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Abstract

A single seller wishes to sell n items to a single unit-demand buyer. We consider a robust ver-
sion of this revenue-maximization pricing problem, where the seller knows the buyer’s marginal
distributions of values for each item, but not the joint distribution, and wishes to maximize
worst-case revenue over all possible correlation structures. We devise a computationally effi-
cient (polynomial in the support size of the marginals) algorithm that computes the worst-case
joint distribution for any choice of item prices. And yet, in sharp contrast to the additive buyer
case (Carroll, 2017), we show that it is NP-hard to approximate the optimal choice of prices
to within any factor better than n1/2−ε. For the special case of marginal distributions that
satisfy the monotone hazard rate property, we show how to guarantee a constant fraction of the
optimal worst-case revenue using item pricing; this pricing equates revenue across all possible
correlations and can be computed efficiently.

1 Introduction

A core field of study within Algorithmic Mechanism Design is that of the design of selling mecha-
nisms, with one of the most fundamental questions being that of revenue-maximization by a single
seller, even when facing only a single buyer. The standard setting for this question is the Bayesian
setting, where the seller knows a prior distribution from which the values of the buyer for the vari-
ous items are drawn, and aims to maximize her revenue in expectation over this prior distribution.
When the seller has only a single item for sale, the optimal mechanism in such setting turns out to
be a simple pricing mechanism, as established by Myerson [32] and Riley and Zeckhauser [33]. But
for multiple items, even for simple valuation models such as additive or unit-demand valuations,
and even assuming that the buyer’s values are independent across items, revenue-optimal mecha-
nisms can be quite complex [20], hard to compute [16; 19], and exhibit unintuitive behavior such as
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nonmonotonicity in the valuation distributions [28], with the general revenue-maximizing solution
even in these settings continuing to elude a complete characterization to date. In such settings,
the search for simple mechanisms, and in particular for pricing mechanisms (i.e., deterministic
mechanisms, which price items and/or bundles of items) that give good revenue guarantees, has
therefore spawned many important results [14; 13; 2; 26].

As one might expect, there are grave impossibility results [27; 6] for the Bayesian setting when
the prior distribution (that is perfectly known to the seller) over the valuations of the various
items exhibits correlations between these valuations (rather than the items being independently
distributed). Nonetheless, Carroll [11] has asked whether the situation may become more hopeful
under a “partially known underlying distribution” scenario in which the seller is only given the
marginal distribution of each valuation, and wishes to maximize her guaranteed expected revenue
over any possible correlated valuation distribution with the given marginals.

In his pioneering paper, among other contributions, Carroll [11] considers the scenario of a
single seller with a number of items to sell to a single buyer with an additive valuation, where
the seller knows the distribution of the buyer’s valuation for each good separately. Remarkably,
the mechanism that provides the highest “worst case” (expected) revenue guarantee across all
such correlations is an exceedingly simple pricing mechanism: it simply prices each item separately
according to its optimal take-it-or-leave-it price à la Myerson / Riley and Zeckhauser. Interestingly,
since this pricing mechanism prices only single items and not bundles of items, it has the appealing
property that its expected revenue is independent of the correlation structure. One might therefore
take an intuitive message that in the absence of knowledge about such correlations, one should opt
for a mechanism whose revenue is agnostic of these correlations. This message is further echoed in
recent extensions to budgeted buyers [25] and optimal contract design1 [22]. As such, one might
naturally wonder whether such a principle of agnosticism holds more generally, even if only for
approximate revenue-maximization; or, failing that, whether one can always find simple pricing
mechanisms (correlation-agnostic or not) that even only approximate the (worst-case) optimal
revenue.

In this paper we study revenue-maximizing pricing in a correlation-robust setting where a seller
with multiple items faces a single unit demand buyer, and in particular consider the above question
through the lens of this setting. The analysis of this setting was posed as an open problem by
Gravin and Lu [25], who in particular also explicitly posed the question of the tractability of
finding a solution. We first ask: does the optimal correlation-robust mechanism take the form of
a correlation-agnostic pricing mechanism that can be computed efficiently? (As is often done, we
use “can be computed efficiently” to formalize the amorphic “simple” from the above discussion.)
As it turns out, the answer is no; we present examples in which even the optimal choice of item
prices2 (a lower benchmark than the optimal mechanism) leads to an unboundedly higher revenue
than any correlation-agnostic choice of prices as n grows large. This negative answer gives rise to a
new challenge: identifying the revenue guarantee given the (worst-case) optimal pricing. Our first
main result addresses this challenge and shows that given the optimal pricing, and in fact given
any pricing, the revenue guarantee of that pricing can be efficiently calculated:

Theorem 1.1 (See Theorem 3.5). Given n discrete (marginal) distributions F1, . . . , Fn from which

1In this robust contract design problem, the hidden information is not correlations but rather the higher moments
of the reward distributions for the principle [22], however the message remains: the (expected) revenue of the (worst-
case) optimal mechanism/contract is agnostic of the information that is hidden from the mechanism/contract designer
(even though for other, nonoptimal, mechanisms/contracts, this information is needed to compute the revenue).

2A pricing mechanism (any deterministic mechanism) for a unit-demand buyer without loss of generality simply
sets a price for each item (being the lowest price of any bundle containing the item), and need not offer any bundles
since a unit-demand buyer has no value for more than one item.
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a unit-demand buyer’s valuations of n respective items are drawn, and given respective prices
p1, . . . , pn for these items, the correlation among the n given distributions that gives the lowest
(expected) revenue from the buyer, as well as that revenue itself, can be computed in polynomial
time.

In other words, the high-dimensional problem of finding a revenue-minimizing correlation given
prices is tractably solvable. What about the lower-dimensional problem of finding a pricing that
well approximates the worst-case optimal revenue?

A major hurdle in finding high-revenue pricings for a unit-demand buyer, a hurdle that does
not arise in the additive case, is that of cannibalization, whereby one item that is offered for sale
cannibalizes from the revenue of another item.3 Consider for example two items, one priced at a
low price, say, $1, and the other at a high price, say, $1,000,000. Say that the buyer has realized
values $1.5 for the first item and $1,000,000.25 for the second item. Such a buyer would opt for
buying the first item, resulting in a revenue of only $1, as the buyer’s utility from that item (at
that price) is slightly higher. Since the buyer has unit demand, she would therefore not buy the
second item. It is not hard to see that for this particular value realization, pricing the first item at
infinity (i.e., not offering it for sale at all) leads to higher revenue. When the valuations are drawn
from an underlying distribution, the extent to which cannibalization affects the seller’s revenue is
of course intimately connected to the correlation between the values of different items.

In the Bayesian setting, if item valuations are independently drawn, then while cannibalization
manifests to some extent, it turns out that simple pricings can still achieve a constant approximation
to the optimal revenue for any number of items [14; 13]. But correlations between item values can
potentially amplify cannibalization. For example, one might correlate values so that the buyer often
has just slightly higher utility from low-priced items than from high-priced items. Such a “bad”
correlation could depend crucially on the specific choice of item prices, though: they determine
which values are above-the-price, and the utility given by each of these values. Therefore, avoiding
excessive cannibalization is in some sense even more challenging in the correlation-robust setting, as
in this setting the worst-case correlation is effectively tailored to maximally cannibalize the revenue
of the chosen prices (rather than given in advance, which gives the seller a chance to price in a way
that mitigates the cannibalization caused by a specific correlation).

Keeping cannibalization under control, a challenge that is completely absent from the additive
setting, is indeed the main challenge in our unit-demand setting. As we show, finding prices that
best overcome this challenge is as hard as getting a relatively good approximation to the notoriously
hard problem of finding the maximal independent set in a graph. Hence, it is not only hard to find
prices that “thread the needle” by fighting cannibalization “just right” to optimize the (worst-case)
revenue among all prices, but it is in fact NP-hard to find prices that even coarsely approximate
the revenue among all prices to any reasonable extent:

Theorem 1.2 (See Theorem 4.1). The max-min robust pricing problem is NP-hard: given n
(marginal) distributions F1, . . . , Fn, each described using at most poly(n) bits, from which a unit-
demand buyer’s valuations of n respective items are drawn, compute respective prices p1, . . . , pn for
these items that maximize, among all possible choices of prices, the guaranteed (expected) revenue
from the buyer over any correlation among the n given distributions. Furthermore, it is NP-hard
to find prices that even approximate this guaranteed revenue up to a factor of n1/2−ε for any ε > 0.

This theorem strongly indicates that a “clean” characterization of (approximately) optimal
robust prices is unlikely to exist. The theorem also immediately implies the same lower bound

3This cannibalization issue is common to the literature on assortment planning, where typically the prices are
fixed and the decision-maker must choose which items to make available; see [29] for a survey.
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also for finding prices that approximate the more ambitious benchmark of the (worst-case) optimal
revenue from any (not necessarily pricing) mechanism. To the best of our knowledge, this is the
first hardness result in the correlation-robust framework.

Given this main negative result, in the last part of our paper we ask whether certain standard
assumptions on distributions, when satisfied by the marginals, can mitigate this impossibility, and
possibly mitigate also some other undesirable phenomena that we identify. Our third and final main
result gives a positive answer to this question, showing that if all of the marginal distributions
exhibit monotone hazard rate (MHR), a standard tail condition in mechanism design, then the
worst-case optimal revenue (from any mechanism) can be approximated up to a factor of 3.5 using
a simple pricing with many desirable properties; it concisely depends on the marginals only through
one single-dimensional statistic of each, its revenue is agnostic of the unknown correlations, and its
revenue is monotone in the given marginals:

Theorem 1.3 (See Theorem 5.3). Given n MHR (marginal) distributions F1, . . . , Fn from which
a unit-demand buyer’s valuations of n respective items are drawn, let i be such that the median
pi of Fi is (weakly) higher than the medians of all other Fj. Setting a price of pi for item i and
setting a price of infinity for every other item maximizes up to a factor of at most 3.5 (across
all mechanisms whatsoever) the guaranteed (expected) revenue from the buyer over any correlation
among the n given distributions.

Unfortunately, if the MHR condition is relaxed, we show that many hardships arise already for
regular distributions (the “one notch weaker” standard tail condition in mechanism design), such
as requiring linearly many different item prices (and hence requiring nonmonotone mechanisms),
and nontrivial dependence on the marginals. This motivates the main question that we leave open:

Open Question 1.4. Is there a computationally efficient algorithm that given n regular distri-
butions F1, . . . , Fn from which a unit-demand buyer’s valuations of n respective items are drawn,
finds prices p1, . . . , pn that maximize up to a constant factor (even only across all possible choices
of prices) the guaranteed (expected) revenue from the buyer over any correlation among the n given
distributions?

We conclude this paper by presenting some observations and examples, which may be useful
toward this open question.

1.1 Comparison with Bayesian Optimal Mechanisms under Independence

The notion of correlation-robust mechanism design stands in contrast to the literature that assumes
that buyer values are independent across items. As such, it is worthwhile to draw comparisons across
the two settings.

Given the positive results of Carroll [11] and of Gravin and Lu [25], one may have indeed
wondered, for a given multi-item setting (or at least for a canonical simple multi-item setting) and
given marginals, whether correlation-robust mechanism design is always “easier” in some sense than
Bayesian mechanism design with the assumption of independence of the marginals. Our results
give a negative answer to this hope, in a precise formal sense. Consider the best approximation
factor to the optimal revenue (of any mechanism) that is obtainable by an efficiently computable
pricing mechanism. In the Bayesian independent model, for both the additive and the unit-demand
settings (two special cases of gross substitutes valuations), this factor is a constant that is strictly
greater (worse) than 1 [14; 13; 2; 37], and this extends even to subadditive settings [35], a strict
superclass of gross substitutes. In the correlation-robust model, for the additive setting this factor
is simply 1 [11] (i.e., optimal—an improvement compared to the Bayesian independent model).

