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Two-player entangled games are NP-hard

Anand Natarajan∗ Thomas Vidick†

October 10, 2017

Abstract

We show that the maximum success probability of players sharing quantum entanglement in a two-

player game with classical questions of logarithmic length and classical answers of constant length is

NP-hard to approximate to within constant factors. As a corollary, the inclusion NEXP ⊆ MIP∗, first

shown in [IV12] with three provers, holds with two provers only. The proof is based on a simpler,

improved analysis of the low-degree test Raz and Safra (STOC’97) against two entangled provers.

1 Introduction

The class MIP∗ is the class of languages having multi-prover interactive proofs between a classical polynomial-

time verifier and quantum provers who may share entanglement. Allowing the provers to use entanglement

may affect both the completeness and soundness parameters of a proof system. As a result, the only trivial

lower bound on MIP∗ is IP, since the verifier can ignore one of the provers, and there are no trivial upper

bounds, as the size of entangled-prover strategies can be arbitrary.

The class MIP∗ was introduced in [CHTW04], where it is shown that entangled provers can in some

cases have much more power than classical unbounded provers, leading to the collapse of certain proof

systems based on XOR games. Nevertheless, a sequence of works established techniques to limit the power

of entangled provers, eventually leading to a proof that MIP ⊆ MIP∗ [IV12]. The result is a corollary of

the inclusion NEXP ⊆ MIP∗, whose proof follows the same structure as Babai et al.’s celebrated proof

that NEXP ⊆ MIP. The main technical component of the proof is an analysis of the soundness of Babai

et al.’s multilinearity test with entangled provers. The result was later refined in [Vid13], who obtained a

scaled-down version that applies to multiplayer games specified in explicit (matrix) form: the main result

of [Vid13] is that it is NP-hard to approximate the value of a three-player entangled games. The main tech-

nical component of the proof is an analysis of the soundness of the “plane-vs-point” low-degree test [RS97]

with entangled provers.

A rather intriguing limitation of the results in [IV12, Vid13] is that they only apply to games, or inter-

active proof systems, with three or more entangled players, or provers. Even though in any interaction the
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verifier in the proof systems considered only exchanges messages with two out of the three provers,1 the

technical analysis seems to crucially require that the joint Hilbert space supporting the provers’ strategies

can be decomposed in at least three tensor factors. This requirement is used at key steps in the analysis,

including the quantum analogue of the “self-improvement lemma” that is key to control the accumulation

of approximation errors in the inductive proofs of both the multilinearity and low-degree tests.

Even though this may at first seem like a purely technical limitation, it has been known at least since

the work of Toner [Ton09] that this kind of “embedding” of a two-player game in a three-player game

can effectively limit the players’ ability to take advantage of their shared entanglement, in some cases

drastically lowering their maximum success probability in the game. At a conceptual level this effect can

be understood as a manifestation of the phenomenon of monogamy of entanglement. Whether this is a

fundamental limitation, or whether the same constraints as imposed by monogamy can be simulated within

two players only, remains unclear. While the first NP-hardness results for entangled game, which applied

only to inverse-polynomial approximations, were established for three-player games [KKM+11], they were

shortly thereafter extended to the case of games with two players [IKM09]. The games that underlie the

constant-factor hardness results in [IV12, Vid13] do not need more than two players to be played: could

it be that the two-prover entangled value of the game can be approximated in polynomial time, while the

three-player entangled value is NP-hard?

We answer this question by showing that the same plane-vs-point low-degree test analyzed in [Vid13]

remains sound even when it is played with two, instead of three, entangled provers. As a consequence, we

obtain the first non-trivial hardness results for the class MIP∗(2, 1) of two-prover one-round entangled proof

systems.

Theorem 1. The inclusion NEXP ⊆ MIP∗(2, 1) holds. Furthermore, it still holds when MIP∗(2, 1) is

restricted to one-round proof systems with constant answer size.

Theorem 1 is obtained by scaling up an NP-hardness result for two-player entangled projection games,2

see Theorem 15 and Corollary 16 in Section 4.

The main ingredient needed to obtain Theorem 1, and our main technical contribution, is a soundness

analysis of the plane-vs-point low-degree test in the presence of two entangled provers. The analysis that we

provide is both conceptually and technically simpler than the analysis in [Vid13]. Even though the present

proof is not entirely self-contained, as it relies on elementary reductions from [Vid13], we present it in a

modular way which, we hope, will make it more easily accessible, and more conveniently re-usable, than the

proof in [Vid13]. In the following subsection we describe the low-degree test and give a high-level overview

of our analysis.

1.1 The low-degree test

We recall the “plane-vs-point” low-degree test from [Vid13] in Figure 1. The test is essentially the same as

the classical test from [RS97]. It asks one prover for the restriction of a low-degree m-variate polynomial

g to a random two-dimensional subspace s of F
m
q , where Fq is the finite field with q elements, q a prime

power, and the other prover for the evaluation of g at a random x ∈ s; the prover’s answers are checked for

consistency.

1More precisely, all tests considered, including the low-degree test, take the form: (i) the verifier selects two provers at random,

and calls them “Alice” and “Bob”; (ii) the verifier plays a two-prover game with Alice and Bob.
2The reduction proceeds in a standard way by using an implicitly defined instance of the 3-SAT problem as starting point; we

omit the details.
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Out of the two provers, chose one at random to be Alice and the other to be Bob.

