adhering to the constraint that any
such subset must sum to B or less.

• This is similar to the processor scheduling
problem without constraints, except we optimize
on number of processors, not finishing time for
all tasks. It is NP-Hard (WHY?)

4/7/21 © UCF CS 201

Knapsack 0-1 Problem
• Brute Force

– The naïve way to solve the 0-1 Knapsack
problem is to cycle through all 2n subsets of
the n items and pick the subset with a legal
weight that maximizes the value of the
knapsack.

– We can come up with a dynamic
programming algorithm that is USUALLY
faster than this brute force technique.

4/7/21 © UCF CS 202

Knapsack 0-1 Problem
� We are going to solve the problem in terms of

sub-problems and memoization (dynamic
programming).

� Our first attempt might be to characterize a sub-
problem as follows:
◦ Let Sk be the optimal subset of elements from

{I0, I1, …, Ik}.
� What we find is that the optimal subset from the elements {I0,

I1, …, Ik+1} may not correspond to the optimal subset of
elements from {I0, I1, …, Ik} in any regular pattern.

◦ Basically, the solution to the optimization problem for
Sk+1 might NOT contain the optimal solution from
problem Sk.

4/7/21 © UCF CS 203

Knapsack 0-1 Problem
� Let’s illustrate that point with an example:

Item Weight Value
I0 3 10
I1 8 4
I2 9 9
I3 8 11

� The maximum weight the knapsack can hold is 20.

� The best set of items from {I0, I1, I2} is {I0, I1, I2}
� BUT the best set of items from {I0, I1, I2, I3} is {I0, I2, I3}.
◦ In this example, note that this optimal solution, {I0, I2, I3}, does

NOT build upon the previous optimal solution, {I0, I1, I2}.
� (Instead it builds upon the solution, {I0, I2}, which is really the optimal

subset of {I0, I1, I2} with weight 12 or less.)

4/7/21 © UCF CS 204

Knapsack 0-1 problem
� So now we must re-work the way we build upon previous sub-

problems…
◦ Let B[k, w] represent the maximum total value of a subset Sk with

weight w.
◦ Our goal is to find B[n, W], where n is the total number of items and W

is the maximal weight the knapsack can carry.

� So our recursive formula for subproblems:
B[k, w] = B[k - 1,w], if wk > w

= max { B[k - 1,w], B[k - 1,w - wk] + vk}, otherwise

� In English, this means that the best subset of Sk that has total weight
w is:
1) The best subset of Sk-1 that has total weight w, or
2) The best subset of Sk-1 that has total weight w-wk plus the item k

4/7/21 © UCF CS 205

Knapsack 0-1 Problem –
Recursive Formula

� The best subset of Sk that has the total weight w,
either contains item k or not.

� First case: wk > w
◦ Item k can’t be part of the solution! If it was the total weight

would be > w, which is unacceptable.

� Second case: wk ≤ w
◦ Then the item k can be in the solution, and we choose the

case with greater value.

4/7/21 © UCF CS 206

B[k, w] = B[k - 1,w], if wk > w
= max { B[k - 1,w], B[k - 1,w - wk] + vk}, otherwise

Knapsack 0-1 Algorithm

for w = 0 to W // Initialize 1st row to 0’s
B[0,w] = 0

for i = 1 to n // Initialize 1st column to 0’s
B[i,0] = 0

for i = 1 to n
for w = 1 to W

if wi <= w //item i can be in the solution
if vi + B[i-1,w-wi] > B[i-1,w]

B[i,w] = vi + B[i-1,w- wi]
else

B[i,w] = B[i-1,w]
else B[i,w] = B[i-1,w] // wi > w

}

4/7/21 © UCF CS 207

Knapsack 0-1 Problem
� Let’s run our algorithm on the following

data:
◦ n = 4 (# of elements)
◦ W = 5 (max weight)
◦ Elements (weight, value):

(2,3), (3,4), (4,5), (5,6)

4/7/21 © UCF CS 208

Knapsack 0-1 Example
i / w 0 1 2 3 4 5

0 0 0 0 0 0 0
1 0
2 0
3 0
4 0

// Initialize the base cases
for w = 0 to W

B[0,w] = 0

for i = 1 to n
B[i,0] = 0

4/7/21 © UCF CS 209

Knapsack 0-1 Example
Items:
1: (2,3)
2: (3,4)
3: (4,5)
4: (5,6)

i / w 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0
2 0
3 0
4 0

if wi <= w //item i can be in the solution
if vi + B[i-1,w-wi] > B[i-1,w]

B[i,w] = vi + B[i-1,w- wi]
else

B[i,w] = B[i-1,w]
else B[i,w] = B[i-1,w] // wi > w

i = 1
vi = 3
wi = 2
w = 1
w-wi = -1

i / w 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 0
2 0
3 0
4 0

4/7/21 © UCF CS 210

Knapsack 0-1 Example
Items:
1: (2,3)
2: (3,4)
3: (4,5)
4: (5,6)

i / w 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 0
2 0
3 0
4 0

if wi <= w //item i can be in the solution
if vi + B[i-1,w-wi] > B[i-1,w]

B[i,w] = vi + B[i-1,w- wi]
else

B[i,w] = B[i-1,w]
else B[i,w] = B[i-1,w] // wi > w

i = 1
vi = 3
wi = 2
w = 2
w-wi = 0

i / w 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 0 3
2 0
3 0
4 0

4/7/21 © UCF CS 211

Knapsack 0-1 Example
Items:
1: (2,3)
2: (3,4)
3: (4,5)
4: (5,6)

i / w 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 0 3
2 0
3 0
4 0

if wi <= w //item i can be in the solution
if vi + B[i-1,w-wi] > B[i-1,w]

B[i,w] = vi + B[i-1,w- wi]
else

B[i,w] = B[i-1,w]
else B[i,w] = B[i-1,w] // wi > w

i = 1
vi = 3
wi = 2
w = 3
w-wi = 1

i / w 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 0 3 3
2 0
3 0
4 0

4/7/21 © UCF CS 212

Knapsack 0-1 Example
Items:
1: (2,3)
2: (3,4)
3: (4,5)
4: (5,6)

i / w 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 0 3 3
2 0
3 0
4 0

if wi <= w //item i can be in the solution
if vi + B[i-1,w-wi] > B[i-1,w]

B[i,w] = vi + B[i-1,w- wi]
else

B[i,w] = B[i-1,w]
else B[i,w] = B[i-1,w] // wi > w

i = 1
vi = 3
wi = 2
w = 4
w-wi = 2

i / w 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 0 3 3 3
2 0
3 0
4 0

4/7/21 © UCF CS 213

Knapsack 0-1 Example
Items:
1: (2,3)
2: (3,4)
3: (4,5)
4: (5,6)

i / w 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 0 3 3 3
2 0
3 0
4 0

if wi <= w //item i can be in the solution
if vi + B[i-1,w-wi] > B[i-1,w]

B[i,w] = vi + B[i-1,w- wi]
else

B[i,w] = B[i-1,w]
else B[i,w] = B[i-1,w] // wi > w

i = 1
vi = 3
wi = 2
w = 5
w-wi = 3

i / w 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 0 3 3 3 3
2 0
3 0
4 0

4/7/21 © UCF CS 214

Knapsack 0-1 Example
Items:
1: (2,3)
2: (3,4)
3: (4,5)
4: (5,6)

i / w 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 0 3 3 3 3
2 0
3 0
4 0

if wi <= w //item i can be in the solution
if vi + B[i-1,w-wi] > B[i-1,w]