4



Yet, we show, in sharp contrast, that already for the unit-demand setting this factor is not only
worse than in the independent model, but is actually unboundedly large as n grows large, even
when compared to the weaker benchmark of the optimal revenue of a pricing mechanism.

In this vein, it is also instructive to consider a recent paper by Bei et al. [4]. In their paper,
they study correlation-robust pricing in a single-item setting with multiple buyers, and give a
pricing mechanism that maximizes the worst-case revenue up to a constant.4 Given the well-known
connections, in the Bayesian setting, between the single-item multi-buyer case and the multi-item
single-buyer-with-unit-demand case [13], one may be surprised by the stark contrast between the
positive result of Bei et al. and our negative one. This contrast in fact highlights a key difference
between their analysis and ours: the mechanism used by Bei at al. in the single-item multi-buyer
setting offers the item to different buyers for different prices, and does so by offering it first to the
buyer for whom the set price is highest, then to the buyer for whom the set price is the second-
highest, etc. That is, in their (single-item multi-buyer) setting the mechanism can force the item to
be sold for the highest price that is below the corresponding value, while in our (multi-item single-
buyer) setting, since there is a single buyer making the decision, we have no escape from the price
to be paid being the one that is farthest below the corresponding value (i.e., generating the highest
utility), allowing lower-priced items to cannibalize, as discussed above, from the sale probability of
higher-priced items. Indeed, to the best of our knowledge, our study of the unit-demand case is the
first in a correlation-robust model where there is no solution that can be expressed as a composition
of solutions to single-item auction setting. Approaching our research questions therefore required
the development of new technical approaches to the correlation-robust model.

Taken in concert, the above observations highlight correlation-robust revenue maximization as
a framework for which intuition from the Bayesian setting may fail, and for which completely new
separate intuition may have to be developed.

1.2 Other Related Work

Gravin and Lu [25] give an alternative proof to Carroll’s result, and furthermore extend their
study to solve the more general scenario of additive valuations with a buyer budget (the buyer’s
fixed budget is known to the seller, but the correlation between valuation distributions is again
adversarially chosen), for which, as noted above, they show that Carroll’s main message of the
optimal mechanism being simple (and easy to compute) and its revenue being agnostic of the
correlation still holds. Driven by similar motivation of robust revenue maximization, however in a
different setting of contract (rather than auction) design, Duetting et al. [22] study the worst-case
optimal contract in a principal-agent setting where only the expected rewards from the agent’s
actions to the principal are known (rather than the full reward distributions). Their identification
of linear contracts as optimal in this sense once again features the same properties of simplicity,
computational efficiency, and agnosticism to the hidden information.5

These works on robust mechanism design fit within a broader research agenda of robust op-
timization, which has been studied in Operations Research tracing back to the classic paper of
Scarf [36]. This approach has been applied to mechanism design, among other domains [3]. Within
computer science, robust design ties in to “beyond worst-case” analysis approaches [34], and in
particular to semi-random models [5]. From this perspective, we study a semi-random model in
which one aspect of the model (the item values) is randomly drawn, whereas another (the corre-

4To the best of our knowledge, Bei et al. are the first to study approximate revenue maximization in a correlation-
robust setting.

5Earlier work of [10] gives a different sense in which linear contracts are max-min optimal, one that does not share
this property of being agnostic to the unknown component.
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lation among values) is adversarially chosen. Hybrid models such as these are gaining traction in
recent years, in part due to their power to explain why certain algorithmic methods work better
than expected.

Most of the work on mechanism design for a unit-demand buyer has been in the standard
Bayesian model. If there is only a single item for sale, Myerson [32] characterizes the revenue-
optimal mechanism, which for a single buyer (see also [33]) amounts to simply setting the monopoly
price for the item (the price that maximizes the expected revenue given the item’s value distribu-
tion).

For the case of a single unit-demand buyer with a product distribution over item values, Chen
et al. [16] show that computing a revenue-optimal pricing is NP-hard, even for identical distribu-
tions with support size 3 (but can be solved in polynomial time for distributions of support size 2).
Chawla et al. [13, 14] give a constant factor approximation for the optimal pricing, which applies
also with respect to the optimal randomized mechanism (i.e., pricing lotteries) by the observation
that pricing lotteries cannot increase revenue by more than a factor of 4 in the case of product
distributions [15]. Cai and Daskalakis [8, 9] give an additive PTAS for the case of bounded dis-
tributions, and also derive structural properties of the optimal solution for special cases. Among
other properties, they show that if the buyer’s values are independently distributed according to
MHR distributions, then constant approximation can be obtained with a single price (which can be
efficiently computed). Moreover, if values are also identically distributed, then a single price yields
near-optimal revenue.

For the case of correlated distributions, Briest and Krysta [6] show that the optimal pricing
problem does not even admit a polynomial-time constant approximation. It has been also shown
that, unlike product distributions, pricing lotteries over items can increase the revenue (beyond
item pricing) by a factor of log(n) [37; 7].

Finally, another popular fairly recent line of research that builds upon the Bayesian setting by
having the seller only have partial information about the underlying distribution (but keeping the
optimal auction for the underlying distribution as the benchmark) is that of revenue maximization
from samples, where the seller is shown samples from the underlying distribution rather than the
whole distribution [18]. Within this context, for pricing for a unit-demand buyer see [31], and for
revenue maximization for a unit-demand buyer see [24].

2 Preliminaries

2.1 Model

The main player in our model is a seller, who has n ≥ 2 items for sale to a single unit-demand
buyer. The buyer has a valuation profile v = (v1, . . . , vn) where vj ≥ 0 denotes her value for item j.
The seller can set a pricing p, i.e., a vector of item prices (p1, . . . , pn). Given a pricing p, the buyer
purchases a single item j that maximizes her (quasi-linear) utility vj − pj ,6 or nothing if her utility
from purchasing any item would be negative.

Problem instance. An instance of our model consists of n marginal distributions F1, . . . , Fn for
the n item values v1, . . . , vn. The distributions are over supports V1, . . . , Vn known as value spaces.
If Vj is bounded, then we denote its maximum value by vmax

j , and we denote its minimum value

by vmin
j . Importantly, item values can be correlated, as long as for every item j the buyer’s value vj

6Tie-breaking is discussed below.
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is marginally distributed according to Fj .
7 Notice that the correlation is not part of the instance

but rather will be adversarially chosen.
Given a value vj , its quantile qj(vj) is Fj(vj) = Prν∼Fj [ν ≤ vj ] (so low quantiles correspond

to low values and vice versa). For every quantile qj ∈ [0, 1] we define its value vj(qj) to be
min{v | Fj(v) ≥ qj} (notice that if Fj is strictly increasing then it is invertible, the inverse function
F−1j (·) is well defined, and vj(qj) is equal to the inverse F−1j (qj)).

Compatible distributions. For a given instance with marginals F1, . . . , Fn, a compatible dis-
tribution F is a joint distribution over valuation profiles v such that the marginals of F for the
individual item values coincide with F1, . . . , Fn. A natural class of compatible distributions is that
of perfect couplings. In a perfect coupling, the value of any one of the items determines the values
of all others. More formally, a distribution F is a perfect coupling if for every item j ∈ [n] there
exists a coupling function, a measure-preserving bijection Cj : [0, 1]→ [0, 1], and a valuation profile
is drawn from F by randomly drawing q ∼ U [0, 1], and taking the value of each item j to be vj(qj)
where qj = Cj(q).

One particular perfect coupling that plays a role in our results is the following.

Definition 2.1. The comonotonic distribution Fco-mon is the perfect coupling defined by Cj(q) = q
for every j ∈ [n].

The comonotonic distribution appears in the work of [11] on correlation-robust pricing for an
additive buyer.8 Intuitively, this distribution is the compatible distribution in which values are “as
positively correlated as possible.” For example, observe that if all the marginals are identical, the
in every valuation profile drawn from F all the values are identical.

2.2 The Max-Min Pricing Problem

Objective. For a given instance with marginals F1, . . . , Fn, denote byR(p, F ) the seller’s expected
revenue from setting a pricing p if the valuation profile v is drawn from a compatible distribution F :

R(p, F ) = Ev∼F [pj∗(v,p)],

where j∗(v, p) is the item purchased by the buyer. We note that the buyer has to break ties between
items that give her the same utility. We assume that tie-breaking between any two items depends
only on the identities of the two items that give the same utility, the value of that utility, and the
prices of the two items. The tie-breaking rule must also be consistent (no cycles). For example,
breaking ties in favor of higher-priced items and then by index, or in favor of lower-priced items
and then by index, are both allowed.

In the max-min pricing problem, the goal is to find a pricing p that maximizes the minimum,
over all compatible distributions F , of the expected revenue R(p, F ).

We introduce the following notation to make this formal: Let R(p) be the robust revenue
guarantee of p, i.e., the worst expected revenue from p over all compatible distributions:

R(p) = inf
compatible F

R(p, F ),

7Being marginally distributed according to Fj means the following: let Prv∼F [vj ≤ x] be the probability that if
we sample a valuation profile v, the value for item j is at most x; then Fj(x) = Prv∼F [vj ≤ x] for every x ∈ Vj .

8In that setting, as is shown there, when the marginals are regular distributions, the worst correlation from the
seller’s perspective (in a sense formalized below) is the comonotonic distribution.
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and let R∗ be the optimal robust revenue guarantee over all pricings:

R∗ = sup
p
R(p) = sup

p
inf

compatible F
R(p, F ).

A pricing p is α-max-min optimal, for α ≥ 1, if R(p) ≥ 1
αR
∗; if α = 1, then we say that p is a

max-min optimal pricing. The max-min pricing problem is to find, for a given problem instance,
an α-max-min optimal pricing p with α as close as possible to 1.

Zero-sum game and the Adversary’s perspective. In the max-min pricing problem, the
seller can be viewed as a player in a zero-sum game corresponding to the problem instance, in which
the Adversary ’s strategy space is the space of all compatible distributions. The seller’s payoff for
“playing” a pricing p against a compatible distribution F is R(p, F ). The Adversary’s goal is to
choose F that minimizes R(p, F ). We refer to a distribution achieving infcompatible F R(p, F ) (if it
exists) as a best response of the Adversary to the pricing p. (More generally one can consider a
β-best response, which is a distribution F achieving R(p, F ) ≤ β · infcompatible F R(p, F ).)

Simple solution classes. Arguably the two simplest possible pricing classes are the following.

Definition 2.2. A pricing p is a single price if all prices but one are ∞.

Definition 2.3. A pricing p is uniform if all prices are equal.

A single price p has a particularly nice robustness property: it is correlation agnostic. That is,
its expected revenue is the same against any compatible distribution. I.e., R(p, F ) = R(p, F ′) for
every compatible F, F ′. Such robustness is a recurring theme in the literature on robust mechanism
design [12]; in particular it makes the task of showing that p is (α-)max-min optimal much simpler.9

In comparison, uniform pricings do not enjoy the robustness property, however they “dominate”
single prices in the following sense: one can naturally turn any single price p into a uniform pricing
p′ (by setting the prices of all items to be the same as that single price) such that R(p, F ) ≤ R(p′, F )
for every F .