1. Let d, m be integer and q a prime power given as input.

2. Select a random point x ∈ F
m
q and two random directions y1, y2 ∈ F

m
q . If y1 and y2 are not linearly

independent, accept; otherwise, let s be the plane spanned by the two lines parallel to y1, y2 passing

through x.

3. Send s to Alice and x to Bob. Receive g, a specification of a degree-d polynomial restricted to s, from

Alice, and a ∈ Fq from Bob.

4. Accept if and only if g(x) = a.

Figure 1: The (d, m, q)-low-degree test.

Since the test treats both provers symmetrically, for the purposes of the soundness analysis we may

reduce to the case where the provers share a permutation-invariant state and use the same collection of

measurement operators. The following states the result of our analysis of the test. It extends Theorem 3.1

in [Vid13] to the case of two provers.3 In the theorem, we use the notation 〈A, B〉Ψ for 〈Ψ|A ⊗ B|Ψ〉.
Theorem 2. There exists a δ = poly(ε) and a constant c > 0 such that the following holds. Let ε > 0, m, d
integers, and q a prime power such that q ≥ (dm/ε)c. For any strategy for the players using entangled state

|Ψ〉 and projective measurements {Ar
s}r that succeeds in the (d, m, q)-low-degree test with probability at

least 1 − ε, there exists a POVM {Sg}g, where g ranges over m-variate polynomials over Fq of total degree

at most d, such that the following hold:

1. Approximate consistency with A:

E
s

∑
g

∑
r 6=g|s

〈Ar
s, Sg〉Ψ ≤ δ ,

where the expectation is over a random two-dimensional subspace s of F
m
q , as chosen by the verifier

in the test;

2. Self-consistency:

∑
g

〈Sg, (Id−Sg)〉Ψ ≤ δ .

The proof of Theorem 2 follows the same structure as the proof of Theorem 3.1 in [Vid13]. The proof is

by induction on the number of variables m. The base case m = 2 is trivial, since there is a single subspace

s, and the provers’ associated POVM {Ar} can directly play the role of {Sg} in the theorem. Suppose then

that the theorem is true for a value (m − 1) such that m − 1 ≥ 2. To show that the theorem holds for m
there are three main steps:

1. (Section 6.3 of [Vid13]) By the induction hypothesis, for every (m − 1)-dimension hyperplanes s in

F
m
q there is a POVM {Q

g
s }g with outcomes g in the set of degree-d polynomials on s, such that on

average over the choice of a uniformly random s and x ∈ s the POVM {Q
g
s } is consistent with {Aa

x}.

3The self-consistency condition is not explicitly stated in [Vid13] but (as we will show) it follows easily from the proof.
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2. (Section 6.4 of [Vid13]) Measurements {Q
g
s }g associated with k parallel subspaces s1, . . . , sk are

inductively “pasted” together, for k = 1, . . . ,, to yield a combined measurement {Q
(gi)
(si)

} that returns

a k-tuple of degree-d polynomials gi defined on si.

3. (Section 6.5 of [Vid13]) Finally, for k sufficiently large compared to d, the measurement {Q
(gi)
(si)

} is

consolidated into a single global measurement {Sg} that satisfies the conclusion of the theorem for

the m-variate case.

These three steps remain unchanged in the current proof. At only very few places in [Vid13] is the pres-

ence of three provers used; in most cases this is only a matter of convenience and is easily avoided. For

completeness, in Section A we explicitly list those places and how the recourse to three provers can be

avoided.

As already mentioned the critical point in the proof where three provers, or rather the existence of three

tensor factors in the provers’ Hilbert space, is used, is to control the error increase throughout the induction.

As shown by the analysis, if the measurements {Q
g
s } produced by the induction hypothesis are δ-consistent

with {Aa
x}, then the resulting Sg will be O(δc)-consistent with the same {Aa

x}, for some constant c < 1.

For poly-logarithmic m such an increase is unmanageable. Thus a key step in the analysis consists in

establishing a “self-improvement lemma”, which resets the consistency error to some constant baseline at

each step of the induction. This is called the “consolidation procedure” in [Vid13].

The main result of the consolidation procedure is stated as Proposition 5.8 in [Vid13]. The procedure

shows that the consistency error sustained by any POVM, when measured against a structure called a “robust

triple” in [Vid13], can be automatically improved.

Our main technical contribution is a simpler, self-contained proof of a variant of that proposition which

applies to strategies with two provers only. Our variant is based on a simpler notion than the robust triples

from [Vid13], that we call “global consistency”. Throughout we assume familiarity with the notation and

proof structure from [Vid13], though we recall the most important notions in Section 2. In particular we

formally define robust triples and global consistency, and show that the former notion implies the latter,

so that our result can be directly used in lieu of Proposition 5.8 in the analysis of [Vid13]. In Section 3

we prove our replacement for Proposition 5.8, Proposition 12. The proof of (the scaled-down version of)

Theorem 1 follows from the analysis of the test using similar reductions as in [Vid13]; we briefly explain

how in Section 4.

2 Preliminaries

2.1 Notation

We use H to denote a finite-dimensional Hilbert space, and L(H) for the linear operators on H. Subscripts

HA, HB indicate distinct spaces. For |Ψ〉 ∈ HA ⊗HB and A ∈ L(HA), B ∈ L(HB) we write 〈A, B〉Ψ =
〈Ψ|A ⊗ B|Ψ〉. Note that we do not conjugate A or B. Given two families of operators {Aa

x} and {Ba
x} on

HA, where x ∈ X and a ∈ A range over finite sets, and 0 ≤ δ ≤ 1, we write Aa
x ≈δ Ba

x for

E
x

∑
a

〈(Aa
x − Ba

x)
2, Id〉Ψ = O(δ) .