B[i,w] = vi + B[i-1,w- wi]
else

B[i,w] = B[i-1,w]
else B[i,w] = B[i-1,w] // wi > w

i = 2
vi = 4
wi = 3
w = 1
w-wi = -2

i / w 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 0 3 3 3 3
2 0 0
3 0
4 0

4/7/21 © UCF CS 215

Knapsack 0-1 Example
Items:
1: (2,3)
2: (3,4)
3: (4,5)
4: (5,6)

i / w 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 0 3 3 3 3
2 0 0
3 0
4 0

if wi <= w //item i can be in the solution
if vi + B[i-1,w-wi] > B[i-1,w]

B[i,w] = vi + B[i-1,w- wi]
else

B[i,w] = B[i-1,w]
else B[i,w] = B[i-1,w] // wi > w

i = 2
vi = 4
wi = 3
w = 2
w-wi = -1

i / w 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 0 3 3 3 3
2 0 0 3
3 0
4 0

4/7/21 © UCF CS 216

Knapsack 0-1 Example
Items:
1: (2,3)
2: (3,4)
3: (4,5)
4: (5,6)

i / w 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 0 3 3 3 3
2 0 0 3
3 0
4 0

if wi <= w //item i can be in the solution
if vi + B[i-1,w-wi] > B[i-1,w]

B[i,w] = vi + B[i-1,w- wi]
else

B[i,w] = B[i-1,w]
else B[i,w] = B[i-1,w] // wi > w

i = 2
vi = 4
wi = 3
w = 3
w-wi = 0

i / w 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 0 3 3 3 3
2 0 0 3 4
3 0
4 0

4/7/21 © UCF CS 217

Knapsack 0-1 Example
Items:
1: (2,3)
2: (3,4)
3: (4,5)
4: (5,6)

i / w 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 0 3 3 3 3
2 0 0 3 4
3 0
4 0

if wi <= w //item i can be in the solution
if vi + B[i-1,w-wi] > B[i-1,w]

B[i,w] = vi + B[i-1,w- wi]
else

B[i,w] = B[i-1,w]
else B[i,w] = B[i-1,w] // wi > w

i = 2
vi = 4
wi = 3
w = 4
w-wi = 1

i / w 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 0 3 3 3 3
2 0 0 3 4 4
3 0
4 0

4/7/21 © UCF CS 218

Knapsack 0-1 Example
Items:
1: (2,3)
2: (3,4)
3: (4,5)
4: (5,6)

i / w 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 0 3 3 3 3
2 0 0 3 4 4
3 0
4 0

if wi <= w //item i can be in the solution
if vi + B[i-1,w-wi] > B[i-1,w]

B[i,w] = vi + B[i-1,w- wi]
else

B[i,w] = B[i-1,w]
else B[i,w] = B[i-1,w] // wi > w

i = 2
vi = 4
wi = 3
w = 5
w-wi = 2

i / w 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 0 3 3 3 3
2 0 0 3 4 4 7
3 0
4 0

4/7/21 © UCF CS 219

Knapsack 0-1 Example
Items:
1: (2,3)
2: (3,4)
3: (4,5)
4: (5,6)

i / w 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 0 3 3 3 3
2 0 0 3 4 4 7
3 0
4 0

if wi <= w //item i can be in the solution
if vi + B[i-1,w-wi] > B[i-1,w]

B[i,w] = vi + B[i-1,w- wi]
else

B[i,w] = B[i-1,w]
else B[i,w] = B[i-1,w] // wi > w

i = 3
vi = 5
wi = 4
w = 1..3
w-wi = -3..-1

i / w 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 0 3 3 3 3
2 0 0 3 4 4 7
3 0 0 3 4
4 0

4/7/21 © UCF CS 220

Knapsack 0-1 Example
Items:
1: (2,3)
2: (3,4)
3: (4,5)
4: (5,6)

i / w 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 0 3 3 3 3
2 0 0 3 4 4 7
3 0 0 3 4
4 0

if wi <= w //item i can be in the solution
if vi + B[i-1,w-wi] > B[i-1,w]

B[i,w] = vi + B[i-1,w- wi]
else

B[i,w] = B[i-1,w]
else B[i,w] = B[i-1,w] // wi > w

i = 3
vi = 5
wi = 4
w = 4
w-wi = 0

i / w 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 0 3 3 3 3
2 0 0 3 4 4 7
3 0 0 3 4 5
4 0

4/7/21 © UCF CS 221

Knapsack 0-1 Example
Items:
1: (2,3)
2: (3,4)
3: (4,5)
4: (5,6)

i / w 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 0 3 3 3 3
2 0 0 3 4 4 7
3 0 0 3 4 5
4 0

if wi <= w //item i can be in the solution
if vi + B[i-1,w-wi] > B[i-1,w]

B[i,w] = vi + B[i-1,w- wi]
else

B[i,w] = B[i-1,w]
else B[i,w] = B[i-1,w] // wi > w

i = 3
vi = 5
wi = 4
w = 5
w-wi = 1

i / w 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 0 3 3 3 3
2 0 0 3 4 4 7
3 0 0 3 4 5 7
4 0

4/7/21 © UCF CS 222

Knapsack 0-1 Example
Items:
1: (2,3)
2: (3,4)
3: (4,5)
4: (5,6)

i / w 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 0 3 3 3 3
2 0 0 3 4 4 7
3 0 0 3 4 5 7
4 0

i = 4
vi = 6
wi = 5
w = 1..4
w-wi = -4..-1

i / w 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 0 3 3 3 3
2 0 0 3 4 4 7
3 0 0 3 4 5 7
4 0 0 3 4 5

if wi <= w //item i can be in the solution
if vi + B[i-1,w-wi] > B[i-1,w]

B[i,w] = vi + B[i-1,w- wi]
else

B[i,w] = B[i-1,w]
else B[i,w] = B[i-1,w] // wi > w

4/7/21 © UCF CS 223

Knapsack 0-1 Example
Items:
1: (2,3)
2: (3,4)
3: (4,5)
4: (5,6)

i / w 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 0 3 3 3 3
2 0 0 3 4 4 7
3 0 0 3 4 5 7
4 0 0 3 4 5

if wi <= w //item i can be in the solution
if vi + B[i-1,w-wi] > B[i-1,w]

B[i,w] = vi + B[i-1,w- wi]
else

B[i,w] = B[i-1,w]
else B[i,w] = B[i-1,w] // wi > w

i = 4
vi = 6
wi = 5
w = 5
w-wi = 0

i / w 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 0 3 3 3 3
2 0 0 3 4 4 7
3 0 0 3 4 5 7
4 0 0 3 4 5 7

4/7/21 © UCF CS 224

Knapsack 0-1 Example
Items:
1: (2,3)
2: (3,4)
3: (4,5)
4: (5,6)

i / w 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 0 3 3 3 3
2 0 0 3 4 4 7
3 0 0 3 4 5 7
4 0 0 3 4 5 7

We’re DONE!!
The max possible value that can be carried in this knapsack is $7

4/7/21 © UCF CS 225

Knapsack 0-1 Problem – Run
Timefor w = 0 to W

B[0,w] = 0

for i = 1 to n
B[i,0] = 0

for i = 1 to n
for w = 0 to W

< the rest of the code >

What is the running time of this algorithm?
O(n*W) – of course, W can be mighty big
What is an analogy in world of sorting?