3 The Adversary’s Best Response, and
Robust Revenue Guarantee Calculation

In this section, we will first present an algorithm that finds the exact best response of the Adversary
for any given pricing (and along with the best response, also the robust revenue guarantee of this
pricing) when every marginal is a uniform distribution over a finite multi-sets of values, and all
such multi-sets are of the same size. This algorithm runs in polynomial time in the size of the
input (for explicitly given such multi-sets). We will then show that for arbitrary finite distributions
(even if the probabilities are not even rational numbers), we can still output the best response
of the Adversary (and the robust revenue guarantee) using a slightly generalized version of this
algorithm, and do so in polynomial time. Finally, we explain how to further use our algorithm
to get arbitrarily close to the best response of the Adversary in the general case of arbitrary (not
necessarily discrete) marginal distributions, where as we will show a precise best response may not
exist. Proofs omitted from this section appear in Appendix A.

9E.g., it is sufficient to show a compatible distribution for which p is the seller’s α-best response, similar to [11],
or to show for every other pricing p′ a compatible distribution F ′ such that R(p, F ′) ≥ αR(p′, F ′), similar to [22].
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3.1 Perfect Couplings of Uniform Distributions over Multisets of Identical Sizes

In this section we assume that every marginal is a uniform distribution over a finite multi-set of
values, where the multi-sets corresponding to the various marginals are all of the same size d. (In
Section 3.2 we will show that the algorithm that we will present in the current section can be
tweaked to to work for any discrete distribution, and still run in polynomial time.)

Given a pricing, we wish to find the worst distribution for those prices that is compatible with
the marginals. We will show that there is a perfect coupling that minimizes the revenue over all
compatible distributions.

To handle the possibility of the buyer not buying any item, we assume, without loss of generality,
that one of the items is a special “null item” that always has value 0 and will be priced at 0, such
that the buyer buying this null item corresponds to the buyer not buying any item. Other than that
we will treat the null item as any other item (assume it has price 0 and that its value is distributed
uniformly over a multi-set of all-0 values, and thus the corresponding utilities are also all 0).

Assume without loss of generality that items are ordered such that prices are nondecreasing,
p1 ≤ p2 ≤ · · · ≤ pn. Let vi be the vector of values of item i sorted in nonincreasing order;
i.e., v1i ≥ · · · ≥ vdi (recall that by assumption, the value of item i is drawn uniformly from the
d values v1i , . . . , v

d
i ). Given the prices we can transform this vector to a vector of utilities that

all have the same probability (each has probability 1/d) with uji = vji − pi for every item i and
index j ∈ {1, . . . , d}. We thus obtain a vector ui of utilities of items i sorted in nonincreasing order;
i.e., u1i ≥ u2i ≥ · · · ≥ udi .

We note that the Adversary’s best response may depend on the tie-breaking rule used by the
buyer to choose among items that yield the same utility. Our algorithm for the Adversary’s best
response will break ties in the same way as the buyer does. We say that uti is dominated by urj , and
denote this by uti ≺ urj , if either uti < urj , or uti = urj and the buyer when facing the choice between
buying item i and buying item j, either at utility u = uti = urj , breaks this tie in favor of item j.

A perfect coupling (or simply a coupling) in this setting corresponds to a bijection for each i,
from indices {1, 2, . . . , d} to the multi-set of utilities (equivalently, to the the multi-set of values) of
item i, where to draw the utilities for the n items, an index is drawn uniformly at random, and then
the utility for each item is determined according to the bijection of that item, applied to this index.
We will think about the image of each index under all n bijections as a chain, coupling together n
elements in the multi-sets of utilities, one element for each item. (So to draw the utilities for the
items, one of these chains is simply drawn uniformly at random.) Hence, a (perfect) coupling can
be described using d chains that form a partition of all utilities, with each chain containing exactly
one utility for every item (and every such d chains describe a perfect coupling). Given a chain t in
the coupling, we denote the utility of item i in t by ui(t). A chain t in which uj(t) ≺ ui(t) for all
j 6= i is said to be dominated by item i—this is the item that will be bought if chain t is drawn.
The expected revenue from a given perfect coupling is simply the weighted average of the prices of
the items, each weighted proportionally to the number of chains in this coupling that it dominates.

3.1.1 The Adversary’s Algorithm

The algorithm for the Adversary’s best response is given in Algorithm 1. It receives as input item
prices p1 ≤ p2 ≤ · · · ≤ pn and utility vectors u1, . . . , un for the n items, with each ui sorted in
nonincreasing order, and returns a coupling c. When the algorithm is run, c is initially empty,
and is augmented by chains (and has its chains modified at times) throughout the course of the
algorithm. We abuse notation and write uki ∈ c if uki ∈ t for some chain t ∈ c (and write uki 6∈ c
otherwise). The algorithm first attempts to build as many chains as possible that are dominated
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Algorithm 1: The Adversary’s best-response algorithm; Input: utilities u1, . . . , un; prices p1 ≤ · · · ≤ pn.

1: c← ∅
2: for i = 1, . . . , n do
3: for k = 1, . . . , d do
4: if for every item j > i there exists u`j /∈ c s.t. u`j ≺ uki then

5: For every j > i, let `j = arg max`{u`j | u`j 6∈ c and u`j ≺ uki } {break ties towards a lower index}
6: For every j < i, let `j be an arbitrary index s.t. u

`j
j 6∈ c

7: c←
(
uki , {u

`j
j }j 6=i

)
8: end if
9: end for

10: Let m = |c| and let t1, . . . , tm be the chains in c sorted such that ui+1(t1) ≤ · · · ≤ ui+1(tm)
11: for r = 1, . . . ,m do
12: tr ← tr \

{
ui+1(tr)

}
∪ {ud−r+1

i+1 } {i.e., in chain tr, replace ui+1(tr) with the smallest u`i+1 /∈ ∪j<rtj}
13: end for
14: end for
15: return c

by item 1 (Lines 3–9 when i = 1), then as many chains as possible that are dominated by item 2
(Lines 3–9 when i = 2), etc. When building a chain dominated by a certain utility for item 1, the
algorithm attempts to use the highest possible utility for each higher-priced item j that would still
be dominated by that utility for item 1, in order to leave lower utilities for item j to possibly be
dominated in future chains by lower utilities for item 1 or by utilities for some i < j. Just before
turning to build chains dominated by this item j, though, the algorithm has a transition stage (Lines
11–13) that recouples all of the chains built so far to use the lowest, rather than highest, utilities
for item j, since from that moment onward, a high utility for item j is no longer a liability that we
attempt to dominate by utilities for lower-priced items (to have those items cannibalize from item
j), but rather an asset with which to attempt to dominate utilities for even higher-priced items (to
have item j cannibalize from those items). Figure 1 illustrates an execution of the algorithm.

Figure 1: An illustration of Algorithm 1. (a) Following Iteration i = 1, just before the transition
stage (i.e., following Line 9); (b) following the transition between Iteration i = 1 and Iteration i = 2
(i.e., following Line 13); (c) following Iteration i = 2; (d) following Iteration i = 3. Thick cycles
signify the corresponding dominant utility in every chain. Note that without the transition stage
between Iterations i = 1 and i = 2, we would have ended up with two chains dominated by item 1
and two chains dominated by item 3, and hence would have failed to minimizing the revenue.
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3.1.2 Optimality of Algorithm 1

Algorithm 1 returns a (perfect) coupling that defines a distribution F that is compatible with the
marginals. In this section we will show that no other perfect coupling defines a distribution that
generates worse revenue. (In Section 3.2 we will show that no other distribution that is compatible
with the marginals, whether or not induced by a perfect coupling, can generate any worse revenue.)
Before we formally state this claim as Theorem 3.1, let us introduce some notation.

Let Ki be the maximum number of chains dominated by item i in any coupling. Let K[i] be the
maximum number of chains dominated by one of items 1, . . . , i in any coupling. Given a coupling
c, let ki(c) (respectively, k[i](c)) be the number of chains in c dominated by item i (resp., by one of
items 1, . . . , i). A coupling c such that k[i](c) = K[i] is said to realize K[i]. As standard, we denote
the set {1, . . . , n} by [n]. Our main result for this section is:

Theorem 3.1. The coupling output by Algorithm 1 simultaneously realizes K[i] for every i ∈ [n].

The proof of Theorem 3.1 relies on Lemma 3.2 and Proposition 3.3 stated below.

Lemma 3.2. The coupling c output by Algorithm 1 satisfies: (1) k1(c) = K1, (2) for every i ≥ 2,
ki(c) = max

{
ki(c

′)
∣∣ c’ is a coupling & kj(c

′) = kj(c) ∀j < i
}

; i.e., c maximizes the number of
chains dominated by item i fixing the number of chains dominated by items j < i.

Proposition 3.3. There exists a coupling that simultaneously realizes K[i] for every i ∈ [n].

The combination of Proposition 3.3 and Lemma 3.2 implies Theorem 3.1, showing that no
coupling defines a distribution that generates worse revenue than that defined by the coupling
output by Algorithm 1. We now establish the proof of Proposition 3.3. The remainder of the
proofs are relegated to Appendix A.

Proof of Proposition 3.3. We first prove that there exists a coupling that simultaneously realizes
K[1] and K[2], and then show how to generalize this to any prefix. Suppose toward contra-
diction that for every coupling c that realizes K[2] it is the case that k1(c) < K1. Let k′1 =
max

{
k1(c)

∣∣ c realizes K[2]

}
.

Let u1,2 be the joint vector of utilities of items 1 and 2, sorted in nondecreasing order (u1,2 is
of length 2d). We use the term k top utilities of a utility vector to refer the k highest utilities in
the vector, breaking ties in favor of lower indexes.

Let S be the set of the top k′1 utilities of item 1 and the top K[2] − k′1 utilities of item 2 in
u1,2. Sort the utilities in S in nonincreasing order and couple them (in this order) with the highest-
possible utilities of items 3, . . . , n into disjoint chains. This gives K[2] disjoint chains, partitioned
into those rooted at item 1 and those rooted at item 2. (Note that every chain rooted at item 1 can
be augmented with a suitable utility of item 2 such that the obtained chain is dominated by item
1, and analogously for chains rooted at item 2, since at most d utilities of u1,2 are coupled and all
other utilities are smaller than the corresponding coupled ones.)

We will prove that the lowest chain rooted at item 2 can be replaced by a new chain rooted at

utility u
k′1+1
1 , still realizing K[2], thus contradicting the maximality of k′1.

We will now define a process that we call sift&lift, which removes the chain rooted at the

lowest utility of item 2 (u
K[2]−k′1
2 ), and “lifts” all subsequent chains rooted at item 1 (i.e., whenever

possible, uses newly available higher utilities of items 3, . . . , n). The sift&lift process is formally
specified in Algorithm 2 in Appendix B, and an illustration is given in Figure 2. The following
lemma, whose proof we relegate to Appendix A, shows that after the sift&lift process, one more
chain dominated by item 1 can be added to the coupling.
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Figure 2: An illustration of the sift&lift process. d = 5. In the top coupling c, we have k1(c) = 2
and k2(c) = 2 (hence k[2](c) = 4). In the bottom coupling c′ (following the sift&lift process, and
the consequent addition of a chain dominated by item 1), k1(c

′) = 3 and k2(c
′) = 1 (hence still

k[2](c
′) = 4). Dashed circles signify utilities whose status changed: a chain rooted at a utility

of item 2 (and hence dominated by item 2) was removed, enabling (after the lifting process) the
creation of an additional chain rooted at a utility of item 1 (and hence dominated by item 1).

Lemma 3.4. After removing the chain rooted at u
K[2]−k′1
2 and lifting the subsequent chains rooted

at item 1, for every i ≥ 3 it is the case that udi is uncoupled and udi ≺ u
k′1+1
1 .