The expectation over x will usually be taken with respect to the uniform distribution. The distinction be-

tween taking an expectation (over x) or a summation (over a) will always be clear from context.
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2.2 Measurements

Throughout, we consider a bipartite state |Ψ〉 ∈ H ⊗H assumed to be invariant under permutation of the

two registers. All operators we consider act on the finite-dimensional space H.

Definition 3. A sub-measurement {Ma}a is a collection of positive semidefinite operators satisfying M =

∑a Ma ≤ Id. We say that a sub-measurement is η-complete if

〈M, Id〉Ψ ≥ 1 − η ;

η is called the completeness error. If M = Id then we say that {Ma}a is a measurement, in which case the

completeness error is zero.4

The following definition appears in [Vid13].

Definition 4. Let X and A be finite sets. Let {Ma
x}a be a family of sub-measurements indexed by x ∈ X

and with outcomes a ∈ A. For each x, let Mx = ∑a Ma
x. We say that {Ma

x} is

• ε-self-consistent if

E
x

∑
a 6=a′

〈Ma
x, Ma′

x 〉Ψ ≤ ε ,

• γ-projective if

E
x
〈Mx, (Id−Mx)〉Ψ ≤ γ .

• Let {Tg} be a sub-measurement with outcomes in the set of all functions g : X → A. We say that

{Ma
x} and {Tg} are δ-consistent if

E
x

∑
g,a: a 6=g(x)

〈Tg, Ma
x〉Ψ ≤ δ .

We consider families of functions such that distinct functions have few points of intersection.

Definition 5. Let X and A be finite sets, G a set of functions from X to A, and 0 ≤ κ ≤ 1. We say that

(X ,A,G) is κ-structured if for any two distinct g, g′ ∈ G,

Pr
x∈X

(

g(x) = g′(x)
)

≤ κ ,

where the probability is taken under the uniform distribution on X .

The following lemma states useful properties of consistency.

Lemma 6. Let (X ,A,G) be κ-structured. Let {Aa
x}a∈A be a family of measurements indexed by x ∈ X

that is ε-self-consistent. Let {Tg}g∈G be a sub-measurement that is δ-consistent with {Aa
x}. Then

• {Tg} is δ′-self-consistent, for δ′ = O(
√

ε +
√

δ + κ);

• Let T = ∑g Tg, and suppose {Tg} is γ-projective. Then

TAa
x ≈√

ε+
√

δ+γ+κ Aa
xT .

4The converse does not necessarily hold, as |Ψ〉 may not have full support.
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Proof. We sketch the proof. For the first item,

∑
g 6=g′

〈Tg, Tg′〉Ψ = E
x
∑

a
∑

g 6=g′
〈Tg, Tg′ Aa

x〉Ψ

≈√
δ

E
x

∑
g 6=g′

〈Tg, Tg′ A
g(x)
x 〉Ψ

≈√
ε E

x
∑

g 6=g′
〈Tg A

g(x)
x , Tg′〉Ψ

≈√
δ

E
x

∑
g 6=g′

1g(x)=g′(x) 〈Tg A
g(x)
x , Tg′〉Ψ

≈√
δ E

x
∑

g 6=g′
1g(x)=g′(x) 〈Tg, Tg′〉Ψ

≤ κ .

For the second item, it suffices to lower bound

E
x
∑

a

〈TAa
xTAa

x, Id〉Ψ ≈√
ε E

x
∑

a
∑
g

〈TAa
xTg, Aa

x〉Ψ

≈√
δ E

x
∑

a
∑
g

〈TAa
xTg, A

g(x)
x 〉Ψ

≈√
δ E

x
∑
a,a′

∑
g

〈TAa
xTg, Aa′

x 〉Ψ

= 〈T2, Id〉Ψ .

The claimed bound then follows by expanding Ex ∑a(TAa
x − Aa

xT)2 and regrouping terms.

2.3 Global consistency

The analysis of the low-degree test amounts to arguing that a set of measurement operators which produce

outcomes that are locally consistent can be combined into a single measurement which returns a global

object consistent with each of the local measurements: it is possible to recombine local views. In [Vid13]

the notion of local consistency used is called a “robust triple”. For convenience we recall the definition.

Definition 7 (Definition 5.2 in [Vid13]). Let G = (V, E) be a graph, S a finite set, G ⊆ {g : V → S}
a set of functions and for every v ∈ V, {Aa

v}a∈S a measurement with outcomes in S. Given δ > 0 and

0 < µ ≤ 1, we say that (G, {Aa
x},G) is a (δ, µ)-robust triple if:

1. (self-consistency) The family of measurements {Aa
v} is δ-self-consistent;

2. (small intersection) (V, S,G) is δ-structured;

3. (stability) For any sub-measurement {Rg}g∈G it holds that

E
v∈V

E
v′∈N(v)

∑
g

〈Rg, (A
g(v)
v − A

g(v′)
v′ )2〉Ψ ≤ δ ,

where N(v) is the set of neighbors of v in G;
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4. (expansion) G has mixing time O(µ−1). Precisely, if for any v ∈ V we let pk(v) denote the dis-

tribution on V that results from starting a k-step random walk at v, then for any δ > 0 and some

k = O(log(1/δ) log(1/µ)) it holds that Ev∈V ‖pk(v)− |V|−1‖1 ≤ δ.

