
Intractable Problems in Malware Analysis and Practical Solutions

Ali Aydın Selçuk

Dept. of Computer Engineering

TOBB University of Economics and

Technology

Ankara, Turkey

Fatih Orhan, Berker Batur

Comodo Security Solutions, Inc.

Clifton, NJ, USA

Abstract

Malware analysis is a challenging task in the

theory as well as the practice of computer science.

Many important problems in malware analysis have

been shown to be undecidable. These problems

include virus detection, detecting unpacking

execution, matching malware samples against a set

of given templates, and detecting trigger-based

behavior. In this paper, we give a review of the

undecidability results in malware analysis and

discuss what can be done in practice.

1. Introduction

The number of malware programs encountered by

security companies multiplies every year. Each of

these programs needs to be analyzed by static and

dynamic analysis tools. The task of running each

program in a controlled environment and analyzing

its behavior manually is a tedious and labor-intensive

task. Therefore, there is a great need for automation

of this process and for tools that will help with the

analysis.

One of the most significant theoretical results in

malware analysis is from the seminal works of

Cohen on computer viruses [6, 7] where he showed

that a program that detects all computer viruses

precisely is impossible. Later, Chess and White [4]

gave an example of a polymorphic virus that cannot

be precisely detected by any program. Other results

followed [2, 5, 21] which stated the impossibility of

certain critical tasks in static and dynamic malware

analysis.

In this paper, we give a brief survey of the major

undecidability results found in the malware analysis

literature. Then we give examples from the positive

side showing what can be done on these undecidable

problems in practice.

2. Malware Analysis and Undecidability

Since Cohen [6] gave the first formal treatment of

computer viruses, many problems in malware

analysis have been shown to be undecidable. Many

of these results are based on the fact that precisely

deciding whether a given program/input satisfies a

certain post-condition, for an arbitrary post-

condition, is undecidable. The proofs are based on

two general techniques: Either they build a self-

contradictory program assuming the existence of a

decider for the given problem, similar to [6], or they

give a reduction from a well-known undecidable

problem, such as the Halting Problem, similar to [7].

In this section, we review some of the most

significant undecidability results in the field.

2.1. Undecidability of the General Virus

Detection Problem

The first result on the undecidability of the

general virus detection problem is due to Cohen [6].

Using a well-known proof technique, he argued that:

“In order to determine that a given program ‘P’ is

a virus, it must be determined that P infects other

programs. This is undecidable since P could invoke

any proposed decision procedure ‘D’ and infect other

programs if and only if D determines that P is not a

virus. We conclude that a program that precisely

discerns a virus from any other program by

examining its appearance is infeasible.”

He gave the following piece of program

“contradictory-virus” as an example that cannot be

detected by a virus detector D in a correct way:

Journal of Internet Technology and Secured Transactions (JITST), Volume 7, Issue 2, June 2018

Copyright © 2018, Infonomics Society 588

As Cohen [6] observed, “… if the decision

procedure D determines CV to be a virus, CV will not

infect other programs, and thus will not act as a

virus. If D determines that CV is not a virus, CV will

infect other programs, and thus be a virus. Therefore,

the hypothetical decision procedure D is self-

contradictory, and precise determination of a virus

by its appearance is undecidable.” A minor flaw in

this argument was observed by Steinparz [25], who

noted that this argument only shows the

impossibility of a virus detector which is not a virus

itself. Otherwise, if D is a virus itself, it can return

“true” on contradictory-virus and be correct.

A more formal proof was again given by Cohen

himself [7] by a reduction from the Halting Problem.

He showed that the existence of a precise virus

detector would imply a decider for the Halting

Problem and hence is not possible.

Furthermore, Cohen [8] observed that whether a

sequence is a virus or not depends on the

environment in which it is run. Thus any given

sequence is or is not a virus as a function of the

environment in which it is placed.