Lemma 3.4 implies that one more chain rooted at item 1 can be added, at the expense of the
bottom chain rooted at item 2. Thus, the resulting coupling contains k′1 + 1 chains dominated by
item 1, and K[2] chains dominated by one of items 1,2, contradicting the maximality of k′1. We
conclude that there exists a coupling that simultaneously realizes K[1] and K[2], as desired.

We next show how to extend the proof to any i ∈ [n]. Suppose toward contradiction this is
false. Let ` ∈ [n] be the smallest value for which this is false, and let x ∈ [`] be the smallest value
such that K[`] cannot be simultaneously realized with K[1], . . . ,K[x].

Repeat the same process as in the case of items 1,2, with items 1, . . . , x in the role of item 1,
and items x + 1, . . . , ` in the role of items 2. By the same argument as before, one can increase
the number of chains dominated by one of items 1, . . . , x without affecting any k[j] for j ∈ [`],
contradicting the definition of x.
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3.2 General Discrete Distributions, Computational Efficiency,
and Further Extensions

Recall that there are three gaps between Theorems 3.1 and 3.5, which we will prove in this appendix:
the first gap is that Algorithm 1, as stated, works only for marginals that are uniform over multisets
(implying applicability also for discrete marginals whose probabilities for the various values are
rational numbers, but not irrational ones), the second gap is that it only guarantees that the
coupling that we find generates the worst revenue of any coupling rather the worst revenue of any
correlated distribution,10 and the third gap is that the computational efficiency of the presented
algorithm is polynomial in d, so when applied to discrete distributions with arbitrary rational
probabilities is actually polynomial in the lowest common denominator of all of these probabilities.

In this section, we show how to modify Algorithm 1 to bridge all three of these gaps in one fell
swoop, by reinterpreting Algorithm 1 as a water-filling algorithm that arbitrarily discretizes (for
ease of presentation and analysis, but for no real constraint) its step size to 1/d. The idea underlying
our modification of Algorithm 1 to bridge these three gaps is quite simple: instead of splitting every
probability mass in advance of running the algorithm, we will split probability masses on demand.
Formally, we will allow the algorithm to split each probability mass into several probability mass
“nodes,” however unlike in Section 3.1, these nodes may have different masses. The algorithm will
output a coupling of such nodes, where n nodes may be coupled only if they all have the same mass.
This will allow us to handle irrational probabilities, to compare to arbitrary correlated distribution
(as any correlated distribution can be represented as a perfect coupling of such nodes of unequal
masses), and will additionally maintain computational efficiency that is polynomial in the size of
the support of the given marginals. The pseudo-code of the algorithm is in fact virtually unchanged
from that of Algorithm 1, however to interpret it for this scenario we introduce a few local semantic
changes to our interpretation of this pseudo-code:

1. We will continue to denote the vector of utilities from item price pi by ui, however we will
now have the utilities in each ui be distinct, and we will say that u`i ∈ c only if the entire
mass of u`i is already coupled (that is, if this utility was split into smaller nodes, then all
such nodes should be coupled for this to hold). The notation u`i /∈ c throughout Algorithm 1
should therefore be interpreted as saying that some mass of u`i is still uncoupled.

2. In Line 7 of Algorithm 1, when we write c← (uki , {u
`j
j }j 6=i), we mean the following: let p be

the lowest remaining uncoupled mass of any of these utilities; split a new node of mass p from
each of these utilities, couple all of these n nodes together, and add the resulting chain to c.
(The reinterpreted algorithm can therefore be thought of as a water-filling algorithm of sorts.)
We note that each execution of Line 7 causes at least one utility u`j of one item in 1, . . . , n to

change from satisfying u`j /∈ c to satisfying u`j ∈ c, so the computational complexity does not
explode.

3. In Line 12 of Algorithm 1, the line captioned “i.e., in chain tr, replace ui+1(tr) with the
smallest u`i+1 /∈ ∪j<rtj ,” we will be perform the following, which still implements the exact
same comment: let pr be the mass of all nodes in tr. First, remove ui+1(tr) from tr, making

10This is possibly the most subtle of the three gaps. To better understand it, note that for n = 2 items, the
Birkhoff–von Neumann theorem tells us that any distribution over pairs of utilities of the two items is a convex
combination of distributions defined by a perfect couplings, and so there is a perfect coupling that generates at most
as much revenue. For n > 2 items, though, it is well known that the Birkhoff–von Neumann theorem fails to hold [30],
and so there are distributions over n-tuples of utilities of the n items that cannot be generated by a two-step process
of first drawing a perfect coupling and then drawing a chain of values from that coupling. We will therefore have to
derive our result not using such a general tool, but as property of the specific problem that we are considering.
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that pr mass of ui+1(tr) uncoupled again (merging it back with any other uncoupled mass of
ui+1(tr)). Then, take the pr lowest-utility uncoupled mass of item i+1 and add it to tr instead
of the mass that we just removed from that chain (as in Section 3.1, there may be some mass
that we removed and then added back, and this is fine). If the pr lowest-utility uncoupled
mass of item i+ 1, which we wish to add to tr, happens to span more than one utility—say
that it spans d′ utilities—then we split the chain tr into d′ chains with appropriate masses
such that each of these utilities of i+ 1 could be coupled with a different one of these chains.
(Once again, this is consistent with thinking of the reinterpreted algorithm as a water-filling
algorithm of sorts.) If this results in any chain that is over exact same utilities as an already
existing chain, then we merge such chains.

To analyze the newly-interpreted Algorithm 1, we redefine Ki to be the maximum probability
of item i being sold in any correlated distribution compatible with the marginals, and K[i] to be the
maximum probability of one of items 1, . . . , i being sold in any correlated distribution compatible
with the marginals. Given a correlated distribution F , let ki(F ) (respectively, k[i](F )) be the
probability of item i (resp., one of items 1, . . . , i) being sold in F . A correlated distribution F such
that k[i](F ) = K[i] will be said to realize K[i]. Then, completely analogous arguments to those in
the proof of Theorem 3.1 give that the newly-interpreted Algorithm 1 simultaneously realizes K[i]

for every i ∈ [n], which we equivalently restate as the main result of this section:

Theorem 3.5. Given any prices p1 ≤ p2 ≤ · · · ≤ pn, and discrete marginals F1, . . . , Fn, the
correlated distribution F generated by the Algorithm 1 with its semantics interpreted as in this
section, attains the lowest expected revenue over all correlated distributions that are compatible with
these marginals. Furthermore, if each marginal Fi is given explicitly as a list of value-probability
pairs

(
(v`i , p

`
i)
)
`
, then this algorithm runs in time polynomial in its input size.

Interestingly, since for the case of marginals that are uniform over multi-sets of d values both
interpretations of Algorithm 1—from Section 3.1 and from this section—coincide, Theorem 3.5
implies that for such marginals even the interpretation from Section 3.1 in fact generates the worst
revenue among all correlated distributions compatible with the marginals, and not only among
those defined by perfect couplings.

In Appendix C we discuss extensions of the techniques of this section to nondiscrete distribu-
tions.

4 Hardness of Approximation

In this section we will show a hardness of approximation for the max-min pricing problem. Our
hardness result will apply even when the support of every marginal is finite and the probability of
sampling each value is a rational number. Note that this allows the distributions to be provided
explicitly as input to a max-min pricing algorithm, rather than through an oracle. We show that
even under this direct access model, it is NP-hard to compute prices that achieve an o(n1/2−ε)-
approximation, for any ε > 0. This is true regardless of the way in which ties are broken in case of
buyer indifference.

Theorem 4.1. For any ε > 0, it is NP-hard to obtain an O(n1/2−ε)-approximation to the max-min
pricing problem.

We will prove Theorem 4.1 by reducing from the maximum independent set (MIS) problem.
Recall that in the MIS problem, the input is an unweighted graph G = (V,E) and the goal is to find
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an independent set S ⊆ V of maximum size.11 It is known to be NP-hard to achieve an O(n1−ε)
approximation to the MIS problem, for any fixed ε > 0.

4.1 Reduction Construction and Proof Outline

Given an MIS instance G = (V,E) on n vertices, we will construct an instance of the max-min
pricing problem as follows. First, order the vertices of V by labeling them 1, . . . , n, arbitrarily.
We will define n marginal distributions. For each i ∈ [n], distribution Fi takes on value 2in with
probability 2−in. Moreover, for each vertex j > i such that {i, j} ∈ E, distribution Fi will take on
value 2jn with probability 2−jn/

√
n. With all remaining probability Fi will take on value 0.12

The idea behind the above construction is as follows. First, to get nonnegligible (as a function
of n) revenue from any item i, even before taking into account any cannibalization, the price of
item i must be set close to 2in. Indeed, such a price would yield revenue 1 if that were the only
item sold. A much lower price for that item (say, less than 2(i−1)n) would not increase the sale
probability of that item and would therefore yield negligible revenue from it, while any higher price
for that item (say, greater than 2in but at most 2jn for some j > i) would only sell item i with
probability around 2−jn/

√
n, resulting again in negligible revenue from it. So let us say that an

item i priced between 2(i−1)n and 2in is reasonably priced.
If we reasonably price two items i < j s.t. {i, j} ∈ E then, under an appropriate correlation

between Fi and Fj (which sets value 2jn for item i only when item j has this value as well),
item i would cannibalize a 1/

√
n fraction of the sale probability of item j. Taking this one step

further, if we reasonably price an item j and not one but
√
n lower-index neighbors of j then,

under an appropriate correlation of the marginals, the revenue from item j would be completely
cannibalized.13 As it turns out, these are essentially the only meaningful cannibalizations possible
under any correlation structure.

Reasonably pricing only items in an independent set, while pricing all other items at +∞, would
therefore obtain revenue at the order of the size of that independent set (see Lemma 4.2 below).
Thus, if G has a large independent set, then a high revenue guarantee can be obtained. On the
other hand, if G only has very small independent sets, then reasonably pricing many items would
inevitably mean that most items have at least

√
n reasonably-priced neighbors, which makes it

possible to cannibalize the revenue of most items (simultaneously) with an appropriate correlation
structure (see Lemma 4.3 below). This paves the way to differentiating between instances G with
large and small independent sets based on their optimal robust revenue guarantees. In the remainder
of this section we will make this argument precise.

4.2 Proof

To make the dependence on G clear, we will write Fi(G) for the ith marginal distribution for the
instance constructed above. We will also write R(p;G) for the robust revenue guarantee of pricing
p for the corresponding problem instance, and similarly for R(p, F ;G) and R∗(G).

We will now establish upper and lower bounds on R∗(G) as a function of the size of the maximum
independent set in G. We begin with a lower bound on R∗(G), which applies to any independent
set (not just the maximum independent set).

11Set S ⊆ V is an independent set if no two nodes in S are adjacent.
12Note that we can restrict attention to graphs G for which n is a sufficiently large perfect square, so that all of

these values and probabilities are rational numbers.
13So the factor of 1/√n by which some probabilities in the above construction are multiplied was chosen to be small

enough that the revenue from an “unreasonably highly priced” item would be negligible, but large enough that a few
lower-priced neighbors of an item could together effectively cannibalize the revenue from that item.
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Lemma 4.2. If G has an independent set S, then R∗(G) ≥ 1
2

(
1−

√
n

2n−1

)
|S|.

Proof. Given S, we will construct a pricing p such that R(p;G) ≥ 1
2

(
1 −

√
n

2n−1

)
|S|. For each item

i ∈ S, choose price pi = 2in−1. For each item i 6∈ S, choose pi = +∞. Let F be any distribution of
values compatible with the marginals F1, . . . , Fn, and consider the revenue obtained under F .