We observe that the only way in which items 3. and 4. from the definition are used for the self-

improvement results is through [Vid13, Claim 5.3], which states the following.

Claim 8 (Claim 5.3 in [Vid13]). Suppose (G, A,G)Ψ is a (δ, µ)-robust triple. Then there exists a δ′ =
O
(

δ1/2 log2(1/δ) log2(1/µ)
)

such that for any sub-measurement {Rg}g∈G ,

∑
g

〈Rg, Ag − (Ag)2〉Ψ ≤ δ′ , (1)

where Ag = Ev∈V A
g(v)
v .

It is more direct, and more general, to use condition (1) directly as part of the definition, as this allows

us to set aside any notion of an expanding graph.

Definition 9. Let (X ,A,G) be κ-structured. Let {Aa
x}a∈A be a family of measurements indexed by x ∈ X

and with outcomes a ∈ A. For g ∈ G, let Ag = Ex A
g(x)
x . Let |Ψ〉 be a permutation-invariant bipartite

state. For 0 ≤ ε, δ ≤ 1 we say that ({Aa
x},G) is (ε, δ)-globally consistent on |Ψ〉 if:

1. κ = O(ε);

2. The family {Aa
x} is ε-self-consistent;

3. There exists a positive semidefinite operator Z such that

∀g ∈ G, 0 ≤ Ag − (Ag)2 ≤ Z, and 〈Z, Id〉Ψ ≤ δ.

It is not hard to verify that condition 3. in the definition is equivalent to (1). This can be seen by writing

the bound δ in the condition as the optimum of a semidefinite program, and taking the dual. This is done in

a similar way to the analysis of the semidefinite program (2). The only difference is that the latter considers

consistency when the state |Ψ〉 is maximally entangled. Formally, we have the following lemma.

Lemma 10. Let |Ψ〉 ∈ H ⊗H be a state invariant under permutation of its two registers, such that the re-

duced density of |Ψ〉 on either register has full support. Let {Ai} a family of positive semidefinite operators

on H with Ai ≤ Id for all i. Then the following primal and dual semidefinite program satisfy strong duality,

and hence have the same optimum value:

Primal SDP

sup ∑
i

〈Ti, Ai〉Ψ

s.t. Ti ≥ 0 ∀i ,

∑
i

Ti ≤ Id .

Dual SDP

inf 〈Z, Id〉Ψ

s.t. Z ≥ Ai ∀i ,

Z ≥ 0 .

Proof. Both the primal and dual are strictly feasible, as can be seen by taking e.g. Ti ∝ Id such that

∑i Ti = Id /2, and Z = 2 Id.
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Taking Ai in Lemma 10 to equal Ag − (Ag)2, the primal value being less than δ′ is equivalent to (1),

while the dual value being less than δ′ is equivalent to item 3. in Definition 9.

For later use we note that self-consistency of {Aa
x} implies self-consistency of the operators Ag intro-

duced in Definition 9, in the following sense.

Lemma 11. Let {Aa
x} be a family of measurements that is ε-self-consistent. Then for any sub-measurement

{Rg},

∑
g

〈Ag, Rg〉Ψ ≈√
ε ∑

g

〈Id, Rg Ag〉Ψ.

Proof. Write

∑
g

〈Ag, Rg〉Ψ = ∑
g

E
x
〈A

g(x)
x , Rg〉Ψ

= ∑
g,a

E
x
〈A

g(x)
x , Rg Aa

x〉Ψ

≈√
ε ∑

g

E
x
〈A

g(x)
x , Rg A

g(x)
x 〉Ψ

≈√
ε ∑

g

E
x
〈Id, Rg A

g(x)
x 〉Ψ .

3 Self-improvement with two provers

The main result on self-improvement from [Vid13] is stated as Proposition 5.8 in that paper. Our main

technical result, Proposition 12 below, improves upon Proposition 5.8 in the following respects:

• Proposition 12 allows to perform sel-improvement with two provers only;

• Proposition 12 only requires the notion of consistency introduced in Definition 9, which as argued in

Section 2.3 is less restrictive than the notion of robust triple used in [Vid13];

• The proof of Proposition 12 is simpler and yields better parameters.

We state the proposition and give its proof. In Section 4 we show how the proposition is used to obtain the

hardness results.

Proposition 12. There exists universal constants ε0, δ0, t0 > 0 such that the following holds. Let (X ,A,G)
be κ-structured. Let {Aa

x}a∈A be a family of measurements indexed by x ∈ X , and |Ψ〉 a bipartite

permutation-invariant state. Suppose that the following conditions hold:

1. ({Aa
x},G) is (ε, δ)-globally consistent on |Ψ〉, for some 0 ≤ ε ≤ ε0, 0 ≤ δ ≤ δ0;

2. There exists a function t = t(ε′, δ′) and ε′0, δ′0 > 0 such that for any 0 ≤ ε′ ≤ ε′0 and 0 ≤ δ′ ≤ δ′0
it holds that t(ε′, δ′) ≤ t0, and such that the following holds. For any (ε′, δ′) and state |Φ〉 such

that ({Aa
x},G) is (ε′, δ′)-globally consistent on |Φ〉, there exists a measurement {Qg}g∈G that is

t(ε′, δ′)-consistent with {Aa
x}.