2.2. Existence of an Undetectable Virus

As summarized above, Cohen [6, 7] showed the

impossibility of a virus detector that detects all

viruses precisely. Chess and White [4] extended this

result by showing that there are viruses, in theory,

with no error-free detectors. They explained, “That

is, not only can we not write a program that detects

all viruses known and unknown with no false

positives, but in addition there are some viruses for

which, even when we have a sample of the virus in

hand and have analyzed it completely, we cannot

write a program that detects just that particular virus

with no false positives.”

The result of Chess and White is based on an

extension of the contradiction argument in Cohen’s

first paper [6]: Consider a polymorphic virus W that

is able to modify its code. This virus modifies its

spreading condition such that if some particular

subroutine in it returns “false” on W itself, it spreads.

Furthermore, this subroutine is subject to change as a

part of W’s polymorphism. Now, if some detector

code C were to detect W, there is at least one

instance of this polymorphic virus, where the

subroutine is replaced by C, that cannot be detected

by C: Just like Cohen’s argument, detection by C

would result in the virus’ not spreading, and hence

would imply a false positive.

To illustrate their point, they gave an example

pseudocode of such a virus W, one instance of which

is r:

They noted that for any algorithm C that detects

W, there is a program s for which C does not return

the correct result:

If C(s) returns true, then s will just exit, but if

C(s) returns false, then s is an instance of the virus

W.

The same argument shows the non-existence of a

detector for W under a looser notion of detection as

well: Say a program “detects” a virus V if it (i)

returns “true” on every program infected with V, (ii)

returns “false” on every program not infected with

any virus, (iii) may return “true” or “false” on a

program that is infected with some virus other than

V. The impossibility argument above applies to this

looser notion of detection verbatim. Hence, Chess

and White [4] concluded that there exists, in theory,

some virus that cannot be detected precisely by any

virus detector even under this looser notion of

detection.

2.3. Semantic-Aware Malware Detection

A malware detector based on a pattern matching

approach is fundamentally limited against

obfuscation techniques used by hackers. The goal of

malware obfuscation is to morph or modify the

malware to evade detection. A piece of malware can

modify itself by, for example, encrypting its payload,

and then later decrypting it during execution. A

polymorphic virus tries to obfuscate its decryption

code using several transformations, such as code

transposition, nop insertion, and register

reassignment. Metamorphic viruses, on the other

hand, try to evade detection through obfuscating the

entire code. When they replicate, these viruses

change their code by techniques such as substitution

of equivalent instruction sequences, code

transposition, register reassignment, and change of

conditional jumps. The fundamental limitation of the

pattern-matching approach for malware detection is

that it is mainly syntactic and does not consider the

semantics of the program flow and the instructions.

Christodorescu et al. [5] studied a method to

overcome this limitation by incorporating instruction

semantics to detect malicious code traits. In their

framework, malicious behavior is defined by hand-

constructed “templates”. A template T is defined as a

3-tuple (IT, VT, CT): IT is a sequence of instructions,

if subroutine_one(r) then exit, else

{

 replace the text ofsubroutine_one

with a random program;

 spread;

 exit;

}

subroutine_one:

 return false;

if subroutine_one(s) then exit, else

{

 replace the text of subroutine_one

with a random program;

 spread;

 exit;

}

subroutine_one:

 return C(argument);

Journal of Internet Technology and Secured Transactions (JITST), Volume 7, Issue 2, June 2018

Copyright © 2018, Infonomics Society 589

and VT is the set of variables and CT is the set of

symbolic constants that appear in IT. An “execution

context” of a template T = (IT, VT, CT) is an

assignment of values to the symbolic constants of the

set CT.

For a given program P, they say that P satisfies a

template T (denoted by P T) if P contains an

instruction sequence I such that I contains a behavior

specified by T. The problem of deciding whether a

given piece of code contains such a template

behavior (i.e., P T) is modeled as the “Template

Matching Problem”.

The Template Matching Problem turns out to be

undecidable. Christodorescu et al. [5] gave a

reduction from the Halting Problem to the Template

Matching Problem, and stated that a precise solution

for the general Template Matching Problem is

impossible.