Remember that the brute-force algorithm takes: O(2n)

O(W)

O(W)

Repeat n times

O(n)

4/7/21 © UCF CS 226

Tiling

Undecidable, NP-Complete, and
Easy Variants

Basic Idea of Tiling

4/7/21 © UCF CS 228

A single tile has colors on all four sides.
Tiles are often called dominoes as
assembling them follows the rules of
placing dominoes. That is, the color
(or number) of a side must match that
of its adjacent tile, e.g., tile, t2, to right
of a tile, t1, must have same color on
Its left as is on the right side of t1.
This constraint applies to top and bottom as
well as sides. Boundary tiles do not necessarily
have constraints on their sides that touch
the boundaries, but these can be forced.

I chose to have each tile have a mirror tile
in the vertical and horizontal directions.

Instance of Tiling Problem
• A finite set of tile types (a type is determined by

the colors of its edges)
• Some 2d area (finite or infinite) on which the tiles

are to be laid out
• An optional starting set of tiles in fixed positions
• The goal is to tile the plane following the

adjacency constraints and whatever constraints
are indicated by the starting configuration.

4/7/21 © UCF CS 229

A Valid 3 by 3 Tiling of Tile
Types from a Previous Slide

4/7/21 © UCF CS 230

Some Variations
• Infinite 2d plane (impossible, co-re-non-rec) in general

– Our four tile types can easily tile the 2d plane
• Finite 2d plane (hard in general)

– Our four tile types can easily tile any finite 2d plane
– This is called the Bounded Tiling Problem

• One-dimensional space
– This is related to cycles in a directed graph

Each tile type A is a vertex
if tile A has right color c and tile B has left color c then draw a
directed edge form vertex A to vertex B
There’s a cycle iff we can infinitely tile along x-axis

4/7/21 © UCF CS 231

Tiling the Plane
• We will start with a Post Machine, M = (Q, Σ, δ, q0), with tape

alphabet Σ = {B,1} where B is blank and δ maps pairs from Q×Σ to
Q×(Σ È {R,L}). M starts in state q0
– (Turing Machine with each action being L, R or Print)

• We will consider the case of M starting with a blank tape
• We will constrain our machine to never go to the left of its starting

position (semi unbounded tape)
• We will mimic the computation steps of M
• Termination occurs if in state q reading b and δ(q,b) is not defined
• We will use the fact that halting when starting at the left end of a

semi unbounded tape in its initial state with a blank tape is
undecidable; we will actually look at complement of this

4/7/21 © UCF CS 232

The Tiling Decision Problem
• Given a finite set of tile types and a

starting tile in lower left corner of 2d plane,
can we tile all places in the plane?

• A place is defined by its coordinates (x,y),
x≥0, y≥0

• The fixed starting tile is at (0,0)

4/7/21 © UCF CS 233

Colors
• Given M, define our tile colors as
• {X, Y, *, B, 1, YB, Y1} È Q×{B,1} È Q×{YB,Y1}
È Q×{R,L}

• X appears only on bottom of any and all tiles that
are resting on the X-axis

• Y appears only on left of any and all tiles that are
adjacent to the Y-axis

• Y is part of the label on top of any tile with its left
side adjacent to the Y-axis

4/7/21 © UCF CS 234

Simple Tiles
• Simplest tile (represents Blank on X axis)

• Start tile (state q0; scanned symbol blank)

4/7/21 © UCF CS 235

B
BB

X

q0,YB
BY

X

Note that the only tile with B on the left is the
above one, leading to all blanks along X axis

Note that a single tile is used for state and
scanned square

Note that these can lead to an unbounded
linear replication of blanks

Tiles for Copying Tape Cell

4/7/21 © UCF CS 236

B
**

B

YB
*Y

YB

Copy cells not on
left boundary except the
scanned square

1
**

1

Y1
*Y

Y1

Copy cells on
left boundary except the
scanned square

Right Move δ(q,a) = (p,R)

4/7/21 © UCF CS 237

Ya
p,RY

q,Ya

a
p,R*

q,a

p,b
*p,R

b

where bÎΣ={B,1}

Left Move δ(q,a) = (p,L)

4/7/21 © UCF CS 238

p,Yb
p,LY

Yb

p,b
p,L*

b

a
*p,L

q,a

where bÎΣ={B,1}

No possibility of moving left if at the left end

Print δ(q,a) = (p,c)

4/7/21 © UCF CS 239

p,Yc
*Y

q,Ya

p,c
**

q,a

Corner Tile and Bottom Row

4/7/21 © UCF CS 240

q0,YB
BY

X

Zero-ed Row is forced to be

q0,YB
BY

X

B
BB

X

B
BB

X………...

First Action Print

4/7/21 © UCF CS 241

p,Ya
*Y

q0,YB

As we cannot move left of leftmost character first action is either right or print.
Assume for now that δ(q0,B) = (p,a)

q0,YB
BY

X

B
BB

X

B
BB

X………...

B
**

B

B
**

B………...

First Action Right Move

4/7/21 © UCF CS 242

YB
p,RY

q0,YB

As we cannot move left of leftmost character first action is either right or print.
Assume for now that δ(q0,B) = (p,R)

q0,YB
BY

X

B
BB

X

B
BB

X………...

p,B
*p,R

B

B
**

B………...

The Rest of the Story Part 1
• Inductively we can show that, if the i-th

row represents an infinite transcription of
the Turing configuration after step i then
the (i+1)-st represents such a transcription
after step i+1. Since we have shown the
base case, we have a successful
simulation.

4/7/21 © UCF CS 243

The Rest of the Story Part 2
• Consider the case where M eventually

halts when started on a blank tape in state
q0. In this case we will reach a point where
no actions fill the slots above the one
representing the current state. That means
that we cannot tile the plane.

• If M never halts, then we can tile the plane
(in the limit).

4/7/21 © UCF CS 244

The Rest of the Story Part 3
• The consequences of Parts 1 and 2 are

that Tiling the plane is as hard as the
complement of the Halting problem
("t [~STP(M, 0, t)]) //0 (tape is blank)
which is co-RE Complete.

• This is not surprising as this problem
involve a universal quantification over all
coordinates (x,y) in the plane.

4/7/21 © UCF CS 245

Constraints on M
• The starting blank tape is not a real constraint as we can create M

so its first actions are to write arguments on its tape.
• The semi unbounded tape is not new. If you look back at Standard

Turing Computing (STC), we assumed there that we never moved
left of the blank preceding our first argument.

• If you prefer to consider all computation based on the STC model,
then we can add to M the simple prologue
(R1)x1R(R1)x2R…(R1)xkR so the actual computation starts with a
vector of x1 … xk on the tape and with the scanned square as the
blank to the right of this vector. The rest of the tape is blank.

• Think about how, in the preceding pages, you could start the tiling in
this configuration.

4/7/21 © UCF CS 246

Bounded Tiling Problem #1
• Consider a slight change to our machine M. First, it is non-

deterministic, so our transition function maps to sets.
• Second, we add two auxiliary states

{qa, qr}, where qa is our only accept state and qr is our only reject
state.

• We make it so the reject state has no successor states, but the
accept state always transitions back to itself rewriting the scanned
square unchanged.

• We also assume our machine accepts or rejects in at most nk steps,
where n is the length of its starting input which is written immediately
to the right of the initial scanned square.