Then there exists a measurement {Rg}g∈G that is δ′-consistent with {Aa
x}, for some δ′ = O(

√

r(ε, δ)),
where r(ε, δ) is the function defined in Lemma 10.
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The key “improvement” provided by the proposition is that, while the function t is only assumed to

be bounded by a fixed constant for sufficiently small values of the arguments, the proposition returns a

measurement {Rg} that has an explicit consistency δ′ with {Aa
x} , where δ′ is polynomial in ε and δ,

irrespective of t (indeed t need not approach 0 as ε, δ approach 0).

We note that, in our language, [Vid13, Proposition 5.8] considers a family of globally consistent pairs

({Aa
t,x},Gt), parametrized by some finite set t ∈ T, and makes both the assumptions and the conclusions

of Proposition 12 in an averaged sense, for uniformly random t ∈ T. For simplicity we state and prove the

proposition for |T| = 1. The case of general T is needed for the inductive application of the Proposition

towards the proof of Theorem 2. We sketched the inductive step in the introduction. We refer to [Vid13] for

details of the derivation of Theorem 2 from Proposition 12, which is identical to the derivation of [Vid13,

Theorem 3.1] from [Vid13, Proposition 5.8], up to minor modifications that we review in Appendix A.

The main step in the proof of the proposition is provided by the following lemma, which is analogous

to [Vid13, Claim 5.4]. The semidefinite program considered in the proof of the lemma, and its analysis,

are our main points of departure from the proof in [Vid13]. Indeed, the proof of an upper bound on the

completeness error of the sub-measurement {Sg} constructed in the proof of the lemma is the main point

where the existence of a three-fold tensor product decomposition of the Hilbert space is most crucially used

in [Vid13].

Lemma 13. There exists a function r(ε, δ) = O(
√

ε +
√

δ) such that the following holds for all 0 ≤
ε, δ, η ≤ 1. Let (X ,A,G) be κ-structured. Let {Aa

x}a∈A be a family of measurements indexed by x ∈ X .

Let |Ψ〉 be a permutation-invariant bipartite state and assume ({Aa
x},G) are (ε, δ)-globally consistent on

|Ψ〉. Let {Qg}g∈G be a sub-measurement that is η-consistent with {Aa
x} on |Ψ〉. Then there exists a

sub-measurement {Sg} that is r(ε, δ)-consistent with {Aa
x} and projective and has completeness error

〈Id−S, Id〉Ψ ≤ 〈Id−Q, Id〉Ψ + η + r(ε, δ) .

Proof. For g ∈ G, let Ag = Ex A
g(x)
x . Consider the following primal and dual semidefinite program,

obtained from the semidefinite program in Lemma 10 by setting Ai to Ag and choosing |Ψ〉 to be the

maximally entangled state: the primal becomes

ω = sup ∑
g

Tr(Tg Ag) (2)

s.t. Tg ≥ 0 ∀g ∈ G ,

∑
g

Tg ≤ Id ,

and the dual

min Tr(Z)

s.t. Z ≥ Ag ∀g ∈ G , (3)

Z ≥ 0 .

As shown in Lemma 10 both the primal and dual are strictly feasible, so that strong duality holds. Let

{Tg} be an optimal primal solution. Without loss of generality, ∑g Tg = Id, as any solution such that

(Id−∑g Tg)Ag′ 6= 0 for any g′ is clearly not optimal. The complementary slackness conditions imply

TgZ = Tg Ag ∀g ∈ G . (4)
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For each g ∈ G let

Sg = E
x

A
g(x)
x Tg A

g(x)
x .

Then {Sg} is a sub-measurement. We show that Sg satisfies the desired consistency, projectivity and com-

pleteness properties.

(i) Consistency: We have that

E
x

∑
g

∑
a 6=g(x)

〈Sg, Aa
x〉Ψ = ∑

g

〈Sg, (Id−Ag)〉Ψ .

Using self-consistency of {Aa
x},

∑
g

〈Sg, Id〉Ψ = E
x

∑
g

〈A
g(x)
x Tg A

g(x)
x , Id〉Ψ

≈√
ε E

x
∑
g

〈Tg, A
g(x)
x 〉Ψ

= ∑
g

〈Tg, Ag〉Ψ . (5)

Similarly,

∑
g

〈Sg, Ag〉Ψ = E
x

∑
g

〈A
g(x)
x Tg A

g(x)
x , Ag〉Ψ

≈√
ε E

x
∑
g

〈Tg, A
g(x)
x Ag A

g(x)
x 〉Ψ . (6)

Using the Cauchy-Schwarz inequality,

E
x

∑
g

〈Tg,
(

Ag − A
g(x)
x

)

Ag A
g(x)
x 〉Ψ ≤

(

E
x

∑
g

〈Tg, A
g(x)
x (Ag)2A

g(x)
x 〉Ψ

)
1
2
(

E
x

∑
g

〈Tg,
(

Ag − A
g(x)
x

)2〉Ψ

)
1
2

≤
(

E
x

∑
g

〈Tg,
(

Ag − (Ag)2
)

〉Ψ

)
1
2

≤
√

δ , (7)

where the second inequality uses A
g(x)
x (Ag)2 A

g(x)
x ≤ Id for the first term, and expands the square and

uses (A
g(x)
x )2 ≤ A

g(x)
x for the second term, and the last inequality follows from item 3. in the definition of

globally consistent. Combined with (5) and (6), we have shown

E
x

∑
g

∑
a 6=g(x)

〈Sg, Aa
x〉Ψ ≈√

δ ∑
g

〈Tg, (Ag − (Ag)3)〉Ψ . (8)

Writing

Ag − (Ag)3 = Ag − (Ag)2 +
√

Ag
(

Ag − (Ag)2
)

√
Ag

≤ 2
(

Ag − (Ag)2
)

,

since all terms commute and (Ag)2 ≤ Ag ≤ Id, using item 3. in the definition of globally consistent the

right-hand side of (8) is at most 2δ.

