
Assignment#2 Key



1a. OnePairOfZerosRemoved(L) = { xy | w is in L and w = x00y }

• Let L be a Regular language over the finite alphabet Σ that contains a 0. For 
each a∈Σ, define f(a) = {a,a’}, g(a) = a’ and h(a) = a, h(a’) = λ, 
f is a substitution, g and h are homomorphisms.
OnePairOfZerosRemoved(L) = h(f(L) ∩ Σ* 0’0’ Σ*)

• Why this works: 
f(L) gets us every possible random priming of letters of strings in L.
Σ* 0’0’ Σ* gets every word that cnatins a pair of zeros somewhere, with 
that pair primed in this expression. Intersecting this with f(L) gets strings of 
the desired form that occur in L. 
Applying the homomorphism h erases all primed letters, which in this cases 
is just a pair of 0’s occurring somewhere in the string. This works as Regular 
Languages are closed under intersection, concatenation, *, substitution 
and homomorphism.

• Can also create an NFA from DFA for L, but that’s too much work.



1b. LastHalfReversed(L) = { y | there exists a string x , 
|x| = |y| and xyR is in L }

• Let L be a Regular language over the finite alphabet Σ. Assume L is recognized by the DFA A1 = (Q, Σ, δ1, q1, 
F). Define the NFA 
A2 = ((Q×Q×Q)∪{q0}, Σ, δ2, q0, F’), where 
δ2(q0,λ) = union(q,r∈Q) {<q1, q, q, r, r >} and 
δ2(< s, t, u, v, w >, b) = union(a,c∈Σ) { < δ1(s,a), δ1(t,b), u, δ1(v,c), w> } , s,t,u,v,w ∈ Q
F’ = union(q∈Q) {<q, q, r, f, r>}, f∈F

• Why this works: 
The first part of a state < s, t, u, v, w > tracks A1 for all possible strings that are the same length as what A2 is 
reading in parallel. We guess it will end up in state q and so u=q to remember that guess.
The second part of state < s, t, u, v, w  > tracks A1 as if it has read a string that ended in state q (u=q). This 
part actually reads the mid part of a string divided into thirds.
The third part of a state < s, t, u, v, w > tracks A1 for all possible strings that are the same length as what A2 is 
reading in parallel. We guess that reading the mid part will end up in state r (w=r). 

• Thus, we start with a guess (q) as to what state A1 might end up in reading a string of length x.
The guess is checked by requiring us to start up in state q in the mid part which reads y, were |x|=|y|.
We guess that we will end up in state r after reading y.
The guess is checked by requiring us to start up in state r in the third part which simulates reading a string z, 
where |x|=|y|=|z|.

• The final states check that our guesses were correct, and the third part could end in a final state of A1.



2. Use Regular Equations to Solve for B + E

A = λ + E + A0 = 0* + E0* = 0* + D0* 
B = A1 + C1 + E0 + B0 = 0*1 + B0*1 0*1 + B0*1 + B0*1 0 + B0 

= 0*1 + B(0 + 0*1(0*1+0+λ)) 
= 0*1(0 + 0*1)*

C = B + C0 = B0*
D = C1 = B0*1 = 0*1(0 + 0*1)*0*1 

= 0*1(0 + 0*1)* 
E = D
B+E = B+D = 0*1(0 + 0*1)*



3. L = { an b3^n | n > 0 }

a.) Use the Myhill-Nerode Theorem to show L is not Regular.
Define the equivalence classes [ai], i > 0
Clearly aib3^iis in L, but ajb3^i is not in L when j ≠ i, i, j>0
Thus, [ai] ≠ [aj] when j ≠ i, i, j>0 and so the index of RL is infinite.
By Myhill-Nerode, L is not Regular.



3. L = { an b3^n | n > 0 }

b.) Use the Pumping Lemma for CFLs to show L is not a CFL
Me: L is a CFL
PL: Provides N>0
Me: z = aN b3^N

PL: z = uvwxy, |vwx| ≤ N, |vx| > 0, and ∀i≥0 uviwxiy ∈ L
Me: If vwx includes the one a then set i=2 and we get a string with at least 
N+1 a’s. If it contains any b’s, then there will be at most N-1 b’s added, but in 
the simplest case where we add just one a, we would need to add 3(N+1)-3N = 
3(3N)-3N = 2(3N) b’s. But 2(3N)>(N-1) for all N, and so uv2wx2y is not in L. 
Thus, we can assume vwx is over b’s only. But then setting i = 0 reduces the 
number of b’s without reducing a’s and so uwy is not in L. That covers all 
cases, leading to contradictions in each, so L is not a CFL.



3. L = { an b3^n | n > 0 }

c.) Present a CSG for L to show it is context sensitive
G = ( { S, A, B, C, D }, { a, b }, R, S )
S   → abbb | // Base case of ab3 and kick start for other cases
S   → aAbbB // One a and two b’s and a character that will become a B
A → aAC // C will shuttle right tripling b’s; we will still have a B left
A → aD // D will shuttle right tripling b’s; we will not have a B left
Cb → bbbC // Triple the number of b’s
CB → bbB // Triple last b (B), but one b is still a B
Db → bbbD // Triple the number of b’s
DB → bbb // Triple last b (B), leaving no non-terminal


