

Show a minimal quantification of some known primitive recursive predicate that provides an upper bound for the complexity of **HE**.

∃**<x,t> [STP(f,x,t) & (VALUE(f,x,t) = 2^x]** Thus, **HD ≤_m K**₀

HasExp(HE)={ f | ∃x f(x)↓ & f(x)=2× }

Use Rice's Theorem to prove that HD is undecidable. Be Complete. HD is non-trivial as $C1(x) = 1 \in HE$ as $C1(0) = 1 = 2^{0}$ and $C0(x) \notin HE$

Let **f**,**g** be two arbitrary indices of procedures such that $\forall \mathbf{x} \mathbf{f}(\mathbf{x}) = \mathbf{g}(\mathbf{x})$

```
\begin{array}{l} \mathsf{f} \in \mathsf{HE} & \Leftrightarrow \exists x \ [ \ \mathsf{f}(x) \downarrow \& \ \mathsf{f}(x) = 2^x \ ] \\ & \Leftrightarrow \exists x \ [ \ \mathsf{g}(x) \downarrow \& \ \mathsf{g}(x) = 2^x \ ] \\ & \text{as } \forall x \ \mathsf{f}(x) = \mathsf{g}(x) \text{ and so } \mathsf{g} \text{ has same I/O properties} \\ & \Leftrightarrow \mathsf{g} \in \mathsf{HE} \end{array}
\begin{array}{l} \mathsf{f} \notin \mathsf{HE} & \Leftrightarrow \forall x \ [ \ \mathsf{f}(x) \downarrow \Rightarrow \ \mathsf{f}(x) \neq 2^x \ ] \\ & \Leftrightarrow \forall x \ [ \ \mathsf{g}(x) \downarrow \Rightarrow \ \mathsf{g}(x) \neq 2^x \ ] \\ & \Rightarrow \forall x \ [ \ \mathsf{g}(x) \downarrow \Rightarrow \ \mathsf{g}(x) \neq 2^x \ ] \\ & \text{as } \forall x \ \mathsf{f}(x) = \mathsf{g}(x) \text{ and so } \mathsf{g} \text{ has same I/O properties} \end{aligned}
```

Show that **HAS_ID (HI) = { f | \exists x f(x) \downarrow \& f(x) = x** is many-one reducible to **HE**.

Let **f** be an arbitrary index From **f**, define $\forall \mathbf{x} \ \mathbf{F}_{f}(\mathbf{x}) = | \mathbf{f}(\mathbf{x}) - \mathbf{x} | + 2^{\mathbf{x}}$ $f \in \mathbf{HI} \Rightarrow \exists \mathbf{x} \ \mathbf{F}_{f}(\mathbf{x}) = 2^{\mathbf{x}} \Rightarrow \mathbf{F}_{f} \in \mathbf{HE}$ $f \notin \mathbf{HI} \Rightarrow \forall \mathbf{x} \ [\ \mathbf{F}_{f}(\mathbf{x}) \downarrow \Rightarrow \mathbf{F}_{f}(\mathbf{x}) > 2^{\mathbf{x}}] \Rightarrow \mathbf{F}_{f} \notin \mathbf{HE}$ Thus, $\mathbf{HI} \leq_{m} \mathbf{HE}$

Show that **HE** is many-one reducible to **HI = { f | \exists x f(x) \downarrow \& f(x) = x }**

Let **f** be an arbitrary index

From f, define $\forall x F_f(x) = | f(x) - 2^x | + x$ $f \in HE \Rightarrow \exists x F_f(x) = x \Rightarrow F_f \in HI$ $f \notin HE \Rightarrow \forall x [F_f(x) \downarrow \Rightarrow F_f(x) > x] \Rightarrow F_f \notin HE$ Thus, $HE \leq_m HI$

Show a minimal quantification of some known primitive recursive predicate that provides an upper bound for the complexity of **IE**.

∀x ∃t [STP(f,x,t) & (VALUE(f,x,t) = 2^x]

AD looks to be up there with TOT

Use Rice's Theorem to prove that **IE** is undecidable. Be Complete.

IE is non-trivial as Power(x) = $2^x \in IE$ and $Co(x) = 0 \notin IE$

Let f,g be two arbitrary indices of procedures such that $\forall x f(x) = g(x)$

$$f \in IE \iff \forall x [f(x) ↓ \& f(x) = 2^x] \Leftrightarrow \forall x [g(x) ↓ \& g(x) = 2^x] as ∀x f(x) = g(x) and so g has same I/O properties ⇔ g ∈ IE$$

Show that **TOT = { f |** $\forall x f(x) \downarrow$ } is many-one reducible to **IE**.

Let f be an arbitrary index From f, define $\forall x F_f(x) = f(x) - f(x) + 2^x$ $f \in TOT \Rightarrow \forall x F_f(x) = 2^x \Rightarrow F_f \in IE$ $f \notin TOT \Rightarrow \exists x F_f(x) \uparrow \Rightarrow F_f \notin IE$ Thus, $TOT \leq_m IE$

Show that IE is many-one reducible to $TOT = \{ f \mid \forall x f(x) \downarrow \}$ Let f be an arbitrary index. From f, define $\forall x F_f(x) = \exists y [f(x) = 2^x]$ $f \in IE \Rightarrow \forall x F_f(x) \downarrow \& F_f(x) = 1 \Rightarrow F_f \in TOT$ $f \notin IE \Rightarrow \exists x F_f(x) \uparrow \Rightarrow F_f \notin TOT$. Thus, $IE \leq_m TOT$

That **&** $F_f(x)=1$ is not needed but gives more detail. Note: It is rare to use \exists without using **STP** but I am fine with the search failing as a result of **f** diverging on some **x** or failing in a never-ending search.