10



(ii) Completeness:

∑
g

〈Sg, Id〉Ψ = E
x

∑
g

〈A
g(x)
x Tg A

g(x)
x , Id〉Ψ

≈√
ε E

x
∑
g

〈Tg, A
g(x)
x 〉Ψ

≈√
ε ∑

g

〈Tg Ag, Id〉Ψ

= ∑
g

〈TgZ, Id〉Ψ

= 〈Z, Id〉Ψ ,

where the third line uses Lemma 11 and the penultimate equality follows from (4), and for the last we used

∑g Tg = Id. We establish a lower bound on this last expression by introducing {Qg}:

〈Q, Id〉Ψ − η ≤ ∑
g

〈Qg, Ag〉Ψ

≤ ∑
g

〈Qg, Z〉Ψ

≤ 〈Id, Z〉Ψ ,

where the second inequality uses the dual constraint (3), and the third uses ∑g Qg ≤ Id. It follows that

∑
g

〈Sg, Id〉Ψ ≥ 〈Q, Id〉Ψ − η − O
(√

ε
)

.

(iii) Projectivity: By proceeding exactly as in (7), we can show

〈S, S〉Ψ = ∑
g

E
x
〈A

g(x)
x Tg A

g(x)
x , S〉Ψ

≈√
ε+

√
δ ∑

g

E
x
〈AgTg Ag, S〉Ψ

= ∑
g,g′

E
x
〈AgTg Ag, A

g′(x)
x Tg′ A

g′(x)
x 〉Ψ

≈√
ε+

√
δ ∑

g,g′
E
x
〈A

g(x)
x Tg A

g(x)
x , A

g′(x)
x Tg′ A

g′(x)
x 〉Ψ .

Using self-consistency of {Aa
x}, from the above we get

〈S, S〉Ψ ≈√
ε+

√
δ ∑

g,g′
E
x
〈Tg A

g(x)
x , A

g′(x)
x Tg′ A

g′(x)
x 〉Ψ

≈√
ε+

√
δ ∑

g,g′
〈Tg Ag, Sg′〉Ψ

= TrΨ〈Z, S〉Ψ , (9)

11



where the second line again uses similar arguments as (7) and the last line uses (4) and ∑g Tg = Id. Using

the dual constraint (3), we deduce

〈S, S〉Ψ ≥ ∑
g

〈Ag, Sg〉Ψ − O(
√

ε +
√

δ)

≈√
ε+

√
δ 〈S, Id〉Ψ ,

where the second line follows from consistency of {Sg} and {Aa
x} shown in item (i).

Based on Lemma 13, we give the proof of Proposition 12.

Proof of Proposition 12. Let ε, δ be as in condition 1., and {Qg} be the measurement whose existence

follows from condition 2. in the proposition, when |Φ〉 = |Ψ〉 and ε′, δ′ = ε, δ. By applying Lemma 10 to

the state |Ψ〉 and measurements {Aa
x} and {Qg} we obtain a sub-measurement {Sg} that is η = r(ε, δ)-

projective and consistent with {Aa
x}. Among all sub-measurements that are η-projective and consistent with

{Aa
x}, let {Tg} be one that minimizes the completeness error θ = 〈Id−T, Id〉. Provided ε0, δ0 are small

enough we may assume θ = t(ε, δ) + r(ε, δ) ≤ 1/4. To complete the proof we need to prove a better upper

bound on θ. Towards this, introduce a state

|Φ〉 =
|Φ̃〉

‖|Φ̃〉‖ , where |Φ̃〉 = (Id−T)⊗ (Id−T)|Ψ〉 .

Then
∥

∥|Φ̃〉
∥

∥

2
= 〈(Id−T)2, (Id−T)2〉Ψ

= 〈Id−2T + T2, Id−2T + T2〉Ψ

= 1 − 4〈T, Id〉Ψ + 4〈T, T〉Ψ + 2〈T2, Id〉Ψ − 4〈T2, T〉Ψ + 〈T2, T2〉Ψ

= 1 − 4〈T, (Id−T)〉Ψ + 2〈T2, (Id−T)〉Ψ − 〈T2, T(Id−T)〉Ψ − 〈T2, T〉Ψ

≈√
η 1 − 〈T, T2〉Ψ

≈√
η 1 − 〈T, Id〉Ψ , (10)

where the last two approximation use the projectivity assumption on T.

Claim 14. There are ε′ = O(ε +
√

η) and δ′ = O(δ +
√

η) such that ({Aa
x},G) is (ε′, δ′)-globally

consistent on |Φ〉.

Proof. We verify the properties in Definition 9. Item 1. is automatic. For item 2., self-consistency of {Aa
x}

on |Φ〉, write

E
x

∑
a

〈Aa
x, Aa

x〉Φ̃ = E
x

∑
a

〈Aa
x(Id−T)− TAa

x(Id−T), (Id−T)Aa
x − (Id−T)Aa

xT〉Ψ

≈√
η E

x
∑

a

〈Aa
x, Aa

x〉Ψ − 〈T, Aa
x〉Ψ + 〈Aa

x(Id−T), T〉Ψ

≈√
η 1 − ε − 〈T, Id〉Ψ .