4/7/21 © UCF CS 247

Bounded Tiling Problem #2
• We limit our rows and column to be of size

nk+1. We change our initial condition of the tape
to start with the input to M. Thus, it looks like

• Note that there are nk – n of these blank representations
at the end.

4/7/21 © UCF CS 248

q0,YB
BY

X

x0

BB
X

B
BB

X…

Xn-1

BB
X …

Bounded Tiling Problem #3
• The finitely bounded Tiling Problem we just described mimics the

operation of any given polynomially-bound non-deterministic Turing
machine (this could have been our starting point, rather than SAT).

• This machine can tile the finite plane of size
(nk+1) * (nk+1) just in case the initial string is accepted in nk or fewer
steps on some path (really a trace of at most nk).

• If the string is not accepted, then we will hit a reject state on all
paths and never complete tiling.(assume reject occurs in < nk time)

• This shows that the bounded tiling problem is NP-Hard
• Is it in NP? Yes. How? Well, we can be shown a tiling (posed

solution takes space polynomial in n) and check it for completeness
and consistency (this takes linear time in terms of proposed
solution). Thus, we can verify the solution in time polynomial in n.

4/7/21 © UCF CS 249

A Final Comment on Tiling
• If you look back at the unbounded version, you can see

that we could have simulated a non-deterministic Turing
machine there, but it would have had the problem that
the plane would be tiled if any of the non-deterministic
choices diverged and that is not what we desired.

• However, we need to use a non-deterministic machine
for the finite case as we made this so it tiled iff some
path led to acceptance. If all lead to rejection, we get
stalled out on all paths as the reject state can go
nowhere.

4/7/21 © UCF CS 250

Tiling Example
• Turing Machine Recognizes strings of at least

two 1’s in succession.
• q0 0 0 q2
• q0 1 R q1
• q1 0 L q2
• q1 1 1 q3
• q2 0 0 q2
• q2 1 1 q2
• No q3 rules so entering here stops tiling
4/7/21 © UCF CS 251

Tile Replication

4/7/21 © UCF CS 252

0
**

0

Y0
*Y

Y0

1
**

1

Y1
*Y

Y1

q0 0 0 q2 q0 1 R q1

4/7/21 © UCF CS 253

**
q0,0

q2,Y0
*Y

q0,Y0

q2,0
q1,R*

q0,1

Y1
Y

q0,Y1

1

q1,R

q1,R *
0

q1,0

q1,R *
1

q1,1

q1 0 L q2 q1 1 1 q3

4/7/21 © UCF CS 254

*
q1,0

0
q2,L*

0

q2,0
q2,L q2,L*

1

q2,1

q2,LY
Y0

q2,Y0
q2,LY

Y1

q2,Y1

**
q1,1

q3,Y1
*Y

q1,Y1

q3,1

q2 0 0 q2 q2 1 1 q2

4/7/21 © UCF CS 255

**
q2,0

q2,Y0
*Y

q2,Y0

q2,0
**

q2,1

q2,Y1
*Y

q2,Y1

q2,1

Sample Starting Rows

4/7/21 © UCF CS 256

q0,Y1
0Y

X

0
00

X

0
00

X………...

q0,Y1
0Y

X

1
00

X

0
00

X

0
00

X
…

Case 1; Two More Rows

4/7/21 © UCF CS 257

q0,Y1
0Y

X

0
00

X

Y1
q1,RY

q0,Y1

q1,0
*

0

0
**

0
…q1,R

0
**

0

0
00

X
…

0
00

X

q2,Y1
q2,LY

Y1

0
*

0
**

0
…q2,L

0
**

0q1,0

Case 1; Row 3 repeated

4/7/21 © UCF CS 258

q2,Y1
q2,LY

Y1

0
*

0
**

0
…q2,L

0
**

0q1,0

q2,Y1
*Y

q2,Y1

0
*

0
**

0
…*

0
**

00

q2,Y1
*Y

q2,Y1

0
*

0
**

0
…*

0
**

00

Case 2; Only Two More Rows

4/7/21 © UCF CS 259

Y1
q1,RY

q0,Y1

q1,1
*

1

0
**

0
…q1,R

0
**

0

Y1
*Y

Y1

q3,1
*

0
**

0
…*

0
**

0q1,1

q0,Y1
0Y

X

1
00

X

0
00

X

0
00

X
…

More on Variations
• One-dimensional space (I asked you to think

about that on an earlier slide)

• Infinite 3d space (worse than re/co-re in general)
– This become a there exists, for all, problem – Does

there exist an initial tape for which M never halts
– In fact, one can mimic acceptance of no inputs here,

meaning M is not an algorithm iff we can not tile any
of the x-y planes in the 3d space

4/7/21 © UCF CS 260

PCP Revisited

Bounded Post Correspondence

Bounded Variation
• Limit correspondence to a length that is

polynomial in n, where n is length of initial input
string.

• Outline of proof we can get for almost free
– Convert halting problem for a Non-deterministic Turing machine

to word problem for a Semi-Thue System
Note: we originally did for deterministic machines, but the construction
works for non-determinism and maps nicely to Semi-Thue systems
which are non-deterministic by definition.

– Recast as an instance of PCP
– Limit the length of word to (n+2)k, where original TM accepts or

rejects in nk steps.

4/7/21 © UCF CS 262

Another Approach
• There is a tighter bound on Bounded PCP.

• Given sequences (x1, x2, …, xn) and (y1, y2, …, yn),
and a positive integer
K ≤ p(max(|x1|+…+|xn|, |y1|+…+|yn|),
where p is some polynomial, is there a solution to this
instance involving indices i1, …,ik, k≤K (not necessarily
distinct), of integers between 1 and n, such that the
corresponding x and y strings are identical.

• Follows from Constable, Hunt and Sahni (1974). “On the
Computational Complexity of Program Scheme
Equivalence,” Siam Journal of Computing 9(2), 396-416.

4/7/21 © UCF CS 263

Co-NP

Fourth Significant Class of
Problems

Co–NP
For any decision problem A in NP, there is
a ‘complement’ problem Co–A defined on
the same instances as A, but with a
question whose answer is the negation of
the answer in A. That is, an instance is a
"yes" instance for A if and only if it is a "no"
instance in Co–A.

Notice that the complement of the
complement of a problem is the original
problem.

4/7/21 © UCF CS 265

GC and Co–GC
Co–NP is the set of all decision problems whose
complements are members of NP.

Graph Color GC
Given: A graph G and an integer k.
Question: Can G be properly colored with k colors?

Co–GC
Given: A graph G and an integer k.
Question: Do all proper colorings of G
require more than k colors?

4/7/21 © UCF CS 266

Co–GC
Notice that Co–GC is a problem that does not
appear to be in the set NP. That is, we know of
no way to check in polynomial time the answer to
a "Yes" instance of Co–GC.

What is the "answer" to a Yes instance that can
be verified in polynomial time?

4/7/21 © UCF CS 267

P and Co-P
Not all problems in NP behave this way. For example, if
X is a problem in class P, then both "yes" and "no"
instances can be solved in polynomial time.

That is, both "yes" and "no" instances can be verified in
polynomial time and hence, X and Co–X are both in NP,
in fact, both are in P.

This implies P = Co–P and, further,
P = Co–P Í NP Ç Co–NP.

4/7/21 © UCF CS 268

Co–NP
This gives rise to a second fundamental
question:

NP = Co-NP?