Choose some item i ∈ S. With probability 2−in we will have vi = 2in, in which case the
utility player i obtains from buying item i is 2in−1. Since S is an independent set, there is no
j ∈ S such that i and j are adjacent in G, and therefore we cannot have vj = 2in for any j 6= i.
Therefore, if item i is not purchased, then it must be that there is some item j ∈ S\{i} with value
vj = 2kn where k > i. Taking a union bound over items, the probability of this event is at most
n
∑

k>i 2−kn/
√
n <
√
n2−(i+1)n+1. Thus the probability that vi = 2in and item i is purchased is at

least 2−in −
√
n2−(i+1)n+1 = 2−in · (1−

√
n

2n−1 ).
Taking a sum over all items in S, the total revenue obtained is therefore at least∑

i∈S
pi2
−in ·

(
1−

√
n

2n−1

)
=
(

1−
√
n

2n−1

)∑
i∈S

1
2 = 1

2

(
1−

√
n

2n−1

)
|S|.

We next prove an upper bound on the max-min revenue R∗(G) as a function of the size of the
maximum independent set in G. This direction is more subtle, as we must argue that no pricing
achieves more than the claimed revenue bound.

Lemma 4.3. If M is a maximum independent set of G, then R∗(G) ≤
(
|M |+ 2

)√
n+ 3n · 2−n.

Proof. Choose any pricing p = (p1, . . . , pn). We will partition the n items into three sets, based on
their price: set L contains all items i for which pi ≤ 2(i−1)n. Set H contains all items i for which
pi > 2in. Set S contains all items i for which pi ∈ (2(i−1)n, 2in]. We think of L as the items whose
prices are much lower than their (single-item) revenue-maximizing price, and of H as the items
whose prices are higher than their revenue-maximizing price. We will bound the maximum revenue
obtainable from each of these three sets.

For each i ∈ L, the probability that vi > 0 is at most
∑

j≥i 2−jn < 2 ·2−in. So since pi ≤ 2(i−1)n,

the total revenue generated through sales of i is at most 2(i−1)n · 2 · 2−in = 2 · 2−n. Since |L| ≤ n,
the total revenue generated from items in L (in any distribution compatible with the marginals) is
at most 2n · 2−n.

Next consider H. Choose some i ∈ H, and suppose that pi ∈ (2(j−1)n, 2jn] where j > i. Then
the probability that vi > pi is at most

∑
k≥j 2−kn/

√
n ≤ 2 · 2−jn/

√
n. So since pi ≤ 2jn, the total

revenue generated through sales of i is at most 2jn · 2 · 2−jn/
√
n = 2/

√
n. Since |H| ≤ n, the total

revenue generated from items in H (in any distribution compatible with the marginals) is at most
2n/
√
n = 2

√
n.

Finally we consider the set S of all items i for which pi ∈ (2(i−1)n, 2in]. This is the most
interesting case. Note that if i, j ∈ S with i < j, we must have pi < pj (from the definition of S).
For each i, write N(i) =

{
j < i : {i, j} ∈ E

}
. That is, N(i) is the set of neighbors of i with lower

index. Write T ⊆ S for the subset of nodes T =
{
i ∈ S : |N(i)| <

√
n
}

. That is, T contains all
nodes of S that have fewer than

√
n neighbors with lower index within S.

We claim that there is a distribution F compatible with the marginals for which the revenue
generated from the items in S is at most

(
1 + o(1)

)
· |T |. We define this (correlated) distribution

by describing a process for sampling from the distribution. First, choose at most one item i ∈ [n]
to have value 2in, consistent with the marginals (i.e., with probability 2−in). If i ∈ S\T , choose
some j ∈ N(i) ∩ S uniformly at random and set vj = 2in, and set all other values (including the
values of items not in S) to 0. Note that since i ∈ S\T implies

∣∣N(i) ∩ S
∣∣ ≥ √n, this process sets
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vj = 2in with probability at most 2−in/
√
n, which is consistent with the marginal Fj . In the event

that i 6∈ S\T or if no item i has value 2in, values can be correlated arbitrarily.
Under this distribution F , when item i ∈ S\T has value vi = 2in, there is exactly one other

item j ∈ S with j < i such that vj = 2in, and all other items have value 0. Since j ∈ S we
have pj < pi, so item j will be sold. Since we know that pj ≤ 2(i−1)n, we conclude that the
total revenue that can be generated from the event that vi = 2in is at most 2(i−1)n · 2−in = 2−n.
Further, the total probability that vi > 2in is at most

∑
k>i 2−kn/

√
n ≤ 2−(i+1)n+1/

√
n ≤ 2−(i+1)n,

so the total revenue generated from sales of item i ∈ S\T due to events where vi > 2in is at most
2in · 2−(i+1)n = 2−n.

On the other hand, for any item i ∈ T , we know that pi ∈ (2(i−1)n, 2in] and the total probability
that vi > 2(i−1)n is at most 2−in +

∑
k>i 2−kn/

√
n < 2−in + 2−(i+1)n. Thus the total revenue

generated by selling item i is at most 2in·(2−in+2−(i+1)n) = 1+2−n. Since |S| ≤ n, we conclude that
the total revenue obtained from sales of items in S is at most |T |+ |T |2−n+ |S\T |2−n ≤ |T |+n ·2−n
as claimed.

Finally, we claim that |T | ≤ |M |
√
n, where recall that M is a maximum independent set in G.

We will prove the claim by using T to construct an independent set M ′. Start with M ′ = ∅.
Starting with the highest-indexed node from T , say i, add i to M ′ and remove i and all of i’s
neighbors from T . From the definition of T , this removes at most

√
n nodes from T . Then take

the highest-indexed node still in T , add it to M ′, and remove it and its neighbors from T . Repeat
this process until T is empty. As we removed at most

√
n nodes from T on each step, we have

|M ′| ≥ |T |/
√
n. And by construction M ′ is an independent set. By maximality of M , we must

therefore have |M ′| ≤ |M |, and hence |M | ≥ |T |/
√
n. Rearranging yields |T | ≤ |M |

√
n as claimed.

The total revenue obtained from sales of items in S is therefore at most |T |+n ·2−n ≤ |M |
√
n+

n ·2−n. Adding in the revenue contribution from L and H (and recalling that our bounds for L and
H hold for any distribution and therefore for F ), the total revenue generated under distribution F
is at most |M |

√
n+ n · 2−n + 2n · 2−n + 2

√
n = (|M |+ 2)

√
n+ 3n · 2−n.

We are now ready to complete the proof of Theorem 4.1.

Proof of Theorem 4.1. The hardness result for MIS directly implies the following: there is a class
of graphs G in which the maximum independent set size is either less than nδ or greater than n1−δ

and it is NP-hard to decide whether a given graph G ∈ G falls into the former category or the
latter.

Given an algorithm A for the max-min pricing problem, consider the following procedure for
the MIS decision problem described above. Given a graph G ∈ G, let p be the pricing returned by
algorithm A on input instance (F1(G), . . . , Fn(G)). Given p, compute the Adversary’s best response
distribution F (using the algorithm from Section 3) and then use this to compute R(p, F ;G) =
R(p;G). If R(p;G) ≥ 2n1/2+δ our procedure declares that G has an independent set of size at least
n1−δ, otherwise it declares that its maximum independent set size is less than nδ.

We now claim that if the pricing algorithm A has approximation factor at most n1/2−3δ, then the
procedure above classifies graph instances correctly. Suppose G has an independent set M of size at

least n1−δ. Then by Lemma 4.2, R∗(G) ≥ 1
2

(
1−

√
n

2n−1

)
n1−δ. By the supposed approximation factor

of the pricing algorithm, this means that R(p;G) ≥ 1
2

(
1 −

√
n

2n−1

)
n1/2+2δ > 2n1/2+δ for sufficiently

large n. The procedure therefore classifies such graphs G correctly.
On the other hand, suppose that the maximum independent set M of G has size at most nδ.

Then by Lemma 4.3, R∗(G) ≤ (nδ + 2)
√
n+ 3n · 2−n < 2n1/2+δ for sufficiently large n, and hence

R(p;G) < 2n1/2+δ as well. The procedure therefore classifies this class of graphs correctly as well,
and is therefore correct in all cases.

17



We conclude that it is NP-hard to achieve an approximation factor better than n1/2−3δ for any
δ > 0. Setting ε = 3δ completes the proof.

5 Uniform Pricing

In this section we study max-min pricing instances where setting a uniform pricing (all items have
the same price) or even a single price (a single item is offered at less than∞) is α-max-min optimal
for constant α. This kind of pricing is desirable due to its great simplicity, and in the case of
a single price, also its agnosticism of the correlation (see Section 2.2). Since uniform pricings
dominate single prices, we will mostly prove our positive guarantees for single prices and our lower
bounds for uniform pricings. This only serves to strengthen our results, although in practice the
seller may prefer uniform pricing as this can only increase revenue.14

Warm-up: Identical marginal distributions. It is not hard to see that simple uniform pricing
and in fact single prices arise naturally as the optimal max-min pricing in the case of symmetric
marginals: When marginals are identical, the adversary can choose Fco-mon as the correlation, such
that all items have the same value at every value profile in the support. The seller can do no better
than to use a single price in this case, since the buyer will always purchase a lowest-priced item.
The max-min pricing is thus the Myerson monopoly price of the shared marginal distribution, set
as a single price for an arbitrary item. To summarize:

Observation 5.1. For every setting with identical marginals there exists a single price that is
max-min optimal.

We emphasize that the takeaway message from the identical marginals case is not that the
seller should price items at their individual monopoly prices—in fact this pricing strategy could
have dire robust revenue guarantees even in extremely simple cases due to cannibalization.15 This
makes the unit-demand setting very different from the additive one. We expand upon this point in
Section 5.2.

Section overview. In this section we explore the extent to which we can extend the approach of
using just one price to get max-min (near-)optimality. In Section 5.1 we show that if the marginals
all have a monotone hazard rate (MHR), then a single price achieves a ∼ 3.5-approximation (roughly
30% of the max-min optimum). The class of MHR marginals includes many well-studied distribu-
tions such as uniform, normal, exponential, and log-concave distributions. In Section 5.2 we show
the limitations of uniform pricing, by constructing an instance with regular marginals for which
such a pricing is no better than a Θ(n)-max-min approximation. Our example highlights aspects
in which (approximate) max-min optimal pricing can be complex.

Section preliminaries. In this section it will be convenient to assume that marginals are con-
tinuous and differentiable distributions with density functions denoted by fi for distribution Fi.

16

14For the same reason, and since tie-breaking only arises for uniform pricings and not for single prices, in this
section we can assume essentially without loss of generality that the buyer breaks ties in favor of higher-priced items.

15For example, consider m = 2 items with marginals F1 = U [1, 2] and F2 = U [H,H+ 1
2
] where H can be arbitrarily

large. Let p = (1, H) be the pricing based on individual monopoly prices, then R(p, Fco-mon) = 1 since the buyer
always prefers item 1. However, for p′ = (∞, H) the robust revenue guarantee is R(p′) = H.

16The results hold for discretized versions as well, with appropriate definitions of discrete MHR and discrete
regularity as have already been developed in the literature (see, e.g., [23]).
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We further assume that Fi is strictly increasing for every i. The inverse function F−1i (·) is thus
well-defined, and for every q ∈ [0, 1] the value µqi = vi(qi) at quantile q is also well-defined (namely,
µqi = F−1i (q)). In Section 5.2 we also consider truncated versions of such distributions, in which we
allow a nonzero probability mass ρ on vmax

i . The inverse function F−1i (·) of a truncated distribution
Fi can still be easily defined: if q ∈ [1− ρ, 1] then let F−1i (q) := vmax

i .