Together with (10), it follows that {Aa
x} is ε′-self-consistent on |Φ〉, for some ε′ = O(ε +

√
η). For item 3.

in the definition, let Z be such that Ag − (Ag)2 ≤ Z for all g ∈ G, and 〈Z, Id〉Ψ ≤ δ. Then

〈Z, Id〉Φ̃ ≈√
η 〈Z, (Id−T)〉Ψ

≤ δ ,

12



and the property follows using (10).

Applying condition 2. in the proposition to |Φ〉 and ({Aa
x},G) we obtain a measurement {Qg} that is

η′ = t(ε′, δ′)-projective and consistent with {Aa
x} on |Φ〉. Define a sub-measurement {Rg} by

Rg := TTgT + (1 − T)Qg(1 − T) .

The completeness of this measurement on |Ψ〉 is

〈R, Id〉Ψ = 〈T3, Id〉Ψ + 〈(1 − T)2, Id〉Ψ

≈√
η 1 , (11)

since

〈T3, Id〉Ψ ≈√
η 〈T2, Id〉Ψ ≈√

η 〈T, Id〉Ψ .

To evaluate consistency with {Aa
x},

E
x
∑
g

∑
a 6=g(x)

〈Rg, Aa
x〉Ψ = E

x
∑
g

∑
a 6=g(x)

(

〈TTgT, Aa
x〉Ψ + 〈(1 − T)Qg(1 − T), Aa

x〉Ψ

)

≈√
ε+

√
η+κ E

x
∑
g

∑
a 6=g(x)

(

〈TTg, TAa
x〉Ψ + 〈(1 − T)Qg, (1 − T)Aa

x〉Ψ

)

= O(
√

η) + O(
√

η′)
∥

∥|Φ̃〉
∥

∥

2
,

where the second line uses the second item in Lemma 6 and the last ε = O(η), given the definition of the

function r. Using (11), if we complete {Rg} into a measurement {R̃g} by adding an arbitrary term, the

latter will have consistency δ′′ = O(
√

η) + O(
√

η′)‖|Φ̃〉‖2 with {Aa
x}. Applying Lemma 10 yields a

sub-measurement {Vg} that is η = r(ε, δ)-projective and consistent with {Aa
x}, and for which

〈(Id−V), Id〉Ψ = O(
√

η) + O(
√

η′)‖|Φ̃〉‖2.

Recall that by assumption, {Tg} is the most complete measurement that is η-projective and consistent with

Ax. Hence, 〈(Id−V), Id〉 ≥ 〈(Id−T), Id〉, so that

θ ≤ O(
√

η) +O(
√

η′)(θ +O(
√

η)).

Provided ε, δ are small enough that O(
√

η′) = O(
√

t(ε′, δ′)), with ε′, δ′ as in Claim 14, is at most 1/4, as

can be assumed from the assumed upper bound t(ε′, δ′) ≤ t0 for ε′ ≤ ε0 and δ′ ≤ δ0 provided t0 is a small

enough universal constant, we have obtained θ = O(
√

η) = O(
√

r(ε, δ)), as claimed.

4 NP-hardness for two-player entangled games

Based on the result of the analysis of the low-degree test stated in Theorem 2 and following the same

sequence of reductions — composition of the low-degree test with itself, to reduce answer size, and com-

bination with the 3-SAT test — as in [Vid13] we obtain the following analogue of [Vid13, Theorem 4.1],

which establishes NP-hardness for games with poly(log log n)-bit answers.

Theorem 15. There is an ε > 0 such that the following holds. Given a 2-player game G in explicit form,

it is NP-hard to distinguish between ω(G) = 1 and ω∗(G) ≤ 1 − ε. Furthermore, the problem is still

NP-hard when restricting to games G of size n that are projection games for which questions and answers

can be specified using O(log n) bits and poly(log log n) bits respectively.
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In [Vid13] this result is improved to obtain hardness for games with constant-bit answers by reducing

the 3-SAT test, on which the proof of Theorem 15 is based, to the three-player QUADEQ test for testing

satisfiability of a system of quadratic equations in binary variables. This amounts to composing a PCP based

on low-degree polynomials with the “exponential PCP” based on the three-query linearity test of [BLR93],

and yields hardness for three-player games with binary answers. The same steps can be completed with

two players only by using the technique of oracularization to transform the QUADEQ and linearity tests

into two-player games. The idea of oracularization is that for every triple of questions (q1, q2, q3) to be

sent to the three players in the original test, the verifier sends the entire triple to a single player, Alice, and

receives a triple of answers. The verifier also sends a randomly selected question from the triple to a second

player, Bob. The verifier accepts if and only if Bob’s answer is consistent with Alice’s, and the triple of

answers provided by Alice would have been accepted in the original test. For concreteness, we summarize

the oracularized QUADEQ test in Figure 2. (Note that the third element in each of Alice’s question and

answer triples is redundant and can be eliminated.)

Out of the two provers, chose one at random to be Alice and the other to be Bob.

1. With probability 1/4 each, do the following:

(a) Send label ℓ1 to the two players and perform the (n/2)-bit (oracularized) linearity test.

(b) Same with label ℓ2.

(c) Send labels (ℓ1, ℓ2) to the two players and perform the n-bit linearity test.

(d) Same but perform the n2-bit linearity test.