If P = NP, then NP = Co-NP.
This is not "if and only if."

It is possible that NP = Co-NP
and, yet, P ≠ NP.

4/7/21 © UCF CS 269

Co–NP Complete
If A ≤P B and both are in NP, then the same polynomial
transformation will reduce Co-A to Co–B. That is,
Co–A ≤P Co–B. Therefore, Co–SAT is 'complete' in
Co–NP.

In fact, corresponding to NP–Complete is the
complement set Co–NP–Complete, the set of hardest
problems in Co–NP.

4/7/21 © UCF CS 270

Turing Reductions
Now, return to Turing Reductions.

Recall that Turing reductions include
polynomial transformations as a special case.
So, we should expect they will be more powerful.

4/7/21 © UCF CS 271

Turing Reductions
(1) Problems A and B can, but need not, be

decision problems.

(2) No restriction placed upon the number
of instances of B that are constructed.

(3) Nor, how the result, AnswerA, is computed.

In effect, we use an Oracle for B.
4/7/21 © UCF CS 272

NP–Hard

Fifth Significant Class of
Problems

NP–Hard
To date, we have concerned ourselves with
decision problems. We are now ready to include
additional problems, in particular, optimization
problems.

We require one additional tool – the second type
of transformation discussed earlier – Turing
reductions.

4/7/21 © UCF CS 274

NP–Hard
Definition: Problem B is NP–Hard if there is a
polynomial time Turing reduction A ≤PT B for
some problem A in NP–Complete.
This implies NP–Hard problems are at least as
hard as NP–Complete problems. Therefore, they
cannot be solved in polynomial time unless P = NP
(and maybe not then).
This use of an oracle, allows us to reduce co-NP-
Complete problems to NP-Complete ones and
vice versa.
4/7/21 © UCF CS 275

QSAT
• QSAT is the problem to determine if an arbitrary

fully quantified Boolean expression is true. Note:
SAT only uses existential.

• QSAT is NP-Hard but may not be in NP.
• QSAT can be solved in polynomial space

(PSPACE).

4/7/21 © UCF CS 276

NP–Hard
Polynomial transformations are Turing
reductions.

Thus, NP–Complete is a subset of NP–Hard.
Co–NP–Complete also is a subset of NP–Hard.
NP–Hard contains many other interesting
problems.

4/7/21 © UCF CS 277

NP-Easy
• NP-Easy is the set of function problems that are

solvable in polynomial time by a deterministic
Turing machine with an oracle for some decision
problem in NP.

• That is, given an Oracle for some NP problem Y,
if X is Turing reducible to Y in polynomial time,
then X is NP-Easy.

4/7/21 © UCF CS 278

NP–Easy
NP-Easy problem X need not be, but often is,
NP-Complete.

In fact, X can be any problem in NP or Co–NP.

More to the point, an NP-Easy problem does not
even need to be a decision problem – it can be an
optimization problem or some other problem
seeking a numerical rather than binary (yes/no
answer).
4/7/21 © UCF CS 279

NP–Equivalent
Problem B in NP–Hard is NP–Equivalent when B reduces to some
problem X in NP, That is, B ≤PT X. This is, when B is also NP-Easy.

Since B is in NP–Hard, we already know there is a problem A in NP–
Complete that reduces to B. That is, A ≤PT B.

Since X is in NP, X ≤PT A. Therefore, X ≤PT A ≤PT B ≤PT X.

Thus, X, A, and B are all polynomially equivalent, and we can say

Theorem. Problems in NP–Equivalent are polynomial if and only if
P = NP.

Example: Optimization version of Subset-Sum is NP-Equivalent.
4/7/21 © UCF CS 280

NP-Easy and Equivalent
• NP-Easy -- these are problems that are

polynomial when using an NP oracle (≤pt)
• NP-Equivalent is the class of NP-Easy and NP-

Hard problems (assuming Turing rather than
many-one reductions)
– In essence this is the functional equivalent of

NP-Complete but also of
Co-NP-Complete since we can negate
answers

4/7/21 © UCF CS 281

Turing vs m-1 Reductions
• In effect, our normal polynomial reduction

(≤p) is a many-one polynomial time
reduction as it just asks and then accepts
its oracle’s answer

• In contrast, NP-Easy and NP-Equivalent
employ a Turing machine polynomial time
reduction (≤pt) that uses rather than
mimics answers from its oracle

4/7/21 © UCF CS 282

SubsetSum Optimization

NP-Equivalence

4/7/21 © UCF CS 283

SubsetSum Optimization
(SSO)

S = {s1, s2, …, sn}
set of positive integers

and an integer B.
Optimization: Find a subset of S whose

values sum to the largest
attainable value ≤B?

Strategy: Use Oracle for SubsetSum
Decision Problem but only use
it a polynomial number of times –
Great care must be taken here as
B takes only log2 B bits to represent

4/7/21 © UCF CS 284

SSO is NP-Hard
• We can show SS ≤PT SSO
• Let [(s1, s2, …, sn), B] be an instance of

SubsetSum (we’ll call it SS)
• We can ask the oracle for SSO for the

largest value G ≤ B such that some
subsequence of (s1, s2, …, sn) equals G.
If its answer is B we say “YES”; else we
say “NO”

4/7/21 © UCF CS 285

SSO is NP-Easy
• We can show SSO ≤PT SubsetSum
• Let S = [(s1, s2, …, sn), B] be an instance of SSO
• Again, our goal is to find the largest value G ≤ B such

that some subsequence of (s1, s2, …, sn) equals G
• The challenge is to do this in a number of steps that is

polynomial in the size of the question. As any integer k
can be represented in log2k bits, we need to make sure
we don’t ask more than log2S questions of our oracle,
where S is the length of the representation of
[(s1, s2, …, sn), B].

• Read the next slide very carefully

4/7/21 © UCF CS 286

A Subtle Failure
• Let [(s1, s2, …, sn), B] be an instance of SSO. Below sequence A

is (s1, s2, …, sn)
SUBSET-SUM-OPTIMIZATION(sequence A, int B) {

for i=B downto 1
if (SubsetSum(A, i)) then return i;

return 0;
}

• This calls the oracle SS up to B times
• As B is 2log2(B), we might ask an exponential number of questions

relative to the representation of our input parameter B
• As B can be as large as the sum of the sequence (s1, s2, …, sn),

the value B can be exponential in the size of the representation of
our input and so our reduction is not polynomially bounded.

4/7/21 © UCF CS 287

Using SubsetSum Oracle
SUBSET-SUM-OPTIMIZATION(sequence A, int B) {

int best = B;
for i = floor(log2B) downto 0 do

A = A + { 2i }; // add to multiset;succeeds now
for i = floor(log2B) downto 0 do {

A = A - { 2i }; // remove from multiset
if !SUBSET-SUM(A, best) then // 2i was essential

best = best - 2i; // reduce best
}
return best;

}

4/7/21 © UCF CS 288

Example of SubsetSum Opt
• Initial Values:
• A = {1, 4, 5, 7}, best = b = 15
• A = {1, 4, 5, 7, 8, 4, 2, 1}, best = 15
• A = {1, 4, 5, 7, 4, 2, 1}, best = 15
• A = {1, 4, 5, 7, 2, 1}, best = 15
• A = {1, 4, 5, 7, 1}, best = 15-2 = 13
• A = {1, 4, 5, 7}, best = 13

4/7/21 © UCF CS 289

Another Example
• Initial Values:
• A = {1, 4, 5, 7}, best = b = 20
• A = {1, 4, 5, 7, 16, 8, 4, 2, 1}, best = 20
• A = {1, 4, 5, 7, 8, 4, 2, 1}, best = 20
• A = {1, 4, 5, 7, 4, 2, 1}, best = 20
• A = {1, 4, 5, 7, 2, 1}, best = 20
• A = {1, 4, 5, 7, 1}, best = 20-2 = 18
• A = {1, 4, 5, 7}, best = 18-1 = 17
4/7/21 © UCF CS 290

Analysis
• Each loop has O(log2B) iterations, which

is linear with respect to the size of B.
• Note that if we tried all values less that B,

we would have O(B) tries and that is
exponential in log2B, the size of B.