2.4. Automatic Unpacking for Malware

Detection

An obfuscation mechanism that is much used by

modern malware is to hide the malicious portion of

the payload as data at compile time, and then

transform it into an executable at run time, a

behavior known as “unpack and execute”. The

unpack transformation can be something simple,

such as an XOR by a block of random-looking data,

or something more complex, such as decryption by a

cipher like AES.

Royal et al. [21] worked on detecting such

polymorphic viruses by focusing on the result of the

unpack operation. The idea is to compare the

executable code during the run time with that before

the run time. When a change is detected, it is written

out for further analysis.

The code and the data sections of a program are

formally modeled as a Turing machine M and its

input w. Then the unpack detection problem becomes

whether w contains another program in it that will be

emulated by M during computation. This problem

can be formulated as the following formal language:

UnpackExTM = {<M, w>: M is a UTM, and M

simulates a Turing machine on its tape in its

computation on w}

Royal et al. [21] gave a theorem which stated that

the UnpackExTM language is undecidable. They

proved this result by a reduction from the Halting

Problem. Their proof can be summarized as follows:

A mapping reduction HALTTM ≤ UnpackExTM

will be given to prove that UnpackExTM is

undecidable.

Let f be a function that takes <M,w> as input and

computes <M',w'> as output where <M,w>

HALTTM if and only if <M',w'> UnpackExTM. The

Turing machine F given below computes f:

F = “On input <M,w>, a valid encoding of a Turing

machine M and an input string w:

1. Construct a Turing machine T:

T=“On input x:

 1. Ignore x and halt.”

2. Construct the following UTM M' from M:

 M' is the same as M, except:

 for all q Q,

 if (q,) goes to a halting state then

 Replace this transition with a transition

 that begins simulating T on the input

 tape. I.e., change the transition to

(q,) = (qstart,T, — , —).

3. Output <M', <T, w>>.”

The output of the mapping F, a UTM M', will

execute a Turing machine T in those cases where M

will halt on w. A decider for UnpackExTM could

decide whether M' will execute T and so decide

HALTTM. But HALTTM does not have a decider.

Hence, a decider for UnpackExTM cannot exist.

Therefore, UnpackExTM is undecidable

Hence, it turns out that determining precisely

whether a given program contains some unpack-

execute behavior in it is impossible.

2.5. Automatically Identifying Trigger-Based

Behavior

A common feature found in modern malware is to

contain some hidden malicious behavior that is

activated only when triggered; such behavior is

called trigger-based behavior. Various conditions are

used for triggering, such as date and time, some

system event, or a command received over the

network.

Brumley et al. [2] studied how to automatically

detect and analyze trigger-based behavior in

malware. Their approach employs mixed symbolic

and concrete execution to automatically explore

different code paths. When a path is explored, a

formula is constructed representing the condition that

would trigger execution down the path. Then a solver

is employed to see whether the condition can be true,

and if so, what trigger value would satisfy it.

Like many other problems in malware analysis,

an exact, automatic identification of trigger-based

behavior turns out to be undecidable by a reduction

from the halting problem. Brumley et al. [2]

observed that “Identifying trigger-based behaviors in

malware is an extremely challenging task. Attackers

are free to make code arbitrarily hard to analyze.

This follows from the fact that, at a high level,

deciding whether a piece of code contains trigger-

based behavior is undecidable, e.g., the trigger

condition could be anything that halts the program.

Thus, a tool that uncovers all trigger-based behavior

all the time reduces to the halting problem.”

Journal of Internet Technology and Secured Transactions (JITST), Volume 7, Issue 2, June 2018

Copyright © 2018, Infonomics Society 590

2.6. Self-Modifying Code and Formal

Grammars

Filiol [11] studied the complexity of detecting

self-modifying code (i.e., polymorphic and

metamorphic viruses) using formal grammars. He

worked on the formalization of metamorphism by

means of formals languages and grammars. He

showed how code mutation techniques can be

modelled by formal grammars, and how their

detection can be converted to the problem of

deciding a language.

He modelled a self-modifying program as a

grammar G2 whose language consists of grammars

that are produced from a starting grammar G1

according to the derivation rules specified by G2.