2. Select random u, v ∈ F
n/2
2 and i ∈ [3], and generate the three queries q1 = (ℓ1, u), q2 = (ℓ2, v),

q3 = (ℓ1, ℓ2, (u, v)). Send q1, q2 to Alice, receiving answers a1, a2, and let a3 = a1 + a2. Send qi to

Bob, receiving answer b. Accept if b = ai.

3. Select random u, v ∈ F
n
2 and i ∈ [3], and generate the three queries q1 = (ℓ1, ℓ2, u), q2 = (ℓ1, ℓ2, v),

q3 = (ℓ1, ℓ2, u ⊗ v). Send q1, q2 to Alice, receiving answers a1, a2 and let a3 = a1 · a2. Send qi to

Bob, receiving answer b. Accept if b = ai.

4. Select a random vector v ∈ F
K
2 and let w = ∑k wka(k) ∈ F

n2

2 . Send (ℓ1, ℓ2, w) to a randomly chosen

player and check that the answer a = ∑k wkc(k).

Figure 2: The two-prover QUADEQ test. See Section [Vid13, Section 3.4] for additional explanations

regarding the notation.

It is easy to see that honest strategies pass the oracularized QUADEQ test with probability 1. To establish

soundness of the test, i.e to show an analogue of Lemma 3.5 of [Vid13], we can follow essentially the same

steps as in the proof of that lemma. The key step of the proof is to argue that, due to the soundness of the

linearity test against entangled provers, there exist measurements on each prover’s space whose outcomes are

linear functions that are consistent with the measurements applied in the test. For the oracularized test, we

can perform this step using the soundness of the oracularized linearity test against entangled provers, which

was analyzed in [NV17]. The rest of the proof proceeds unchanged. As a result we obtain the following

corollary, which establishes Theorem 1; it is completely analogous to [Vid13, Corollary 4.3], except that
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due to the oracularization, the two provers now have to provide answers of two bits each instead of one.

Corollary 16. There is an ε > 0 such that the following holds. Given a two-player projection game G in

explicit form in which answers from one player is restricted to 2 bits, and answers from the other player to

a single bit, it is NP-hard to distinguish between ω(G) = 1 and ω∗(G) ≤ 1 − ε.

Using that the games G for which NP-hardness is shown in Corollary 16 are projection games, we

may apply results on the parallel repetition of two-player entangled projection games [DSV15] to amplify

the completeness and soundness parameters from 1 and 1 − ε to 1 and δ respectively, for any δ > 0, by

repeating the game poly(ε−1 log δ−1) times and incurring a corresponding multiplicative factor blow-up in

the length of questions and answers in the game.

A Modified proofs from [Vid13]

As noted in the introduction, the principal modifications to the soundness analysis of the low-degree test

in [Vid13] necessary to make it hold for two provers concern the self-improvement results of section 5.

There are a few other steps of the proof of the main theorem in [Vid13] that seem to require a tripartite

tensor product factorization of the Hilbert space to be carried out. In all cases this is easily avoided by

simple modification of the proof. Although they remain very elementary, in this appendix we describe the

only two other non-trivial modifications needed. The first is in the proof of [Vid13, Claim 6.10]. (We refer

to the paper [Vid13] for context, including an explanation of the notation; the following discussion is meant

for a reader already familiar with the proofs in [Vid13].)

Claim 17 (Claim 6.10 in [Vid13]). The measurements {Q
g
s }g∈Pd(s) satisfy

E
s∈Sm−1(Fm

q )
∑

g∈Pd(s)

〈Qg
s , (Id−Q

g
s )〉Ψ = O(εcℓ) .

Proof. The proof is the same as in [Vid13], except the third tensor factor is not needed — the second can be

used for the same purpose:

E
s∈Sm−1(Fm

q )
∑

g,g′∈Pd(s),g 6=g′
〈Qg

s , Q
g′
s 〉Ψ ≈ E

s∈Sm−1(Fm
q )

E
x∈S

∑
g,g′∈Pd(s),g 6=g′

〈Qg
s , Q

g′
s A

g(x)
x 〉Ψ +O(εcℓ)

≈εc
ℓ E

s∈Sm−1(Fm
q )

E
x∈S

∑
g,g′∈Pd(s),g 6=g′

〈Qg
s A

g(x)
x , Q

g′
s 〉Ψ + O(εcℓ) + O(ε)

≈ O(εcℓ) + O(ε) .

In the first line, we used the consistency between Q
g
s on the first prover and A

g(x)
x on the second; in the

second line, we used the self-consistency of A; and in the third, we used the consistency between Q
g′
s on

the second prover and A
g(x)
x on the first prover.

The second is in the proof of [Vid13, Claim 6.14]. Here again, the use of a third tensor factor can be

avoided by a simple modification. Specifically, the last set of centered equations on p.1056 (right below

(6.22)) should be replaced with
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E
(si)

∑
g,deg(g)>d

〈R
g

(si)
, Id〉Ψ ≈εcℓ E

(si),z,ℓ,ℓ′∋z
∑

g,deg(g)>d
∑

h(ℓ∩si)=g(ℓ∩si)
h′(ℓ′∩si)=g(ℓ′∩si)

〈R
g

(si)
, Bh

ℓ
Bh′
ℓ′ 〉Ψ

≈εc
ℓ E
(si),z,ℓ,ℓ′∋z

∑
g,deg(g)>d

∑
h(ℓ∩si)=g(ℓ∩si)

h′(ℓ′∩si)=g(ℓ′∩si)

〈R
g

(si)
Bh′
ℓ′ , Bh

ℓ
〉Ψ

= O(εdc/2)
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