• The correct solution takes advantage of
the NP-complete power of the oracle.

4/7/21 © UCF CS 291

Minimum Colors for a Graph
• We know K-Color (KC) is NP Complete
• We can reduce KC to MinColor problem just by seeing if

MinColor is ≤ K. Thus, MinColor is NP-Hard
• How do we reduce MinColor to KC asking only a log

number of questions of the oracle for KC?
• Consider, if N nodes, then can easily N-Color
• Can we N/2-Color?

– If so, then try N/4
– If not, then try 3N/4

• This is a simple binary search for optimal value

4/7/21 © UCF CS 292

2SAT

A Subset of 3SAT
How hard?

4/7/21 © UCF CS 293

2SAT
• We showed that 3SAT is NP Complete
• What about 2SAT (two variable per

clause)?
• Remember that 2 variables still result in

undecidable deducibility from finite axion
sets, so we might be suspicious that there
are some challenging issues here.

4/7/21 © UCF CS 294

Attacking 2SAT
First we need to convert a 2SAT instance to a different
form, the so-called implicative normal form. Note that
the expression a∨b is equivalent to
¬a⇒b ∧ ¬b⇒a
(if one of the two variables is false, then the other one
must be true).
We now construct a directed graph of these
implications: for each variable x there will be two
vertices x and ¬x. The edges will correspond to the
implications.

4/7/21 © UCF CS 295

2SAT Example
Let's look at an example in 2-CNF form:

(a ∨ ¬b) ∧ (¬a ∨ b) ∧ (¬a ∨ ¬b) ∧ (a ∨ ¬c)
The oriented graph will contain the following
vertices:
(a ∨ ¬b) (¬a ∨ b) (¬a ∨ ¬b) (a ∨ ¬c)
¬a⇒¬b a⇒b a⇒¬b ¬a⇒¬c
b⇒a ¬b⇒¬a b⇒¬a c⇒a

4/7/21 © UCF CS 296

Graph from 2SAT Example
• If there is an edge a⇒b, then there also is an edge ¬b⇒¬a
• A contradiction exists if there is a cycle, for any variable x, that

involves x and ¬x (means x Û ¬x, which is a self-contradiction)
• What if there is path from some variable x to ¬x or vice versa?
• x⇒¬x can only be satisfied if x is false (¬x true)

4/7/21 © UCF CS 297

Finding a Solution for 2SAT
• Looking at our graph, c must be false, but so must a and b, as each

has a path to its complement
• Note that, if a is true, b is true, and if a is false, b is false
• Fortunately, there are no cycles involving a variable and its

complement, so we have a solution <a = F; b = F; c = F>
• The trick now is to discover that solution in an algorithmic manner

4/7/21 © UCF CS 298

Strongly Connected
Components (SCC)

• A directed graph is strongly connected if there is a path between all
pairs of vertices.

• A strongly connected component (SCC) of a directed graph is a
maximal strongly connected subgraph. For example, there are 4
SCCs in the graph we have been investigating.

4/7/21 © UCF CS 299

Computing SCC
• There are several efficient linear time

algorithms for finding the strongly
connected components of a graph, based
on depth first search

• The one commonly taught in Algorithm
Design and Analysis is Tarjan’s

4/7/21 © UCF CS 300

Mapping 2SAT to SCC
• In terms of the implication graph, two literals belong to the

same strongly connected component whenever there exist
chains of implications from one literal to the other and vice
versa.

• Therefore, the two literals must have the same value in any
satisfying assignment to the given 2-satisfiability instance. In
particular, if a variable and its negation both belong to the
same strongly connected component, the instance cannot be
satisfied, because it is impossible to assign both these literals
the same value.

• This is a necessary and sufficient condition: a 2-CNF formula
is satisfiable if and only if there is no variable that belongs to
the same strongly connected component as its negation.

4/7/21 © UCF CS 301

Solving SCC and 2SAT
• While some variable is not yet assigned

– Start at a partition that has no outgoing edges
– Assign true to all members of partition
– Remove partition and its incoming edges

• Can also do DFS of partitions
• Either way, we get

– ¬c = T
– ¬a = ¬b = T
– And so, a = b = c = F

4/7/21 © UCF CS 302

Any Hard Problems Here?
• Minimum-ones 2SAT problem: Provide a

satisfying assignment that sets a minimum
number of variables to true.

• Uniform Min-Ones-2SAT is the restriction of
Min-Ones-2SAT to input instances without
mixed clauses (must be all positive or all
negative literals in each clause)

• Positive Min-Ones-2SAT is the restriction of
Uniform Min-Ones-2SAT to inputs containing
only positive clauses (no negations)

4/7/21 © UCF CS 303

Uniform Min-Ones-2SAT
• Uniform Min-Ones-2SAT is NP-Hard as

we can reduce Min-Vertex-Cover to it
• In fact, Uniform Min-Ones-2SAT is NP-

Equivalent
• The best known (to me) uniform minimum-

ones 2SAT problem algorithm has a
running time of O(1.21061n) on a
satisfiable 2SAT formula with n variables

4/7/21 © UCF CS 304

Positive Min-Ones-2SAT
• Positive Min-Ones-2SAT is also

equivalent to Min-Vertex-Cover and
therefore NP-Equivalent as well

• This is interesting as the problem of
determining haplotype classifications and
propensity for certain genetic diseases can
be mapped onto Positive Min-Ones-
2SAT

4/7/21 © UCF CS 305

VC to Positive Min-Ones-2SAT

4/7/21 © UCF CS 306

Can we cover all edges with just 3 vertices?
Recast as Positive Min-Ones-2SAT. Each Node is a variable, each
edge is an or (Ú). Above is
(AÚB)(AÚC),(BÚC),(BÚD),(CÚE),(DÚE),(DÚF)
To answer VC of 3, ask “is minimum positive assignment 3 or fewer?”
B,C,D works and tells us which vertices to choose to 3 cover above
If we added edge between E and F, the min would be 4 and we would
require 4 vertices to cover all edges and 4 variables set to true
This shows Positive Min-Ones-2SAT is NP-Hard

A

B

E

D

C

F

Positive Min-Ones-2SAT to VC
• Associate every variable with a vertex
• If (v1Úv2) is a clause, add an edge

between v1 and v2 in graph
• Now to find min, start with n/2, where we

have n variables and do a binary search
for min using oracle for VC

• Max number of queries of VC oracle is just
log2n so this is NP-Easy and therefore
NP-Equivalent

4/7/21 © UCF CS 307

Finding Triangle Strips

Adapted from presentation by
Ajit Hakke Patil

Spring 2010

Graphics Subsystem
• The graphics subsystem (GS) receives graphics

commands from the application, builds the
image specified by the commands, and outputs
the resulting image to display hardware

• Graphics Libraries:
– OpenGL, DirectX.

