PART III

Context-Free Languages—Solutions

o1

Part III
Context-Free
Languages—Solutions

14 Phrase-Structure Grammars

73. Given this formal definition of derivation, what would be the effect of
extending P to (V UX)* x (V UX)*, of allowing ¢ on the left-hand side
of productions?

(Solution)

It P contains any production ¢ — 3 then (3 can be inserted anywhere—
any string o = o, directly derives oyfa, for any partitioning of «
into oy and «,. Potentially more significantly, there will be no string
that cannot be rewritten—productions for € can always apply. Thus we
would lose the notion of a terminating derivation, one in which the last
sentential form cannot be rewritten.

15 Context-Free Grammars

Lemma 2 Suppose G = (V,3,S,P) is a CFG. Then for all X € V and
w € X, if t is a derivation tree for w from X in G there is both a left-most
derivation of w from X in G and a right-most derivation of w from X in G
corresponding to t and these derivations are unique.

74. Prove the lemma.

(Solution)

From the previous lemma we have that if there is such a derivation tree
t then there is a derivation of w from X in G. Intuitively, it seems
clear that there should be a unique left-most derivation corresponding
to t, for suppose, for contradiction, that there were two distinct left-most

derivations:
== = = -
0 == Q] =, =

52

Basic FL'T—Finite and Regular Languages—Solutions

where o and «;, are the first sentential forms on which they disagree.
Since both are left-most derivations, they must, at this step, both rewrite
the left-most non-terminal of a;_;, which is unique. Since they both
must correspond to ¢, they both must rewrite that non-terminal to the
same string, that is, they must both apply the same production. It
follows that oy = «;, contradicting our choice of these as the first forms
on which the derivations differ.

We can also prove this by induction on the structure of ¢.

(BASIS:)

Suppose d(t) = 1. Then X = w is a derivation for w from X in G

corresponding to ¢, it is the only such derivation, and it is simultaneously
a left-most and a right-most derivation.

(IND:)

Suppose d(t) = k + 1 and that the lemma holds for all derivation trees
in G with depth no greater than k. By the definition of derivation trees,

W= WiV1W2 - - - Wp—-1VnWy

and t consists of a depth one tree for wiYiws - - w,_1Y,w, from X in
G with trees (of depth no greater than k) for v; from Y; in G attached
at the ‘Y;’s. By the induction hypothesis there are unique left-most
derivations corresponding to each of these smaller trees. Now, any left-
most derivation corresponding to ¢ must apply each of the productions
in the derivation from Y; before any of the productions in the derivation
from Y; ;. Moreover, since the left-most derivation from Y; is unique, it
must apply these in exactly the same order as they are applied in that
derivation. Consequently, the derivation that first applies

X — lewQ e wn—Iann

and proceeds to apply each of the productions of the left-most derivations

from the Y; in order is the unique left-most derivation of wyviws - - - wy,_1v,w,

from X in G corresponding to t.

The proofs for right-most derivations are similar.

Determining the Language Generated by CFG 93

15.1 Determining the Language Generated by CFG

Non-inductive Proof that L C L(G)

75.

16

76.

e

Prove that L(Gy) = {a'd’ | i > 0} by proving the remaining direction—
that L(Gg) C {a'b* | i > 0}.

(Solution)

To show that S G:*> w € ¥* implies that w € {a’b’ | i > 0}, by induction
ab

on the length of the derivation:

(BASIS)

S = w implies w = & which is just a®°.
ab

(IND:)

Suppose S ol Gupw € X and if S . v € ©* where k < n then

Gab

v € {a'b’ | i > 0}. Then, from the grammar

S = aSh = avb=w

Gab Gab

where S == v. Thus, by IH, v € {a’b’ | i > 0} and, consequently

Gab

w e {ab’ |i>1} C {a’b’ | i > 0}.

Some Closure Properties of the class CFL

Why do we need to assume that the sets of non-terminals are disjoint?

(Solution)

Otherwise there could be derivations in which productions of G; and pro-
ductions of G5 were both used, potentially deriving strings not derivable
in either.

Prove the claim.

54 Basic FLT—Finite and Regular Languages—Solutions

(=)
Suppose w € L(G). Then S =;> w which, from the construction of

G, implies that either S = S :G> w or S = Sy :G> w. Since the

variables of Gy and (G5 are disjoint, the derivation of w from S; can
involve only productions from P;,. Consequently, either S % w or
1

So % w and, hence, w € L(G1) U L(G3).