5.1 Constant-Factor Approximation for MHR Marginals

A distribution F with density f is MHR if its hazard rate f(v)
1−F (v) is (weakly) increasing as a function

of the value v. Our starting point is the following observation, which shows we cannot hope for
better than a constant factor approximation:

Observation 5.2. There is an instance with n = 2 items and MHR marginals (in fact, uniform
distributions) such that for some constant α > 1, no uniform pricing is α-max-min optimal.

The proof is in Appendix D.1, by considering uniform marginals U [14 ,
1
4 + ε] and U [0, 1].

Our main result in this section is that for MHR marginals, setting the maximum of the medians
of the marginals as a single price (for the item with the corresponding marginal) is approximately-
max-min optimal up to a small constant factor (recall that in practice one may prefer to use this
price for all items uniformly):

Theorem 5.3 (Max median as a single price). Consider a setting with MHR marginals and let
µmax be the maximum of the medians. Then a single price p of µmax for an item with median µmax

is 3.443-max-min optimal, and achieves a robust revenue guarantee R(p) ≥ 1
3.443 OPT against any

joint distribution, where OPT is the expected welfare with joint distribution Fco-mon.

In Appendix D.1.1 we provide intuition for pricing using the maximum median. We remark
that an advantage of such pricing is that even if the marginals for individual items are not fully
known, the price can be easily estimated from a small number of samples [1] (this can be done with
separate samples for individual items, as recall that there is no access to the joint distribution).
Another immediate implication of Theorem 5.3 is that, since the approximation guarantee for MHR
marginals is achieved with respect to expected welfare, this guarantee holds for any mechanism,
even complex randomized ones.

5.1.1 Proof of Theorem 5.3

We begin by stating a property of MHR distributions that will be useful in the proof. This property
reflects the fact that the exponential distribution is the “extreme” MHR distribution in the sense
of lowest hazard rates and thus heaviest tail. Given an upper bound of x on the value at quantile
q of an MHR distribution F , the next lemma provides an upper-bound on its value at quantile
q′ > q, using the value at q′ of an exponential distribution with parameter λ = − ln(1−q)

x (i.e., the
exponential distribution that at quantile q has value x).

Lemma 5.4 (MHR property). Let F be an MHR distribution and let q ∈ [0, 1] be a quantile. If

F−1(q) ≤ x then ∀q′ > q : F−1(q′) ≤ x ln(1−q′)
ln(1−q) .

Similar properties to the one in Lemma 5.4 appear in the literature (see, e.g., [17]); we include
a proof for completeness in Appendix D.1.2. Theorem 5.3 follows directly from the next lemma:

Lemma 5.5. For every q ∈ [0, 1], consider MHR marginals with values µq1, . . . , µ
q
n at quantile q, and

let µ = µqmax = maxi{µqi } be the highest such value. When the joint distribution is Fco-mon, setting
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µ as a single price for an item i with µqi = µ achieves expected revenue that is a ( 1
1−q −

1
ln(1−q))-

approximation to the expected welfare.

Proof of Theorem 5.3. For every single price p, we have that R(p, F ) = R(p, Fco-mon) for every
compatible F , and so R(p) = R(p, Fco-mon). Let OPT be the expected welfare from allocating to
the unit-demand buyer when the joint distribution is Fco-mon; then for every pricing p′ we have that
R(p′, Fco-mon) ≤ OPT, and we conclude that R∗ ≤ OPT. By Lemma 5.5 with q set to 1

2 , pricing an
item with highest median by this median is guaranteed to yield revenue of (2 + 1

ln 2) ·OPT against
Fco-mon. We denote the resulting single price by p∗. So R(p∗) = R(p∗, Fco-mon) ≥ (2 + 1

ln 2) ·OPT ≥
(2 + 1

ln 2) ·R∗. The theorem follows.

Proof of Lemma 5.5. Assume throughout that the joint distribution is Fco-mon. Denote by ALG
the expected revenue extracted by setting µ as a single price. Observe that

ALG = (1− q)µ. (1)

Denote the expected welfare by OPT, and observe

OPT = Eξ∼U [0,1]

[
max
i
{µξi }

]
=

∫ q

0
max
i
{µξi }dξ +

∫ 1

q
max
i
{µξi }dξ ≤ qµ+

∫ 1

q
max
i
{µξi }dξ. (2)

Our goal is thus to upper-bound
∫ 1
q maxi{µξi }dξ. Using that F−1i (q) ≤ µ for every i and applying

Lemma 5.4, we get that for every quantile ξ > q the following holds:

∀i : µξi = F−1i (ξ) ≤ µ ln(1−ξ)
ln(1−q) = µξExp[λ] , (3)

where µξExp[λ] is the value at quantile ξ of the exponential distribution Exp[λ] with parameter

λ = − ln(1−q)
µ , i.e., µξExp[λ] = − ln(1−ξ)

λ .

From Equation (3) it follows that
∫ 1
q maxi{µξi }dξ is upper bounded by

∫ 1
q µ

ξ
Exp[λ]dξ. Notice the

latter is the contribution to the expectation of Exp[λ] from values above µqExp[λ]. By a standard

calculation (due to the memorylessness of the exponential distribution) this is (1−q)(1−ln(1−q))
λ =

(1− q)µ− 1−q
ln(1−q)µ. Plugging this into Equation (2) and using Equation (1) we get

OPT ≤ qµ+ (1− q)µ− 1−q
ln(1−q)µ = µ− ALG

ln(1−q) =
(

1
1−q −

1
ln(1−q)

)
·ALG .

This completes the proof of the lemma.

Discussion of the tightness of Theorem 5.3. The robust revenue guarantee of 3.443 is tight
for pricing at the maximum of the medians µ; to see this, take as marginals U [µ − ε, µ + ε] and
Exp[ ln 2

µ ]. Similarly, the guarantee in Lemma 5.5 is tight for any q ∈ [0, 1]. Thus, Lemma 5.5 shows

that pricing at the maximum of quantiles µq1, . . . , µ
q
n for any q cannot do much better than using

q = 1
2 .17 We leave as an open question whether there is some other single price or uniform pricing

rule that improves upon 3.443 more significantly.

17 The guarantee of 1
1−q −

1
ln(1−q) is minimized at q∗ = 1 − e−2W (1/2) where W is the Lambert (product log)

function. Setting q = 1
2

achieves a ratio of 3.443, which is only slightly higher than the optimal one achieved by q∗.
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5.2 Lower Bound Beyond MHR

Our positive result for MHR marginals in the previous section begs the question of whether it can
be extended beyond MHR, in particular to regular marginals. A distribution F with density f is
regular if its virtual value ϕ(v) = v − 1−F (v)

f(v) (the value minus inverse the hazard rate) is (weakly)
increasing as a function of v. In this section we give a strong negative answer.

Proposition 5.6 (Linearly-many prices required). There exists an instance of the max-min pricing
problem with n regular marginals such that for every k ∈ [n], no pricing with ≤ k different prices is
o(nk )-max-min-optimal, and there is a pricing with k different prices that is Θ(nk )-max-min-optimal.

An immediate corollary is the following:

Corollary 5.7 (Uniform pricing far from max-min optimal). There exists an instance of the max-
min pricing problem with n regular marginals for which no uniform pricing is o(n)-max-min optimal.

Proposition 5.6 and its corollary show that unlike in the MHR case, in the regular case there
can be a linear gap between that revenue that is achievable with uniform versus general pricing,
and in fact the robust revenue guarantee may increase linearly as more distinct prices are used.

Our construction of an instance that proves Proposition 5.6 appears in Example 5.8. The
construction uses marginals with an exponentially wide range of values and with a Myerson revenue
of 1 across all items—we explain in Appendix D.2 why this can be expected. The construction
makes use of the equal revenue distribution Feq-rev, defined as Feq-rev(v) = 1− 1

v for v ∈ [1,∞), after
truncating it at different points. A salient property of this distribution (including its truncated
versions) is that in a single-item setting, taking any value v in the support as the item’s price yields
the same expected revenue of 1 for the seller (since the revenue is v ·

(
1− F (v)

)
= 1 for every v).

Example 5.8 (Truncated equal-revenue marginals). Let t be a vector of n truncation points
(t1, . . . , tn) where tj = 2j+1 for every j ∈ [n]. Let the n marginals be as follows: For every item
j ∈ [n], let Fj be Feq-rev truncated at tj , that is, Fj(v) = 1− 1

v for v ∈ [1, tj) and Fj(tj) = 1.

While as defined the marginals in Example 5.8 are not continuous, they can be smoothed to
have no point masses (by “smearing” the mass at the truncation point uniformly over a vanishingly
small interval), resulting in regular distributions. An alternative to smoothing is extending the
definition of regular distributions to those with truncation points, by simply defining the virtual
value at a truncation point tj to be tj itself, and requiring monotonicity of the virtual value function
as in the standard definition of regularity.

The main component in the analysis of Example 5.8 is the following lemma:

Lemma 5.9 (Pricing at half the threshold). Consider Example 5.8 and fix a subset S ⊆ [n] of
items. Let p be the pricing of every item j ∈ S at price

tj
2 = 2j, and every item in S at ∞. Then

R(p) = Θ(|S|), and p is Θ( n
|S|)-max-min optimal.

See Appendix D.2 for the proof of Lemma 5.9 as well as of Proposition 5.6. We end this
section with several takeaways from Example 5.8. It is informative to compare the (approximate)
max-min pricing for this example to the max-min pricing for an additive buyer, namely, pricing
every item at its monopoly price [11]. In Example 5.8, any value in the item’s value range is a
monopoly price. But it turns out that to get approximate max-min optimality, the pricing needs
to be “spread-out”, in the sense that the probability of each consecutive item’s value to exceed
its price decreases by a factor of 2 (cf., [4]). This kind of pricing cannot be computed separately
for the different marginals, nor is it simply a function of the monopoly prices pf the marginals.
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Another consequence of Example 5.8 that stands in contrast to the additive case is the following
nonmonotonicity property of the max-min optimal pricing; in the mechanism design literature,
nonmonotonicity is usually taken as a sign of complexity (e.g., [28]):

Corollary 5.10 (Nonmonotonicity of max-min revenue in the marginals). There exist two max-min
pricing instances with n items each and optimal robust revenue guarantees R∗1 and R∗2, respectively,
such that for every item j, the marginal F 1

j of j in the first setting first-order stochastically domi-

nates the marginal F 2
j of j in the second setting, yet R∗1 � R∗2. In fact, the ratio R∗2/R

∗
1 can be as

large as Ω(n).

Proof. Let the first instance have identical marginals Feq-rev for all items, and let the second instance
have truncated equal-revenue marginals as in Example 5.8. Clearly, Feq-rev first-order stochastically
dominates its truncated version for every j ∈ [n]. From Observation 5.1 we know that R∗1 = 1 (the
Myerson revenue of the equal-revenue distribution), and R∗2 = Θ(n) by Lemma 5.9. This completes
the proof.
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A Proofs Omitted from Section 3

Proof of Theorem 3.1. Suppose towards contradiction that this is false, and let i be the smallest
index contradicting this. That is, the coupling c obtained by Algorithm 1 simultaneously real-
izes K[j] for every j < i (i.e., kj(c) = K[j] − K[j−1]), but ki(c) < K[i] − K[i−1]. However, by
Lemma 3.2, ki(c) = max

{
ki(c

′)
∣∣ c′ is a coupling & kj(c

′) = kj(c) = K[j] −K[j−1] ∀j < i
}

, and
by Proposition 3.3, there exists a coupling c′ such that kj(c

′) = K[j] −K[j−1] for every j < i and
ki(c

′) = K[i] −K[i−1]; a contradiction.

