
Assignment#3 Key



1. Show prfs are closed under three-
way mutual induction
Three-way mutual induction means that each induction step after 
calculating the base is computed using the previous value of the 
other function.
The formal hypothesis is:
Assume g1, g2, g3, h1, h2, and h3 are already known to be prf, 
then so are f1, f2, and f3, where
f1(x,0) = g1(x); f1(x,y+1) = h1(f1(x,y),f2(x,y),f3(x,y))
f2(x,0) = g2(x); f2(x,y+1) = h2(f1(x,y),f2(x,y),f3(x,y))
f3(x,0) = g3(x); f3(x,y+1) = h3(f1(x,y),f2(x,y),f3(s,y))
Proof is by construction

3/1/21 © UCF CS 2



Three-Way Mutual Induction (Co-
Recursion)
F will do all three computations in “parallel”
Define <z>31 = <z>1; <z>32 = <<z>2>1; <z>32 = <<z>2>2
F(x,0) = <g1(x), g2(x), g3(x)> // bases for all three
F(x, y+1) = < h1(<F(x,y)>31,<F(x,y)>32,<F(x,y)>33), 

h2(<F(x,y)>31,<F(x,y)>32,<F(x,y)>33), 
h3(<F(x,y)>31,<F(x,y)>32,<F(x,y)>33) >

F produces triples containing the values of f1, f2, and f3, in its first, second and third, 
component, respectively. The above shows F is a prf. 
f1, f2, and f3 are then defined from F as follows: 
f1(x,y) = <F(x,y)>31
f2(x,y) = <F(x,y)>32
f3(x,y) = <F(x,y)>33
This shows that f1, f2, and f3 are also prf’s, as was desired.
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2a. Show every infinite, re set is the range 
of a total recursive function that never 
repeats
Let S be an arbitrary infinite re set. Furthermore, let S be the domain of 
some partial recursive function fs. Show that S is the range of some total 
recursive function, call it hs, that never repeats, i.e, (hs(x) = hs(y) iff x = y).
// if y=0, Search fails; if y>0 we check for next item never seen before 
hS(y) = < μ<x,t> STP(fs, x, t ) && ~Search(x,y) >1

// I originally had a solution involving keeping a history, but I then realized that
// simple co-recursion works perfectly. Expand this to y=3 to see how it works.
Search(x, 0) = 0 // Fails because no prior or current values of hS
Search(x, y+1) = Search(x, y) || x == hS(y)

// See if listed earlier than y-th or it is the y-th



2b. Version 2 (based on range of 
algorithm rather domain of procedure)
Let S be an arbitrary infinite re set. Furthermore, let S be the range of some 
total recursive function fs. Show that S is the range of some total recursive 
function, call it hs, that never repeats a value (hs(x) = hs(y) iff x = y).
// if y=0, Search fails; if y>0 we check for next item never seen before 
hS(y) = fS(μ x ~Search(fS(x),y))  

// This again uses simple co-recursion. Expand this to y=3 to see how it 
works.

Search(x, 0) = 0 // Fails because no prior or current values of hS
Search(x, y+1) = Search(x, y) || x == hS(y)

// See if listed earlier than y-th or it is the y-th



The Good about the Solutions
• Compact so easy to understand

• Just need to see what Search does on a few sample cases
• As this is Computability, efficiency is not important

• Code Encapsulation:
• Neither hS nor Search needs to know how other is implemented

• Looking back, we might be embarrassed as CS people
• CS folks always look for efficiency, even if just for self-pride
• However, none of this is necessary; I just want you to think more 

broadly about alternatives after answering a posed question.



The Bad and the Ugly about the 
Solutions
• In neither case do we do short-circuit Boolean evaluations

• This leads to wasteful evaluations
• TRUE || anything = TRUE
• FALSE && anything = FALSE

• In the case of hS, we start the search from the beginning every time
• There is no need to start earlier than one past where we ended previous one

• In the case of search, we keep recursing even if found true
• Using short-circuit, we stop as soon as we find the first duplicate

• In the case of search, we might think we recompute hS(y) every time
• Not so as hS(y-1), y>0, is already available before we compute search(x,y)
• The special case of hS(0) is based on constant false for search(x,0)



Short-Circuit Boolean Evaluation
• Might do something like the following in hopes the second 

value is not computed unless it appears on rhs

• Define |$ as
• 0 |$ x = x
• (y+1) |$ x = 1

• Define &$ as
• 0 &$ x = 0
• (y+1) &$ x = x



Lower Bound on μ for hS
• HS(0) = μ<x,t> STP(fs, x, t )
• HS(y+1) = μ<x,t> > HS(y) [ STP(fs, x, t ) &$ ~Search(x,y+1)]

• hS(y) = <HS(y)>1



Use Short-Circuit to Stop Recursion
// Fails because no prior or current values of hS

Search(x, 0) = 0

// Use short-circuit with operands switched
// See if it is the y-th or is listed earlier than y-th
Search(x, y+1) = (x == hS(y)) |$ Search(x, y) 