This definition was used to describe the fact that the

virus kernel changes from one metamorphic form to

the other: It is both the virus code and the set of

mutation rules that change. (This view of

metamorphic viruses resembles two-level 2VW

grammars, as Filiol pointed out.)

In this context, detecting whether a given program

is a form of a given metamorphic virus is an instance

of the language decision problem for Class 0 (free)

grammars. Filiol showed that this problem can be

reduced from the Halting Problem and hence is

undecidable.

2.7. NP-Complete Problems

Although the general cases of the aforementioned

problems are undecidable, it turns out that it is

possible to obtain their decidable versions by

assuming some bound on the time or memory

available to the malware.

Spinellis [24] showed that a length-bounded

version of Cohen’s problem is decidable and NP-

complete, by a reduction from the Boolean

Satisfiability Problem (SAT).

Borello and Mé [1] showed that detecting whether

a given program P is a metamorphic variant of

another given program Q is decidable and NP-

complete.

On a related venue, Fogla and Lee [12] showed

that detecting a polymorphic blending attack, which

can blend in with normal traffic and can evade an

anomaly-based IDS, is also NP-complete, by a

reduction from the 3-SAT problem.

Song et al. [23] studied the strengths and

weaknesses of polymorphic shellcode. They

developed metrics to measure the capabilities of

polymorphic engines. In the end, they concluded that

polymorphic behavior in general is too greatly varied

to be modelled and detected effectively.

Bueno et al. [3] showed that the space- and time-

bounded versions of the unpacking problem are

decidable, and the time-bounded version is NP-

complete.

Of course, a problem’s being NP-complete is

hardly good news. It is usually interpreted as that no

efficient solution exists for the worst case of that

problem. However, efficient solutions may exist for

the average case, or it can be possible to obtain

reasonably good solutions by heuristics or

approximation algorithms.

3. Practical Solutions

Despite the negative theoretical results on

undecidability of some fundamental questions in

malware analysis, practical tools have been in action

since the very early days of computer viruses. By

tolerating some degree of inaccuracy (i.e., tolerating

some degree of false positives or negatives, or

allowing inconclusive results), it is possible to build

algorithms that are very effective in practice. In this

section, we summarize some of the tools developed

for the problems reviewed in Section 2.

3.1. Detecting Malware by Template

Matching

Despite the fact that the general Template

Matching Problem is undecidable, it is possible to

detect malware using template matching algorithms

that are mostly accurate. Christodorescu et al. [5]

developed a toolkit for that purpose. The toolkit

works in two phases: First, the binary program to be

analyzed is disassembled, a control graph is

constructed, one per program function, and an

intermediate representation (IR) is generated. The IR

is further processed and put into an architecture- and

platform-independent form. In the second phase, the

IR is compared against a given set of malware

templates. Each comparison either returns “yes” or

“don’t know”. Suggested malware templates for

comparison include procedures such as a decryption

loop or mass mail sending.

Christodorescu et al. [5] tested their tool on a real-

world malware sample consisting of seven variants

of Netsky (B, C, D, O, P, T, and W), seven variants

of Bagle (I, J, N, O, P, R, and Y), and seven variants

of Sober (A, C, D, E, F, G, and I), all being email

worms with many diverse forms found in the wild.

The authors tested the malware against templates

capturing the decryption loop and mass mailing

functionalities. The tool detected all Netsky and

Bagle variants with 100% success. The Sober worm

was not detected due to a limitation in the prototype

implementation, related to matching calls into the

Microsoft Visual Basic runtime library.

Nevertheless, their test demonstrated the success of

their template matching algorithm on diverse forms

of malware.

The tool was tested on a benign sample as well in

order to test its false positive rates. 97.78% of the

programs in the given sample were detected as

Journal of Internet Technology and Secured Transactions (JITST), Volume 7, Issue 2, June 2018

Copyright © 2018, Infonomics Society 591

benign after successful disassembly, while 2.22%

could not be disassembled.

Kwon et al. [16] developed a technique called

BinGraph, in which they leveraged the semantics in

API call sequences of different malware families as

templates and detected metamorphic malware

samples using signatures and template matching.