(<)
If w € L(G1) U L(G5) then either S, % w or Sy % w. In either case
1 2

S = S; =;> w witnesses w € L(G).

78. Give a construction that, from G; = (V1, %, S1, P1) and Gy = (V,, X, Sy, Ps),
builds a CFG G that generates L(G1)-L(G5). Argue that your construc-
tion is correct, that w € L(G) iff w € L(G) - L(G3).

(Solution)

Let
G:<‘/1U‘/2U{S},E,S,P1UP2U{S—)5152}>.

Then
S=weX & §= 85,5 =w
G G G .
& w:wlwgandSi?wi

& w=w-wy, w; € L(Gy)and wy € L(Gy).

16.1 Closure of CFL under substitution

79. Show that closure of CFL under substitution into CFL implies closure
of CFL under union, concatenation and Kleene closure.

(Solution)

Let
Gaip be S—a|b then L(Guyp) = {a,b}
G be S —ab then L(Gg) = {ab}
Gy be S—c|aS then L(Gy) = {a*}

Determining the Language Generated by CFG 95

Thus these are each in CFL. Let L, and L be any CFLs. Let f = {a —
Ly, b— Ly}. Then

f(L(Ga—I—b)) = LaULb f(L(Gab)) = La'Lb and f(L(Ga,*)) = (La)*.

16.2 Constructing Grammars for CFLs

80. Give a CFG for Lgy = {a’b’cF | i # j or j # k} by decomposing the
language into trivial languages.

(Solution:)

Lgg = Ly U Lp where Ly = {a'b’c* | i # j, 0 < 4,5k} and Lp =
{a'bic* | j#k, 0<14,7,k}.

Ly = Lo U Lp where Lo = {a'bc* | i < 4, 0 < 4,5,k} and Lp =
{a'b/c* | i >3, 0<i,j,k}.

LB = LEULF where LE = {(Libjck ‘] <]{3, 0 S Z,],k} and LF =
{a'bc* | j >k, 0<14,7,k}.

Lo =Lg-Ly- Ly where Lg = {a'b" | 0 < i}, Ly = {b' | 0 < i} and
L{c | 0< i}

LD:LJ-LG-LIWheresz{ai|O<i}.

LE :LKLLLM where LK = {CLi | 0 S Z}, LL = {bZCZ | 0 S l} and
Ly ={c|0<i}.

LF:LKLHLL

Then

Qo
N O W

bLc | e
cl

SN u~ T ETQD RO
CETLLLLLLLLL]
=

o6

81.

82.

83.

Basic FL'T—Finite and Regular Languages—Solutions

Note that the decomposition already gives the set of strings derived by
each of the non-terminals.

Show that L(Gs) C Lo.

(Solution:)

The trivial derivation is just S = ¢ which certainly yields a string
with equal numbers of ‘a’s and ‘b’s. Every other derivation starts with
S = 55, S = aSb, or = bSa, all three of which preserve the
property of having equal numbers of ‘a’s and ‘b’s.

Show that L2 g L(g2)

(Solution:)

Suppose w € L,. Then either w = ¢, in which case S derives w in
one step: S = &, or w contains at least one ‘a’ and one ‘b’. Assume,
for induction that every string in Ly that is strictly shorter than w is
derivable from S in G,. Let w; be the shortest non-empty prefix of w
that contains equal numbers of ‘a’s and ‘b’s. Then w = wywy for some
wq that also contains equal number of ‘a’s and ‘b’s. If wy is non-empty,
then both w; and ws are strictly shorter than w and, by the induction
hypothesis, derivable from S in G,. Thus,

S = SS = wiw, = w.

Suppose, on the other hand, that the shortest non-empty prefix of w
that contains equal numbers of ‘a’s and ‘b’s is w itself. Then either w
begins with ‘a’ and ends with ‘b’ or vice versa: w = aw.b or w = bw;a.
Moreover, w; has equal numbers of ‘a’s and ‘0’s and is strictly shorter
than w and, consequently, by the induction hypothesis, is derivable from
S in Go. Thus,

S = aSb == aw,b or S = aSbh == bw;a.

Show that the CFG of Section 15.1 can be converted to G,.

(Solution:)

We can simply substitute the rhs of the productions for A and B for
their occurrences in the productions for S:

S — a(Sb) | b(Sa) | SS |e.