4/7/21 © UCF CS 309

Surface Visualization

• As Triangle Mesh
• Generated by triangulating the

geometry

4/7/21 © UCF CS 310

Triangle List vs Triangle Strip

• Triangle List: Arbitrary ordering of triangles.
• Triangle Strip: A triangle strip is a sequential ordering of

triangles. i.e consecutive triangles share an edge
• In case of triangle lists we draw each triangle separately.
• So for drawing N triangles you need to call/send 3N

vertex drawing commands/data.
• However, using a Triangle Strip reduces this requirement

from 3N to N + 2, provided a single strip is sufficient.

4/7/21 © UCF CS 311

Triangle List vs Triangle Strip
• four separate triangles:

ABC, CBD, CDE, and
EDF

• But if we know that it is a
triangle strip or if we
rearrange the triangles
such that it becomes a
triangle strip, then we can
store it as a sequence of
vertices ABCDEF

• This sequence would be
decoded as a set of
triangles ABC, BCD,
CDE, and DEF

• Storage requirement:
– 3N => N + 2

4/7/21 © UCF CS 312

Tri-strips example
• Single tri-strip that describes triangles is:

1,2,3,4,1,5,6,7,8,9,6,10,1,2

4/7/21 © UCF CS 313

K-Stripability
• Given some positive integer K (less than

the number of triangles).
• Can we create K tri-strips for some given

triangulation – no repeated triangles.

4/7/21 © UCF CS 314

Triangle List vs Triangle Strip

// Draw Triangle Strip
glBegin(GL_TRIANGLE_STRIP);
For each Vertex
{

glVertex3f(x,y,z); //vertex
}
glEnd();

// Draw Triangle List
glBegin(GL_TRIANGLES);
For each Triangle
{

glVertex3f(x1,y1,z1);// vertex 1
glVertex3f(x2,y2,z2);// vertex 2
glVertex3f(x3,y3,z3);// vertex 3

}
glEnd();

4/7/21 © UCF CS 315

Problem Definition
• Given a triangulation T = {t1, t2, t3 ,.. tn}. Find the

triangle strip (sequential ordering) for it?
• Converting this to a decision problem.
• Formal Definition:

Given a triangulation T = {t1, t2, t3 ,.. tN}. Does
there exists a triangle strip?

4/7/21 © UCF CS 316

NP Proof
• Provided a witness of a ‘Yes’ instance of the problem. This must

be a sequence of the original triangles where each triangle has
a common edge with next one in sequence. We can verify it in
polynomial time by checking if the sequential triangles are
connected.

• Cost of checking if the consecutive triangles are connected
– For i = 1 to N -1

• Check of ith and i+1th triangle are adjacent (have a
common edge)

• Up to three edge comparisons or six vertex
comparisons

– ~ 6N
• Hence it is in NP.

4/7/21 © UCF CS 317

Dual Graph
• The dual graph of a

triangulation is obtained by
defining a vertex for each
triangle and drawing an edge
between two vertices if their
corresponding triangles
share an edge

• This gives the triangulations
edge-adjacency in terms of
a graph

• Cost of building a Dual
Graph

– O(N2)
• e.g G’ is a dual graph of G.

4/7/21 © UCF CS 318

NP-Completeness
• To prove it’s NP-Complete we reduce a known

NP-Complete problem to this one; the
Hamiltonian Path Problem.

• Hamiltonian Path Problem:
– Given: A Graph G = (V, E). Does G contain a

path that visits every vertex exactly once?

4/7/21 © UCF CS 319

NP-Completeness proof by
restriction

• Accept an Instance of Hamiltonian Path, G = (V, E), we restrict this
graph to have max. degree = 3.The problem is still NP-Complete.

• Construct an Instance of HasTriangleStrip
– G’ = G

• V’ = V
• E’ = E

– Let this be the dual graph G’ = (V’, E’) of the triangulation
T = {t1, t2, t3 ,.. tN}.

• V’ ~ Vertex vi represents triangle ti, i = 1 to N
• E’ ~ An edge represents that two triangles are edge-adjacent

(share an edge)
• Return HasTriangleStrip(T)

4/7/21 © UCF CS 320

NP-Completeness
• G will have a Hamiltonian

Path iff G’ has one (they
are the same).

• G’ has a Hamiltonian Path
iff T has a triangle strip of
length N – 1.

• T will have a triangle strip of
length N – 1 iff G (G’) has a
Hamiltonian Path.

• ‘Yes’ instance maps to ‘Yes’
instance. ‘No’ maps to ‘No.’

4/7/21 © UCF CS 321

HP ≤P HasTriangleStrip
• The ‘Yes/No’ instance maps to ‘Yes/No’

instance respectively and the
transformation runs in polynomial time.

• Polynomial Transformation
• Hence finding Triangle Strip in a given

triangulation is an NP-Complete Problem

4/7/21 © UCF CS 322

More Complexity Topics

4/7/21 © UCF CS 323

Weakly NP-Hard/Complete
• Have pseudo polynomial time algorithms –

ones that are polynomial in parameter
values, rather than size of parameters

• Knapsack is Weakly NP-Hard
• Subset-Sum is Weakly NP-Complete
• A key is that problem is no longer in NP if

use unary representation of parameters

4/7/21 © UCF CS 324

Strongly NP-Hard/Complete
• Do not have pseudo polynomial time

algorithms – ones that are polynomial in
parameter values, rather than size of
parameters

• Bin Packing (scheduling) is Strongly NP-
Hard

• A key is that problem remains in NP even
if use unary representation of parameters

4/7/21 © UCF CS 325

PSPACE
• PSPACE is set of problems solvable deterministically in

polynomial space with unlimited time
PSPACE = ∪ SPACE(nk)

• PSPACE = co-PSPACE = NPSPACE (non-deter,
doesn’t matter)

• PSPACE is a strict superset of CSLs
• PSPACE-Complete Problem is, given a regular

expression e over Σ, does e denote all strings in Σ*?
• The above, while solvable, is potentially hard
• Another PSPACE-Complete problem is QSAT
• PSPACE is suspected to outside the P/NP hierarchy
4/7/21 © UCF CS 326

EXPTIME and EXPSPACE
• EXPTIME is the set of problems solvable

in 2p(n) on a deterministic TM where is p is
some polynomial.

• NEXPTIME is the set of problems solvable
in 2p(n) on a non-deterministic TM.

• EXPSPACE is set of problems solvable in
2p(n) space and unbounded time

4/7/21 © UCF CS 327

Elementary Functions

4/7/21 © UCF CS 328

Alternating TM (ATM)
• ATM adds to NDTM notation the notion where,

for each state q, q has one of the following
properties: (accept, reject, Ú, Ù)
– Ú means mean accept the string if any final state

reached after q is accepting
– Ù means mean accept the string if all final states

reached after q are accepting
• AP = PSPACE where AP is class of problems

solvable in polynomial time on an ATM

4/7/21 © UCF CS 329

QSAT, Petri Net, Presburger
• QSAT is solvable by an alternating TM in

polynomial time and polynomial space
• As noted, before, QSAT is PSPACE-Complete
• Petri net reachability is EXPSPACE-hard and

requires 2-EXPTIME
• Presburger arithmetic is at least in 2-

EXPTIME, at most in 3-EXPTIME, and can be
solved by an ATM with n alternating quantifiers
in doubly exponential time

4/7/21 © UCF CS 330

Why is Space so Different?
• We made claims that

PSPACE=NPSPACE even though we
cannot show P = NP. In fact, we suspect it
is not so.