They extracted signatures from subgraphs of API

calls and used them to represent semantic behaviors

of metamorphic malware. In first phase, using the

Import Address Table (IAT) from executable they

constructed initial behavior graph with edges

representing API call sequences. Followed by

subgraph extraction and graph abstraction, they

stored the abstracted semantic graphs in a 128x128

adjacency matrix. At the final step of sematic

signature extraction, they applied graph mining

techniques using a greedy strategy to select candidate

signatures.

Kwon et al. [16] used 166 malware programs

(randomly selected 20% of their malware collection)

and generated 32 semantic signatures representing

this set. They compared these signatures against the

set of remaining 661 (unseen) malicious and 1,202

safe binaries. They achieved a 98.18% detection rate

on the malicious sample and detected 649 malware

programs, with no positive matches on the benign

sample.

Luh et al. [17] used sentiment analysis technique

by collecting kernel level events in order to model

malicious and benign behaviors. Timestamped

process, thread, image load, file, registry and

Network event logs were collected from the

Windows kernel and runaway entries were

eliminated. Log-likelihood ratio scores for each pre-

processed bi-gram event traces were calculated and

used in compilation of malicious and safe semantic

dictionaries. At the final step, score normalization

and adjustment was applied to calculated values

using whether monitored trace is a part of some

malicious event sequence or not.

Safe event logs are collected from standard

Windows users having more than 80 OS session and

over 500 processes in each. Different types of

malware samples like MyDoom, Zeus, Koobface,

etc. were used to infect machines in controlled

environments and their respective event traces were

used in bi-gram extraction from malicious behaviors.

Luh et al. [17] achieved 98.2% accuracy for

malicious behavior detection with low false positive

rates. Moreover, it is reported that threshold

optimization on determined confidence values could

increase the performance of related classification

technique up to 100.0% for this particular test set

used in conducted experiment.

3.2. Detecting Unpack-Execute Behavior

Although the general problem of unpack-execute

behavior is undecidable, Royal et al. [21] gave an

algorithm for a bounded version of this problem. Let

n denote the number of instructions of a given

program P to execute before it halts. The program

ExtractUnpackedCode(P,n) works in two phases:

• Phase 1: Static Analysis. Program P is

disassembled to identify code and data. Blocks

of code that are separated by non-instruction

data are partitioned into sequences of

instructions. These sequences form the set I,

which will be queried repeatedly in the next

phase to detect if P is executing unpacked code.

• Phase 2: Dynamic Analysis. Program P is

executed one instruction at a time. The current

instruction sequence is captured by in-memory

disassembly starting at the current value of the

program counter until some non-instruction data

is encountered. The current instruction sequence

is compared against each instruction sequence in

the set I. If the current sequence is not a

subsequence of any instruction sequence in I,

then it did not exist in P.

Royal et al. [21] developed this algorithm into a

practical tool for MS Windows systems, called

PolyUnpack. They tested the tool on the OARC

malware suspect repository and compared its

performance with that of the Portable Executable

Identifier (PEiD), a popular reverse-engineering tool

which uses a specific set of signatures to detect

unpack-execute behavior [20]. PolyUnpack

performed very well and was able to identify many

samples with unpack-execute behavior which PEiD

was unable to detect.

Another technique developed by Korczynski [15]

helped reconstructing packed binaries with self-

modifying code blocks up to some accuracy, easing

further analysis on them by malware analysts. Both

static and dynamic analysis were used in related

work and binaries having self-modifying property

and IAT destruction are focused for binary

reconstruction. Tough it is not directly related with

malware detection, Korczynski’s [15] technique

helps further methods and algorithms to be

developed for bounded version of undecidable

unpack-execute behavior.