Proof of Lemma 3.2. One can easily verify Property (1). Indeed, by design, the Algorithm 1 finds
the maximum possible number of chains dominated by item 1. To prove Property (2), note that
in order to satisfy kj(c

′) = kj(c) for every j < i, it must be that
∑

j<i kj(c) utilities of each item
i, . . . , n are already coupled (in iterations j < i). To maximize the number of chains dominated by
item i, it is best if the coupled utilities of items > i are largest and those of item i are smallest.
This is exactly what Algorithm 1 does.
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Proof of Lemma 3.4. First, observe that by the fact that k′1 < K1, it holds that udi ≺ u
k′1+1
1 for

every i ≥ 2 (else the number of chains dominated by item 1 in any coupling is at most k′1). We
distinguish between two cases, based on the coupling before the sift&lift process. Case 1: the
lowest chain is rooted at item 2. Then, its removal vacates utility udi for every i ≥ 3 and the lemma
follows. Case 2: the lowest chain is rooted at item 1. Suppose by way of contradiction that after

the sift&lift process there exists an item i ≥ 3 such that udi is coupled. The chain rooted at u
K[2]−k′1
2

vacated some utility u`i of item i. Consider the (consecutive) utilities of item 1 following u
K[2]−k′1
2

in the set S, uq1 ≥ · · · ≥ u
k′1
1 . Some (possibly 0) of the chains rooted at these utilities were lifted

to utilize a higher utility of item i as a result of the removal of the bottom chain rooted at 2, but
the bottom chain rooted at 1 was not (else, udi would be available). Let ur1 be the highest utility of
item 1 among these utilities (k′1 ≥ r ≥ q) that was not lifted, and let umi be the utility of item i in
the chain rooted at ur1. By the choice of ur1, we have that um−1i must be available. Thus, the fact
that the chain rooted at ur1 was not lifted means that um−1i is not dominated by ur1. This means
that there are at most k′1 − r + 1 utilities of item i that are respectively (in some order, without

repetition) dominated by utilities out of ur1, . . . , u
k′1
1 . This, in turn, means that there are at most k′1

utilities of item i that are respectively dominated by utilities of item 1, contradicting k′1 < K1.

B The Sift&Lift Process (Algorithm 2)

In this section we present the sift&lift process.

Algorithm 2: The sift&lift process; Input: utilities u1, . . . , un; (partial) coupling c.

1: Let t be the chain in c rooted at u
K[2]−k′1
2

2: c← c \ {t} {i.e., decouple all utilities in chain t}
3: Let q be the index of the utility of item 1 following u

K[2]−k′1
2 in u1,2

4: if uqi ∈ c then
5: for j = q, . . . , k′1 do
6: decouple all utilities in the chain rooted at uj1
7: for i = 3, . . . , n do
8: let `i = arg max`{u`i | u`i 6∈ c and u`i ≺ u

j
1} {break ties towards a lower index}

9: end for
10: c←

(
uj1, {u

`i
i }i≥3

)
{add lowest uncoupled utility of item 2}

11: end for
12: end if
13: return c

C The Adversary’s Best Response: Nondiscrete Distributions

In this appendix we consider the adversary’s best response when the distributions are not discrete.
In this case the mechanics of the adversary’s best response are essentially the same, however as is
often the case with nondiscrete distributions, we run into problems of certain suprema and infima
not necessarily being attainable. To see this, consider two items, one whose marginal distribution
is uniform in [1, 2] and one whose marginal distribution is uniform in [4, 5]. Consider pricing the
first item at 1 (so its utility is uniform in [0, 1]) and the second item at 4 (so its utility is also
uniform in [0, 1]). To analyze the adversary’s behavior, let us also assume that tie-breaking among
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the same utilities is in favor of the second (higher-priced) item.18

Let us first analyze the infimum of the revenues attainable by the adversary. We note that for
every ε > 0, the adversary can make the sale probability of the first item as high as 1− ε and the
same probability of the second item as low as ε, by coupling each value v ∈ [1 + ε, 2] of item 1 with
value v − ε of item 2 (and then, say, coupling each remaining value v[1, 1 + ε] of item 1 with value
3+v+1−ε of item 2), hence coupling each utility u ∈ [ε, 1] from item 1 with utility u−ε of item 2.
This results in a revenue of 1 + 4 · ε, and so the infimum of revenues achievable by the adversary
is 1. (It is impossible for the adversary to achieve even lower revenue since for these prices with
probability 1 some item would be sold, and hence for any correlation the expected revenue must
be at least the lowest price: 1.)

We will now observe that there is nonetheless no correlated distribution with the given marginals
that gives a revenue of 1, as giving such a revenue would mean selling item 1 with probability 1,
which means that the two utility distributions, which are both uniform on [0, 1], would have to be
coupled such that the utility from item 1 is with probability 1 strictly (due to the tie-breaking rule)
higher than the utility from item 2, which is impossible to achieve since the marginal distributions
of both utilities are the same.19 Note that indeed the limit of the above couplings, as ε tends
to 0, is the identity coupling, which sells item 2 with probability 1, and hence gives revenue 4 (a
discontinuity).

The above example shows that without going into model details that we have abstracted away,
such as the tie-breaking rule (and specifically, by our example, without disallowing the standard
tie-breaking in favor of higher-priced items), it is hopeless to expect the existence of a precise best-
response for the adversary rather than a only sequence of responses whose revenues converge to the
infimum of the revenues that the adversary can attain. Once such a sequence is the most we can
hope for, we will be content with noting that one can obtain a response of the adversary that gets
arbitrarily close to the infimum by simply discretizing the distribution to a sufficiently fine grid,
and then using our algorithm for the discrete case. We will not dive deeper into this direction as
it bears no new conceptual messages, and anyway the major building block that we need for our
hardness approximation from the next section is Theorem 3.5: the correctness of the algorithm for
discrete marginals, as well as its polynomial computational complexity in the size of its input.

D Proofs Omitted from Section 5

D.1 MHR Marginals

Proof of Observation 5.2. Consider uniform marginals U [14 ,
1
4 + ε] and U [0, 1] for items 1 and 2,

respectively, where ε is sufficiently small. The robust revenue guarantee of any uniform pricing
is ≤ 1

4 + ε, since the seller either sets both prices to ≤ 1
4 + ε, or effectively sets a single price

for item 2, and the Myerson expected revenue of item 2 is 1
4 . Consider now nonuniform prices

p1 = 1
4 and p2 = 5

8 − ε. For any compatible distribution F , this pricing p = (p1, p2) guarantees
revenue of at least 1

4 for every valuation profile in the support, and for every profile such that
v2 > p2 + ε it guarantees 5

8 − ε (since for such profiles the utility from buying item 2 exceeds the

18This is the most commonly assumed tie-breaking rule, since as the seller is the mechanism designer and any
tie-breaking chosen by the seller is still incentive-compatible for the buyer, it is generally assumed that the seller opts
for the tie-breaking rule that maximizes her revenue.

19To see this, assume for contradiction that such a correlated distribution F exists. Then by linearity of expectation
and definition of the marginals, EF [u1 − u2] = EF [u1] − EF [u2] = EU [0,1][u1] − EU [0,1][u2] = 0. But remember that
u1 − u2 is an almost-surely-nonnegative random variable by assumption. Since its expectation is zero, we have that
for every m ∈ N the probability that u1 − u2 ≥ 1/m is zero. Therefore, by σ-additivity, we have that the probability
that u1 − u2 > 0 is zero—a contradiction.
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utility from buying item 1 even if item 1’s value is vmax
1 ). The robust revenue guarantee of p is thus

≥ Prv∼F [v2 >
5
8 ] · (58 − ε) + (1− Prv∼F [v2 >

5
8 ]) · 14 = 3

8(58 − ε) + 5
8 ·

1
4 →

25
64 as ε → 0. Comparing

this to the upper bound of 1
4 + ε for uniform pricing completes the proof.

D.1.1 Intuition for pricing using the max median

“Standard” uniform distributions. We build intuition by considering “standard” uniform
marginals of the form Fi = U [0, bi], where without loss of generality b1 ≤ · · · ≤ bn. Such marginals
have the property that if the joint distribution is Fco-mon then the highest value of any valuation
profile in the support is vn. Thus the highest value has an MHR distribution (namely, Fn =
U [0, bn]), and moreover the expected welfare from allocating to the unit-demand buyer given Fco-mon

is its expectation EFn [vn]. The expected welfare is clearly an upper-bound on the expected revenue
R(p, Fco-mon) for every pricing p, so ∀p : R(p) ≤ EFn [vn] and we conclude that

R∗ ≤ EFn [vn]. (4)

A salient property of MHR distributions is that in a single-item setting, the seller can extract
a constant fraction of the expected welfare as revenue by setting either the Myerson monopoly
price, or a price based on one of the quantiles, in particular the median [21]. So by using the
median of Fn as a single price for item n, the seller is able to extract a constant fraction α
of EFn [vn], and thus by Eq. (4) also of R∗, when the joint distribution is Fco-mon. Due to the
correlation agnosticism property of single prices, this α-approximation guarantee holds for any joint
distribution, establishing that using the highest median as a single price is α-max-min optimal in
this case.20

We remark that the exact same argument holds for exponential marginals, since the marginal
with the lowest rate-parameter λ dominates the others.

“Non-standard” uniform distributions. The above argument cannot be extended to general
uniform marginals of the form Fi = U [ai, bi] where ai can be strictly positive, because the maximum
value given the joint distribution Fco-mon is not necessarily distributed according to an MHR distri-
bution.21 However, we argue that using the highest median µmax as a single price still guarantees
a constant-factor approximation to R∗: The probability of the buyer purchasing the item with the
highest median at this price is 1

2 , yielding expected revenue of µmax

2 given any joint distribution.
By definition µmax is at least the median µi∗ of distribution Fi∗ where i∗ = arg maxi{bi} (i.e.,
the distribution with highest bi), and this median in turn is at least bi∗/2. On the other hand,
since bi∗ = maxi{vmax

i }, it is a clear upper bound on the expected welfare from allocating to the
unit-demand buyer given any joint distribution. Putting everything together, if p is the single price
µmax for the item with the highest median, then

R(p) ≥ µmax

2
≥ µi∗

2
≥ bi∗

4
≥ R∗

4
.

20In fact, for this particular case of “standard” uniform marginals, a single price is precisely max-min optimal—see
Proposition D.2 in Appendix D.1.3.

21For example, consider m = 2 items with marginals F1 = U [ 1
2
− ε, 1

2
+ ε] and F2 = U [0, 1]. The highest value given

Fco-mon is uniform over [ 1
2
−ε, 1

2
] with probability 1

2
, and otherwise uniform over [ 1

2
, 1]. So its CDF Fmax(v) is v−(1/2)+ε

2ε

below 1
2

and v above it. This is not an MHR distribution since the hazard rate at v < 1
2

is 1/2ε
1/2+((1/2)−v)/2ε ≥

1
2ε

, and

above 1
2

but below 3
4

it is 1
1−v ≤ 4.
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D.1.2 Proof of Lemma 5.4

Hazard rate. Towards proving Lemma 5.4, we denote by h(x) the hazard rate of a distribution F

with density f at value x, i.e., h(x) = f(x)
1−F (x) . Note that for the exponential distribution with rate-

parameter λ, h(x) = λ. We shall make use of the following general connection between hazard rate
and CDF: ∫ x

0
h(v)dv = − ln

(
1− F (x)

)
. (5)

The following claim lower-bounds the hazard rate of a distribution by the hazard rate − ln(1−q)
λ

of an exponential distribution with the same (or higher) value at a given quantile q.

Claim D.1. Let F be an MHR distribution with density f , and let q ∈ [0, 1] be a quantile. If

F−1(q) ≤ x then the hazard rate of F at x is h(x) ≥ − ln(1−q)
x .