Determining the Language Generated by CFG o7

84. Let Lp be the set of all strings of balanced parenthesis. Show that this
is a CFL by first defining it inductively.

(Solution:)

First of all, the empty string is a string of balanced parentheses. (If
you choose to interpret the language as the positive strings of balanced
parentheses there is no problem—your base case will just be ‘()’ instead.)
From this basis, if one has a string of balanced parentheses and encloses it
in a pair of parentheses the result is still a string of balanced parentheses.
This only gets parentheses nested in a single stack. Multiple stacks of
parentheses can be constructed by starting with two strings of balanced
parentheses and concatenating them. Thus:

e cc Lp.
® IwaLD then ‘("’LU")’ELD.
e If wi,wy € Lp then wy - wy € Lp.

e Nothing else.

As a CFG:
S—el|(S)]SS

Then we claim that Lg = Lp. That w € L, = w € Lp can be verified
from the analysis on which the inductive definition is based. For the
other direction (informally), suppose that w € Lp. Consider the paren-
thesis matching the initial parenthesis of the string. If this matching

parenthesis is the final parenthesis of the string then w = ‘(" - w’ - ‘),
where w' is a strictly smaller string of balanced parentheses. Thus it is
derived by

S= ()= (w') =w

where the existence of the derivation of w' from S is justified by the
induction hypothesis. If, on the other hand, the parenthesis matching the
initial parenthesis is not the last parenthesis then w = ‘(’-w'-¢)’-wy, where
‘(-w' -) (call it wy) and wy are both strings of balanced parentheses
strictly smaller than w. Then, again by the IH,

S = 85 = w8 = wwy = w.

58 Basic FL'T—Finite and Regular Languages—Solutions

17 Normal Forms for CFGs

17.1 Useless Symbols
85. Let G be the grammar in which P is:

S — aSb|aXY |¢
X — aX |aS
Y — Yb
Z — Xb
(a) What is Productive(G)?
(Solution)
{a,b,5, X, Z}.

(b) Let G, be the grammar in which P, = P N (Productive(G) x
(Productive(G))*). What is P;.?

(Solution)

S — aSh|e X —aX |aS Z — Xb

(c) What is Reachable(G4)?
(Solution)
{S,a,b}.

(d) Let Gy be the grammar in which P, = P; N (Reachable(G;) x
(Reachable(G1))*). What is P,?

(Solution)
S — aSh|e.

(e) What is Reachable(G)?
(Solution)
{S,X,Y,a,b}.

(f) Let G3 be the grammar with P; = PN(Reachable(G) x (Reachable(G))*).
What is P5?

(Solution)

S—aSb|aXY |e X -—aX|aS Y —Yb

Determining the Language Generated by CFG 99

(g) What is Productive(G3)?

(Solution)
{a,b,S, X}

(h) Let G4 be the grammar with P, = PsN(Productive(G3) x (Productive(Gs))*).

What is P47
(Solution)

S—aSble X —aX|aS

17.2 e-Productions

86. Prove that if G is a positive CFG then there is no derivation of ¢ from
any non-terminal in G.

(Solution)

If G has no e-productions then the right-hand side of each production
has at least one symbol. Hence, it is at least as long as the left-hand side
and, consequently, every sentential form in a production is at least as
long as its predecessor. Since the initial sentential from (S) has length
one, every sentential form has length one. Therefore, ¢, having length
zero, cannot be derived.

87. Give an example of a CFG that includes an e-production but cannot
derive the empty string.

(Solution)

How about:
S — aA A—e.

88. What happens if L(G) is not positive?

(Solution)

If L(G) is not positive then S is nullable and there must be some pro-
duction S — 7 for which S — ¢ € Nulledg(S — 7). Note that every
other e-production in the nulled grammar can be safely removed, but if
we remove S — ¢ also the grammar will no longer derive €.

60 Basic FL'T—Finite and Regular Languages—Solutions

17.3 Unit Productions

89. Why can’t we remove useless symbols first?

(Solution:)

The process of eliminating e-productions may will make every symbol
that derives only the empty string unproductive. Similarly, any symbol
that is reachable only in the middle of some sequence of unit productions
will become unreachable when unit productions are eliminated.

17.4 Chomsky Normal Form (CNF)

90. Convert the grammar

G: T | S+T
T

| (5)

S —
T —

to CNF.

(Solution:)

First we remove the unit productions:

Gi: S — S+T | () | =

Then we add the pre-terminals:

Gy: S — SAT | LSR | =
T — LSR | z
A — +
L — (
R —)

Note that, as ‘z’ is generated only by non-branching rules (i.e., of the
form ‘X — o), there is no need to add a preterminal for ‘z’—since no
occurrences of ‘z’ get replaced, the corresponding non-terminal will be
unreachable.