There are mainly two phases in general unpacking

technique of developed by Korczynski [15]:

• First phase: Self-modifying code detection,

where dynamically loaded modules are being

tracked and several snapshots are being captured

including exported functions, in-direct

references and memory writes

• Second phase: Recovering import address table

using dynamically loaded function branches

using a heuristic filtering method

Journal of Internet Technology and Secured Transactions (JITST), Volume 7, Issue 2, June 2018

Copyright © 2018, Infonomics Society 592

Korczynski [15] carried out two experiments to

verify that the developed technique improves self-

modifying code discovery and IAT reconstruction

compared with the clean memory dumps. 117

malware samples belonging to 9 different malware

families were used in the first experiment. Initially,

35% of the malware had no IAT in the clean memory

dumps. This sample was analyzed and successful

IAT reconstructions up to some degree were

performed on 66% of them. In the second

experiment, a simple so-called hello world

application was developed and packed with 21

different packers. IAT reconstruction was partially

done on 61% of the packed binaries.

Kim et al. [14] studied distinctive properties of

obfuscation techniques applied on safe and malicious

samples and developed a technique named as

DynODet, first to detect dynamic obfuscation and

then use features of present obfuscation to classify

unknown sample as either clean of malware.

DynODet uses both static and dynamic analysis

results while determining whether any obfuscation is

present or not. Static analysis leverages finding the

expected path of the program before its execution

and using this discovery to compare seen actual

paths in dynamic analysis. Six different obfuscation

techniques were tracked and used by Kim et al. [14]:

self-modification, section mislabel obfuscation,

dynamically generated code, unconditional to

conditional branch obfuscation, exception-based

obfuscation, and overlapping code sequences.

Kim et al. [14] used 6,192 safe Windows

programs in their experiment and using distinctive

obfuscation features they reduced the false positive

rate nearly 70% in terms of one or more false

obfuscation detection on these safe samples. Totally

100,208 malware samples used for malicious data set

and using distinctive obfuscation features, one or

more of the tracked obfuscation techniques were

detected on 32.74% of the malware set with a

detection rate of 2.5% on the clean set. Findings

from the DynODet research showed its usefulness to

develop a new detection technique using the

presence of distinctive obfuscation techniques in

unknown samples.

3.3. Detecting Trigger-Based Behavior

Detection of trigger-based behavior by manual

analysis is a virtually impossible task due to the

intensive labor required. On the other hand, a precise

automatic analysis is not possible either; as explained

in Section 2.5, the general problem of automatic

identification of trigger-based behavior is

undecidable. Nevertheless, a great deal of help can

be obtained from automatic analysis to alleviate the

burden of manual analysis. Brumley et al. [2]

designed a tool for this task. Their approach

consisted of several phases: First, the different types

of triggers of interest are specified. Then, different

code paths are explored using mixed symbolic and

concrete execution. For a path explored by this

process, a formula is constructed representing the

condition that would trigger execution down the

path. Then a solver is employed to see whether the

condition can be true, and if so, what trigger value

would satisfy it.

Brumley et al. [2] developed this approach into a

program called MineSweeper. They tested

MineSweeper on real-world malware containing

trigger-based behavior. On every case, MineSweeper

was able to detect the trigger condition and the

trigger-based behavior. The analysis time varied

depending on the complexity of the malware, from 2

to 28 minutes. In general, MineSweeper is not

guaranteed to detect every piece of malware

containing trigger-based behavior, but it can

definitely be used as a tool of great assistance over

the impractical alternative of manual analysis.

Kang et al. [13] researched specifically botnet

malware samples and developed a trigger-based

behavior detection technique called BotMelt. In an

approach different from [2], they used dynamic

symbolic execution (also known as symbol

propagation) where network packets were used to

mark the data flow. This technique allows revealing

outbound trigger conditions different from locally-

decided trigger conditions. Authors evaluated their

technique in terms of validness of executed codes,

malicious activity detection rate and behavior

detection ratio among all possible behavior branches.

four different botnet malware samples, HwDoor,

Bisonal, KeyBoy, and Plez were used in evaluation

experiments, and BotMelt yielded successful results

in all evaluation criteria.

Papp et al. [18] developed a framework to detect

trigger-based malicious behavior in source code level

using a semi-automated approach. First, automated

source code instrumentation technique is being

applied to discover function calls and variables that

interact with running environment. Then fresh

symbolic values are given via replaced dummy

functions and mixed concrete and symbolic

execution tool is used to generate potentially

malicious test cases that could trigger hidden

malicious behavior of malware. At the final step,

execution traces for each generated test case input

were generated and passed to analysts for manual

analysis in order to classify them as either malicious

or benign.