Proof. Assume for contradiction that h(x) < − ln(1−q)
x . Then by monotonicity of the hazard

rate h(·), for every v ≤ x we have h(v) < − ln(1−q)
x . Thus

∫ x
0 h(v)dv < − ln(1 − q), and by

Equation (5),
ln(1− F (x)) > ln(1− q).

Taking exp(·) of both sides and rearranging we get q > F (x), in contradiction to the assumption
that F−1(q) ≤ x.

We now use Claim D.1 to prove Lemma 5.4.

Proof of Lemma 5.4. Fix q′ > q. By Claim D.1, h(x) ≥ − ln(1−q)
x , and by monotonicity this in-

equality holds for every v ≥ x. So∫ F−1(q′)

F−1(q)
h(v)dv ≥ −(F−1(q′)− x) ln(1− q)

x
= −F

−1(q′) ln(1− q)
x

+ ln(1− q), (6)

where the inequality uses that F−1(q) ≤ x. On the other hand, by Equation (5),∫ F−1(q′)

F−1(q)
h(v)dv = − ln(1− q′) + ln(1− q). (7)

Putting Equations (6) and (7) together,

F−1(q′) ln(1− q)
x

≥ ln(1− q′).

Rearranging (while taking into account that ln(1− q) < 0) completes the proof.

D.1.3 Max-min optimality of a single price in a simple case

Proposition D.2. A single price is max-min optimal for uniform marginals of the form U [0, bj ].

Proof. Consider Fco-mon as the joint distribution. We show that a single price achieves the optimal
expected revenue against Fco-mon. Recall (see Footnote 9) that this is enough to establish max-min
optimality of this single price.

Consider the optimal pricing given Fco-mon, excluding prices of ∞ and the corresponding items
(if there are several optimal pricings take one with a minimum number of finite prices). We have
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at most n prices p1, p2, . . . (where pj is item j’s price); assume without loss of generality that the
items are numbered such that b1 ≤ b2 ≤ · · · . Denote the quantiles corresponding to the prices by
q1, q2, . . . . Assume for simplicity that the buyer breaks ties in favor of higher-indexed items. So
q1 < q2 < · · · (otherwise an item with lower bj , or same bj but lower index, will never be bought),
and therefore p1 < p2 < · · · (as a consequence of the monotonicity of q and of b).

Assume for contradiction that p1, p2 < ∞. Since the joint distribution is Fco-mon, item 1 is
bought from quantile q such that qb1 = p1 (i.e., q = p1

b1
), item 2 is bought from quantile q such that

qb2− p2 = qb1− p1 (i.e., q = p2−p1
b2−b1 ), and so on. The expected revenue from selling items 1 and 2 is(
p2 − p1
b2 − b1

− p1
b1

)
p1 +

(
p3 − p2
b3 − b2

− p2 − p1
b2 − b1

)
p2,

where p3−p2
b3−b2 is understood to be 1 if there are only m = 2 items.

Now fix p2, p3 and find p1 that maximizes the revenue by taking the derivative:

−p1
b2 − b1

− p1
b1

+
p2 − p1
b2 − b1

− p1
b1

+
p2

b2 − b1
=

2p2b1 − 2p1b2
b1(b2 − b1)

.

This is zero for p1 = b1
b2p2, which is the maximizing price. But then, p1b1 = p2

b2
= p2−p1

b2−b1 , which means
that item 1 is never bought. This contradicts our assumption that we started out with a pricing
with a minimum number of finite prices. We conclude that in this setting, there is a single finite
price that is optimal against Fco-mon.

D.2 Beyond MHR

D.2.1 Observations related to the Myerson optimal revenue

Myerson revenue. Given an item i with marginal distribution Fi, let Mye(Fi) denote the My-
erson revenue from this item, i.e., the optimal expected revenue from selling it to a buyer whose
value is drawn from Fi. The Myerson revenue is obtained by pricing the item at its monopoly price.

Observation D.3 (Simple upper bound). Consider an instance of the max-min pricing problem
with n items and corresponding Myerson revenues Mye(F1), . . . ,Mye(Fn). For every subset S ⊆ [n]
of the items, every pricing p and every compatible distribution F , the contribution to the expected
revenue R(p, F ) from selling items in S is at most

∑
i∈S Mye(Fi).

Before proving Observation D.3 we derive two immediate corollaries:

Corollary D.4 (Upper bound on R∗). For every instance of the max-min pricing problem with n
items and corresponding Myerson revenues Mye(F1), . . . ,Mye(Fn),

R∗ ≤
∑
i∈[n]

Mye(Fi).

Corollary D.5. For every instance of the max-min pricing problem with n items and corresponding
Myerson revenues Mye(F1), . . . ,Mye(Fn), for every pricing p and every compatible distribution F ,
denote by S the set of items with finite prices according to p. Then

R(p, F ) ≤
∑
i∈S

Mye(Fi).
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Proof of Observation D.3. For any compatible distribution F , an upper bound on the contribution
to R(p, F ) from selling items in S is the sum of expected revenues from selling each item j ∈ S at
price pj while all other prices are set to∞, since this avoids any revenue loss due to cannibalization.
The expected revenue from item j is upper-bounded by Mye(Fj). The observation follows.

Combining the next observation with normalization shows that up to log factors, we may restrict
attention to settings with marginals whose Myerson revenues belong to the range [1, 2], as is indeed
the case in Example 5.8.

Observation D.6 (Near-equal Myerson revenues). Consider an instance of the max-min pricing
problem with finite Myerson revenues Mye(F1) ≥ · · · ≥ Mye(Fn). There exists a subset S of items
with Myerson revenues at most a factor 2 apart, and a pricing p with prices of all items but those
in S set to ∞, such that p is O(log n)-max-min optimal.

Proof. First observe that if we price at∞ any item j for which Mye(Fj) <
Mye(F1)

n , we lose at most
a factor of 2 compared to the max-min optimal pricing. This is because the contribution of this set
of items to R∗ is at most Mye(F1) (Observation D.3), and after “throwing away” these items by
pricing them at∞, the new robust revenue guarantee is still ≥ Mye(F1) (we can always set a single
monopoly price for item 1). We can now partition the remaining items into log n buckets such that
in every bucket all items have the same Myerson revenue up to a factor of 2. Observe that the
robust revenue guarantee for all items is upper-bounded by the sum of robust revenue guarantees
for the items in each bucket separately. Thus pricing only the items in the best bucket at finite
prices loses at most a factor of log n, completing the proof.22

D.2.2 Analyzing Example 5.8

The proofs below use definitions and observations from Appendix D.2.1.

Proof of Lemma 5.9. First, by Corollary D.5 and since Mye(Feq-rev) = 1, for every pricing p′ with
at most k = |S| finite prices (and the rest of the prices set to ∞), R(p′) ≤ k. In particular this
holds for pricing p as defined in Lemma 5.9. We argue that to complete the proof, it is sufficient to
show that R(p) = Ω(k), from which we can conclude that R(p) = Θ(k). Indeed, by applying this
to S = [n] (the set of all items), we get that R∗ = Ω(n), and by Corollary D.4 we have R∗ = Θ(n).
So p is Θ(nk )-max-min optimal as required.

It remains to show that R(p) = Ω(k). For every item j ∈ S, since the price is pj = 2j and the
marginal distribution of j is truncated at tj = 2j+1, the maximum utility of the buyer from buying
item j is 2j . Define a threshold τj = 3

22j for every item j ∈ S (the threshold is halfway between
this item’s price and truncation point), and τj =∞ for every j /∈ S. Notice that 1−Fj(τj) = 2

32−j

for every j ∈ S. We claim that pointwise for every valuation profile v the following holds: If there
exists some item i ∈ [n] whose value clears its threshold, that is, vi > τi, then the buyer purchases
the highest-priced such item, i.e., item j = arg maxi∈[n]{1vi>τi · pi}, or some other item with price
at least pj . This is because if vj > τj then for every lower-priced item j′ < j, the utility from
buying j′ (upper-bounded by 2j

′ ≤ 2j−1) is strictly lower than the utility vj − pj from buying j;
indeed, vj − pj > τj − pj = 2j−1.

Consider any compatible joint distribution F . So far we have shown that R(p, F ) is at least the
expected revenue from selling the highest-priced item that clears its threshold at every valuation

22We remark that instead of using∞-prices we can price all items except for those in the best bucket at the highest
price of the max-min optimal pricing for the best bucket.
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profile v ∼ F . Thus we can write:

R(p, F ) ≥
n∑
j=1

Pr
v∼F

[vj > τj and ∀j′ > j : vj′ ≤ τj′ ] · pj

=
n∑
j=1

(
Pr
v∼F

[∃j′ ≥ j : vj′ > τj′ ]− Pr
v∼F

[∃j′ ≥ j + 1 : vj′ > τj′ ]

)
· pj

=

n∑
j=1

(
Pr
v∼F

[∃j′ ≥ j : vj′ > τj′ ]

)
· (pj − pj−1) (8)

≥
n∑
j=1

max
j′≥j

{
1− Fj′(τj′)

}
· 2j−1 (9)

≥
∑
j∈S

(
1− Fj(τj)

)
· 2j−1 =

∑
j∈S

2

3
· 2−j · 2j−1 =

∑
j∈S

1

3
=
|S|
3
, (10)

where Equation (8) is by rearranging and defining p0 = 0, Equation (9) uses that pj = 2j and that
F is a compatible distribution, and Equation (10) uses that maxj′≥j{1− Fj′(τj′)} = 1− Fj(τj) for
every j ∈ S. We have shown that R(p, F ) = Ω

(
|S|
)

for every compatible F , and this means that
R(p) = Ω

(
|S|
)
, completing the proof.

Proof of Proposition 5.6. Consider Example 5.8. It is sufficient to show that with ≤ k differ-
ent prices, R(p) ≤ k. The proof then follows by Lemma 5.9. We achieve this by showing that
R(p, Fco-mon) ≤ k.

Assume consistent tie-breaking according to price (and then possibly according to index, etc.).
For every pricing p with ≤ k different prices, we show a pricing p′ with ≤ k finite prices (and the
rest of the prices set to ∞) such that R(p, Fco-mon) ≤ R(p′, Fco-mon). We define p′ as follows: For
every distinct price p` in p where ` ∈ [k], let j` be the item with this price that has the highest
truncation point. Let p′j` = p`, and for every other item i with price p` in the pricing p, set p′i =∞.

We now compare the expected revenues R(p, Fco-mon) and R(p′, Fco-mon): Fix a valuation pro-
file v in the support of Fco-mon for which an item is purchased given p. Denote the price at which
the item is purchased by p`. Clearly this item j∗ has the maximum utility u∗ among all other
items given p. We argue that the utility of item j` given p′ is also u∗. This is because by defini-
tion of Fco-mon, valuation profile v corresponds to a certain quantile q, i.e., vj = vj(q) for every
item j. Since j` has a (weakly) higher truncation point than j∗, we have that vj`(q) ≥ vj∗(q). Since
p′j` = pj` = pj∗ = p`, the utility of item j` given p′ is the same as given p and both are at least u∗.
Since u∗ is the maximum utility given p, the argument is complete.

To complete the comparison, notice that the utilities of all other items besides j` given p′ are
a subset of the utilities of all other items given p. Thus u∗ is the maximum utility given p′ as
well, and assuming consistent tie-breaking according to price, we conclude that the item purchased
given p′ has price p`. Therefore, R(p, Fco-mon) ≤ R(p′, Fco-mon). The latter is upper-bounded by k
according to Corollary D.5, completing the proof.
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