Determining the Language Generated by CFG 61

91.

92.

Finally, we convert the three-branching rules to binary form:

Go: S — SS | LSy | =

Sl — AT

Sy — SR

T — LT | =x

T — SR

A — +

L — (

R —)

Suppose G is a CFG in CNF and S :;> w. Give an upper bound on the

length of derivations of w from S in G.

(Solution)

Note that there will be exactly one production of the form A — o
for each symbol in w, thus exactly |w| of these. Furthermore, each
production of the form A — BC adds exactly one to the length of
the sentential form to which it is applied. Since the length of the initial
sentential form is 1, there can be no more than |w| — 1 of these. Hence,
the derivation can have no more than n+n —1 = 2n — 1 steps, which is
to say it can include no more than 2n sentential forms.

Give a lower bound on the length of derivations of w from S in G under
the same assumptions.

(Solution)

Here we note that the only productions that increase the length of a
sentential form in a derivation in GG are the ones of form A — B(C' and
these increase its length by exactly one. Consequently, the derivation
must employ at least |w| — 1 of these productions. As we just argued,
it must also employ |w| productions of the form A — o. Thus, there
must be at least 2n — 1 steps to the derivation and it must include at
least 2n sentential forms.

It follows that every derivation in a CNF grammar is of length exactly
2|w| (has 2|w| — 1 steps).

We can get both the upper and lower bound easily by appealing to the
form of the derivation trees. Note that, for any grammar in CNF, these

62

93.

Basic FL'T—Finite and Regular Languages—Solutions

consist of a binary branching portion with a “fringe” of unary branching
productions at its leaves. The corresponding derivations will include a
step for each of the internal nodes of the tree, which is to say, for each
of the nodes in the binary part. Note, also, that this binary portion has
exactly |w| leaves. It remains only to establish that the number of nodes
in a binary tree with n leaves is 2n — 1. This is an easy induction on the
structure of the tree: the trivial binary tree has one leaf and 2 — 1 =1
nodes; a binary tree constructed from two binary trees with n; and n,
leaves (and, by IH, 2n; — 1 and 2ny; — 1 nodes) has n; + ns leaves and
2n1 — 14 2ny — 141 =2(ny + ny) — 1 nodes.

Prove that the class of CFLs is closed under reversal:

LR = {w® | w e L}.

(Solution)

For G = (V,%,S,P) let G' = (V,%,S,P') where A — o € P' &
A — « € P (i.e., P'is P with the right-hand side if its productions
reversed; of course, this effects only the binary productions of G). To
show that L(G'") = L(G)R we will prove that X :;> a iff X % o for
all X € V, a € (VUZX)* by induction on the number of steps in the
derivation. We will use derivations with 1 step as the base case.

(Basis:)
X?a & X —aeP
s X —akep
s X = ok
G/
(Ind:)

X%a = X?BC%alagzaandB%al,C%aQforsomeB,CEV

& X = CB % ;R ® for some B,C € V (by IH)

& X?CVR.

Determining the Language Generated by CFG 63

It follows, then, that

wEL(G)@S%w@S%wR@)wREL(G')

which is to say, L(G') = L(@)*.

17.5 Greibach Normal Form (GNF)

94.

18

95.

96.

Suppose G is a CFG in GNF and S =;> w. Give both an upper and a

lower bound on the length of derivations of w from S in G.

(Solution)

This is nearly immediate. Every production in a GNF grammar adds
exactly one terminal to the sentential form to which it is applied. Hence
there are exactly |w| steps in the derivation of w from S and the deriva-
tion includes n + 1 sentential forms.

Deciding Membership

Give an algorithm to test if € € L(G), where G is any CFG.

(Solution)
Compute Nullable(G). S € Nullable(G) iff ¢ € L(G).

Put this together with the ideas of this section to give a completely
general algorithm that decides membership for any CFG.

(Solution)

Given G and w. If w = ¢ then return TRUE iff S € Nullable(G).
Otherwise convert G to GNF. Systematically generate all derivations in
G of length |w|. If the last sentential form of one of these is w then return
TRUE, otherwise return FALSE.

18.1 Recursive Descent Parsing

97.

Carry out the procedure for Parse(S, ab) for the grammar:

S — AB A — Sa A—¢ B —bS B —c¢

64

Basic FL'T—Finite and Regular Languages—Solutions

with the productions ordered left to right as given.

(Solution)

The stack of recursive calls looks something like:

Parse(S,ab)
Parse (AB,ab)
Parse(SaB,ab)
Parse(ABaB,ab)
etc.