In the experiment phase, Papp et al. [18] collected

five real-world malware samples, all written in C and

including some kind of trigger-based behavior in

implementation. The developed framework

succeeded in revealing trigger-based behaviors in

three of them. Moreover, unsuccessful cases of

hidden behavior detection were reported as failed

due to limitations of the open-source tools used.

Journal of Internet Technology and Secured Transactions (JITST), Volume 7, Issue 2, June 2018

Copyright © 2018, Infonomics Society 593

3.4. Malware Protection by Whitelisting and

Default Deny Approach

Given that some fundamental problems in

malware analysis and detection are undecidable, an

alternative solution applied by practical security

tools (e.g., Comodo’s Endpoint Security [9]) is the

default deny approach to protect users from malware

infections: Rather than blocking only blacklisted

malware applications and allowing all other safe and

unknown applications, only whitelisted applications

[22] are permitted to run on a host’s real operating

system (OS). Samples blacklisted as malware are

blocked by default. And, unknown programs are

permitted to run in some virtualized environments

such as containments, sandboxes, etc. Creating these

shadow file systems, registries, and communication

ports helps blocking most damages caused by

malicious application, and correctly defining a

program for virus detection [10].

Although the default deny approach provides a

higher level of protection compared to the default

allow approach, one of the current problems using

these virtualized environments is encountered in

application usability. Purdila and Terzis [19]

developed a dynamic browser containment

environment to protect users from web-based

malware, where they intercept system service

requests of processes and limit browser’s access to

critical system resources to prevent malware

damages. Although they managed to provide the

desired protection, their proposed technique

introduced some overhead; an 11.8% increase in

latency and a 13.4% decrease in throughput.

Song et al. [23] studied shellcode decoding

routines of polymorphic malware and reported the

intractability of modelling this kind of characteristic

behavior using known methods. They concluded that

modelling and whitelisting safe behaviors and

content would be a more promising and viable way

to pursue.

4. Conclusion

Malware detection has been a major problem

since the early days of computing. Theoretical results

have been given on the inexistence of perfect

detectors on various problems. Nevertheless, there is

a great deal of work to be done using less-than-

perfect tools. Bounded versions of the undecidable

malware detection problems are in fact decidable. By

assuming certain bounds on the time or memory

available to the malware, it should be possible to

develop detectors that work quite accurately in

practice.

5. References

[1] Jean-Marie Borello, Ludovic Mé, “Code obfuscation

techniques for metamorphic viruses”, Journal in
Computer Virology, 4(3):211–220, 2008.

[2] David Brumley, Cody Hartwig, Zhenkai Liang, James
Newsome, Dawn Song, Heng Yin, “Automatically
identifying trigger-based behavior in malware” In
Botnet Detection, pp. 65–88, Springer, 2008.

[3] Denis Bueno, Kevin J. Compton, Karem A. Sakallah,
Michael Bailey, “Detecting Traditional Packers,
Decisively”, Proceedings of the 16th International
Symposium on Research in Attacks, Intrusions, and
Defenses (RAID 2013), 2013.

[4] David M. Chess, Steve R. White, “An undetectable
computer virus”, Proceedings of Virus Bulletin
Conference, vol. 5, 2000.

[5] Mihai Christodorescu, Somesh Jha, Sanjit A. Seshia,
Dawn Song, Randal E. Bryant, “Semantics-aware
malware detection”, Proceedings of the 2005 IEEE
Symposium on Security and Privacy (S&P’05), 2015.

[6] Fred Cohen, “Computer viruses: theory and
experiments”, Computers and Security, 6(1):22-35,
1987.

[7] Fred Cohen, “Computational aspects of computer
viruses”, Computers and Security, 8(4):325-344,
1989.

[8] Fred Cohen, “Computer Viruses”, Doctoral
dissertation, University of Southern California, 1986.