• Savitch’s Theorem:
NSPACE(f(n)) ⊆ DSPACE(f(n)2)

• This says what we want as, if f(n) is a
polynomial, then so is f(n)2.

4/7/21 © UCF CS 331

Key Element of Proof
• If L is in NPSPACE(f(n)) then a tree showing the

decision process for membership in L is really a
directed graph with O(2f(n)) nodes associated
with each of the states that the TM might be in

• For each x ∊ {0,1}+, x ∊ L iff there is a path of
from the start configuration to the accepting
configuration

• Connectivity from start to accept is what leads to
acceptance

4/7/21 © UCF CS 332

Vertex Connectivity
• In Algorithm Design and Analysis, we focus on time, so

long as space is not unreasonable
• We would typically use DFS to determine is a start node

s has a path to another node t in a directed graph
G=(V,E)

• Time is O(N), N=|V|+|E|
• Space is O(N lg2N)
• The lg2N is for activation records storing node numbers -

- there are other things in the activation record, but they
have constant size

• We wish to ignore time and do better on size!!!
4/8/21 © UCF CS 333

Space Complexity of
Connectivity

• We can show an O((log2n)2)-space deterministic algorithm to
decide if there is a path between two vertices in a directed
graph with n vertices

• Key insight is to show we can use a binary search to look for
paths of length up to k, initially setting k=n

• Given x, start node s, and end node t, we check if there is a
path from s to t recursively using a midpoint u that is at most
k/2 away from each (binary search)

• This takes O(log2n) depth (not running time)
• Each recursive call uses O(log2n) space for stack (activation

record: locals + parameters + return address + return value)
• Total space is then log2n * log2n = (log2n)2

4/7/21 © UCF CS 334

Pseudo Savitch Code
Bool k_edge_path (node s, node t, int k) {

if k == 0 return s == t
if k == 1 return s == t || (s, t) in edges
for u in nodes // this introduces O(n) time

if k_edge_path(s, u, floor(k / 2))
&& k_edge_path(u, t, ceil(k / 2))

return true
return false

}
4/7/21 © UCF CS 335

Getting Back to NPSPACE
• A non-deterministic algorithm using f(N)

space on any given path has a tree of all
paths that has up to 2f(N) nodes

• Based on prior discussion, we can
deterministically decide if a starting
configuration leads to acceptance in
(log2(2f(N)))2-space = f(N)2-space

• If f(N) is a polynomial so is f(N)2
• Thus, PSPACE = NPSPACE
4/7/21 © UCF CS 336

Complexity Hierarchy
• P Í NP Í PSPACE = NPSPACE ⊆ EXPTIME Í NEXPTIME Í EXPSPACE

⊈ 2-EXPTIME ⊈ 3-EXPTIME ⊈ … ⊈ ELEMENTARY ⊈ PRF ⊈ REC
• What if P ¹ EXPTIME; At least one of these is true

– P ⊈ NP
– NP ⊈ PSPACE
– PSPACE ⊈ EXPTIME

• If NP ¹ NEXPTIME; At least of these is true
– NP ⊈ PSPACE
– PSPACE ⊈ EXPTIME
– EXPTIME ⊈ NEXPTIME

• Note that EXPTIME = NEXPTIME iff P=NP
• Note that k-EXPTIME ⊈ (k+1)-EXPTIME, k>0

• What If PSPACE ¹ EXPSPACE; At least one of these is true
– PSPACE ⊈ EXPTIME
– EXPTIME ⊈ EXPSPACE

4/7/21 © UCF CS 337

FP and FNP
• FP is functional equivalent to P

R(x,y) in FP if can provide value y for
input x via a deterministic polynomial time
algorithm

• FNP is functional equivalent to NP;
R(x,y) in FNP if can verify any pair (x,y)
via a non-deterministic polynomial time
algorithm

4/7/21 © UCF CS 338

TFNP
• TFNP is the subset of FNP where a solution

always exists, i.e., there is a y for each x such
that R(x,y).
– Task of a TFNP algorithm is to find a y,

given x, such that R(x,y)
– Unlike FNP, the search for a y is always

successful
• FNP properly contains TFNP contains FP (we

don't know if proper)

4/7/21 © UCF CS 339

Prime Factoring
• Prime factoring is defined as, given n

and k, does n have a prime factor < k?
• Factoring is in NP and co-NP

• Given candidate factor can check its primality
in poly time and then see if it divides n

• Given candidate set of factors can check their
primalities, and see if product equals n; if so,
and no candidate < k, then answer is no

4/7/21 © UCF CS 340

Prime Factoring and TFNP
• Prime Factoring as a functional problem is in

TFNP, but is it in FP?
• If TFNP in FP, then TFNP = FP since FP

contained in TFNP
• If that is so, then carrying out Prime Factoring

is in FP and its decision problem is in P
– If this is so, we must fear for encryption

techniques, most of which depends on
difficulty of finding factors of a large number

4/7/21 © UCF CS 341

More TFNP
• There is no known recursive enumeration of

TFNP but there is of FNP
– This is similar to total versus partially

recursive functions (analogies are
everywhere)

• It appears that TFNP does not have any
complete problems!!!
– But there are subclasses of TFNP that do

have complete problems!!

4/7/21 © UCF CS 342

Another Possible Analogy
• Is P = (NP ∩ Co-NP)?
• Recall that REC = (RE ∩ co-RE)
• The analogous result may not hold here

4/7/21 © UCF CS 343

Khot’s Conjecture
• It starts with a Graph, G, and some set of colors, often

many more than needed to properly color G, and some
added pairwise constraints, e.g., if we color a node red,
all adjacent nodes must be green.

• Assuming we have some finite large set of these
pairwise constraints, and we know that there is some
coloring of G that satisfies 99% of them, then find a
coloring that satisfies just 1% is hard (NP-Hard)

• In fact, if x is a large percentage, even 99.999%, then
this applies to finding a coloring that satisfies just
0.001% of the constraints (lots of constraint options
here)

4/7/21 © UCF CS 344

Is Khot’s Conjecture True?
• FALSE: If the constraints can be mostly satisfied, all known

cases have easy solutions to check satisfaction of some small
number of constraints. Also, a large subset of these problems
were shown not to require exponential time.

• TRUE: Recent results show that, if our constraints give us two
color choices for neighbors, not just one, then the problem is
NP-Hard. This can be extended to show that if there is a
solution for almost half the constraints, then the problem is
NP-Hard to satisfy a small percentage of the constraints.
That’s nice but does it apply when we start by having almost
all constraints satisfiable by some coloring?? It does,
however, provide tantalizing evidence in support of Khot’s
Conjecture.

4/7/21 © UCF CS 345

Why Do We Care
• It is in the intersection of Khot’s Conjecture and

the question as to whether P ≠ NP where things
get really interesting

• Specifically, if Khot’s conjecture is true
and P ≠ NP, then NP-Hard problems not only
require exponential time but also it will be the
case that getting good, generally applicable,
polynomial-time approximations is out of our
reach

4/7/21 © UCF CS 346