[9] Comodo, “End Point Security and the Case For Auto
Sandboxing”, White Paper.
https://containment.comodo.com/resources/white-
papers/White-Paper-End-Point-Security-And-The-
Case-For-Auto-Sandboxing.pdf

[10] David Evans, “On the Impossibiltiy of Virus
Detection”, 2017.

[11] Eric Filiol, “Metamorphism, Formal Grammars and

Undecidable Code Mutation”, International Journal
of Computer Science, vol. 2, no. 9, pp. 70-75, 2007

[12] Prahlad Fogla, Wenke Lee, “Evading network

anomaly detection systems: Formal reasoning and
practical techniques.”, In Proceedings of the 13th
ACM Conference on Computer and Communications
Security (CCS), pp. 59–68, 2006

[13] Byeongho Kang, Jisu Yang, Jaehyun So, Czang Yeob

Kim, “Detecting Trigger-based Behaviors in Botnet
Malware”, Proceedings of the 2015 Conference on
research in adaptive and convergent systems, pp.
274-279, 2015

[14] Danny Kim, Amir Majlesi-Kupaei, Julien Roy, Kapil
Anand, Khaled Elwazeer, Daniel Buettner, Rajeev
Barua, “DynODet: Detecting Dynamic Obfuscation in
Malware”, 14th International Conference on Detection
of Intrusion and Malware, and Vulnerability
Assesment (DIMVA), 2017

[15] David Korczynski, “RePEConstruct: Reconstructing
binaries with self-modifiying code and import address
table descturction”, In MALWARE, pp. 31-38 IEEE
Computer Society, 2016.

Journal of Internet Technology and Secured Transactions (JITST), Volume 7, Issue 2, June 2018

Copyright © 2018, Infonomics Society 594

[16] Jonghoon Kwon, Heejo Lee, “BinGraph: Discovering
Mutant Malware using Hierarchical Semantic
Signatures”, In MALWARE, pp. 104-111. IEEE
Computer Society, 2012.

[17] Robert Luh, Sebastian Schrittwieser, Stefan
Marschalek, “LLR-based sentiment analysis for
kernel event sequences”, 31st IEEE International
Conference on Advanced Information Networking and
Applications (AINA), 2017.

[18] Dorottya Papp, Levente Buttyán, Zhendong Ma,
“Towards Semiautomated Detection of Trigger-based
Behavior for Software Security Assurance”, In
Proceedings of the 12th International Conference on
Availability, Reliability and Security (ARES), no. 14,
2017.

[19] Octavian Purdila, Andreas Terzis, “A Dynamic

Browser Containment Environment for Countering
Web-based Malware”, Proceedings of the 8th
RoEdunet International Conference, 2009.

[20] Jibz, Qwerton, snaker, xineohP. PEiD. peid.has.it,
2005.

[21] Paul Royal, Mitch Halpin, David Dagon, Robert
Edmonds, Wenke Lee, “PolyUnpack: Automating the
hidden-code extraction of unpack-executing
malware”, Proceedings of the 22nd Annual Computer
Security Applications Conference (ACSAC'06), 2006.

[22] Adam Sedgewick, Murugiah Souppaya, Karen
Scarfone, “Guide to Application Whitelisting”, NIST
Special Publiction (800-167), 2015.

[23] Yingbo Song, Michael E. Locasto, Angelos Stavrou,
Angelos D. Keromytis and Salvatore J. Stolfo, "On
the Infeasibility of Modeling Polymorphic
Shellcode"" In Proceedings of the 14th ACM
Conference on Computer and Communications
Security (CCS), Oct. 2007

[24] Diomidis Spinellis, “Reliable identification of

bounded-length viruses is NP-complete”, IEEE
Transactions on Information Theory, 49(1):280–284,
2003.

[25] Franz X. Steinparz, “A comment on Cohen’s theorem
about undecidability of viral detection”, Alive, vol. 1,
1991.

Journal of Internet Technology and Secured Transactions (JITST), Volume 7, Issue 2, June 2018

Copyright © 2018, Infonomics Society 595

