Basic Formal Language Theory

James Rogers
jrogers@cs.ucf.edu

PART I

Basic Concepts

Basic Formal Language Theory

Part 1
Basic Concepts

1 Computation and Languages

This tutorial is intended to refresh your understanding of the topics covered
in a typical undergraduate level Formal Languages class (at UCF, COT4210).
While the presentation occasionally assumes some familiarity with these topics,
we have attempted to explicitly define every notion we use; hence, it should
be accessible even for those without that background. For the most part, we
follow the notation and conventions of Hopcroft and Ullman (on reserve in
the library). The first six chapters of that text provide a slightly different
perspective on the material as well as a wealth of additional exercises.

This tutorial covers the basic aspects of Formal Language Theory—the
study of the mathematical properties of abstract languages, in which the el-
ements of the language are sequences of arbitrary symbols rather than the
sequences of words, letters, or characters that make up most (written) natural
languages. Nonetheless, our focus will be directed to the Theory of Computa-
tion—the study of whether problems can be solved algorithmically and how
difficult it is to do so. The first question we have to address, then, is how these
two things are related.

When we study computability we are studying problems in an abstract
sense. For example, addition is the problem of, having been given two numbers,
returning a third number that is their sum. Two problems of particular interest
in Computer Science, which you have probably encountered previously, are the
Traveling Salesperson Problem (TSP) and the Halting Problem. In TSP one
is given a list of distances between some number of cities and is asked to
find the shortest route that visits each city once and returns to the start. In
the Halting Problem, one is given a program and some appropriate input and
asked to decide whether the program, when run on that input, loops forever or
halts. Note that, in each of the cases the statement of the problem doesn’t give
us the actual values we need to provide the result for, but rather just tells us
what kind of objects they are. A set of actual values for a problem is called an
instance of the problem. (So, in this terminology, all the homework problems
you did throughout school were not problems but were, rather, instances of
problems.)

4 Basic FLT—Basic Concepts

A problem, then, specifies what an instance is, i.e., what the input is, and
how the solution, or output, must be related to the that input. There are a
number of things one might seek to know about a problem, among them:

e Can it be solved algorithmically; is there a definite procedure that solves
any instance of the problem in a finite amount of time? In other words,
is it computable. Not all problems are computable; the halting problem
is the classic example of one that is not.

e How hard is it to solve? What kind of resources are needed and how
much of those resources is required? Again, some problems are harder
than others. TSP is an example of a frustrating class of problems that
have no known efficient solution, but which have never been proven to
be necessarily hard.

When we say “solved algorithmically” we are not asking about a specific
programming language, in fact one of the theorems in computability is that es-
sentially all reasonable programming languages are equivalent in their power.
Rather, we want to know if there is an algorithm for solving it that can be ex-
pressed in any rigorous way at all. Similarly, we are not asking about whether
the problem can be solved on any particular computer, but whether it can be
solved by any computing mechanism, including a human using a pencil and
paper (even a limitless supply of paper).

What we need is an abstract model of computation that we can treat in a
rigorous mathematical way. We’ll start with the obvious model:

c||Internal State|——

Here a computer receives some input (an instance of a problem), has some
computing mechanism, and produces some output (the solution of that in-
stance). We will refer to the configuration of the computing mechanism at
a given point in it’s processing as its internal state. Note that in this model
the computer is not a general purpose device: it solves some specific problem.
Rather, we consider a general purpose computer and a program to both be
part of a single machine. The program, in essence, specializes the computer
to solve a particular problem.

We can simplify this somewhat by eliminating the output if a couple of
mild assumptions hold:

Computation and Languages 5

1. Every instance of the problem has a solution.
2. The solution to any instance of the problem is unique.

3. We can list all instances of the problem along with its possible solutions
in a systematic way.

Note that there are likely to be infinitely many instances of a problem and
infinitely many possible solutions for each of them. What we mean by listing
them in a systematic way is that any given instance and possible solution will
eventually be listed. Note also that every possible solution includes all the
incorrect ones along with the correct one. (Otherwise we would essentially be
assuming that the problem was computable.)

These assumptions hold for addition, for instance. Every instance of addi-
tion has a unique solution. Each instance is a pair of numbers and the possible
solutions include any third number. We can systematically list all instances
along with all possible solutions by systematically listing all triples of numbers.
This is not completely trivial—we can’t, for instance, list all triples starting
with 0 and then all triples starting with 1, etc. Since there are infinitely many
triples starting with zero, we would never get around to listing any starting
with one. Suppose, though, that we are only concerned with the Natural Num-
bers, {0,1,...}. If we first list all triples that sum to zero (i.e., just the triple
(0,0,0)) and then all triples that sum to one (i.e., (1,0,0), (0,1, 0), (0,0, 1)),
etc., we are guaranteed that we will eventually list any given triple.

With the exception of the assumption that the solution is unique (which can
be fudged in a variety of ways) these assumptions are pretty nearly minimal.
We can’t even consider solving a problem algorithmically unless every instance
has a solution. An algorithm must produce some answer for every instance.
If there is no answer for some instance, then whatever answer it produces will
necessarily be wrong. (Note that if we modify the problem to require that we
return “No Solution” in the case that none exists, we will have converted it into
a problem that has a solution for every instance—albeit one that sometimes has
the solution “No Solution”.) The third assumption is true of every reasonable
problem. In fact, it takes a fair amount of the theory of computation to even
get to the point where we can argue that problems that don’t satisfy the
assumption might exist.

Under these assumptions we can reduce our model to a machine for check-
ing the correctness of solutions:

6 Basic FLT—Basic Concepts

)

Y N

Internal State

Instance/
Solution

This machine takes an instance of a problem along with a possible solution as
its input and lights one lamp () if the solution is correct and the other (N)
if it is not. We will refer to an algorithm for the original model, in which we
are given an instance and must produce a solution as an algorithm for solving
the problem and we will refer to an algorithm for the second model as an
algorithm for checking the problem.

This leads us to our first theorem.

Claim 1 Under the assumptions above, if there is an algorithm for checking
a problem then there is an algorithm for solving the problem.

Before going on, you should think a bit about how to do this. For this claim the
assumption that the solution of each instance is unique is not necessary; but
both of the others are. If you had a program that checks whether a proposed
solution to an instance of a problem is correct and another that systematically
generates every instance of the problem along with every possible solution,
how could you use them (as subroutines) to build a program that, when given
an instance, was guaranteed to find a correct solution to that problem under
the assumption that such a solution always exists?

Computation and Languages 7

Proof (Claim 1): Suppose we had a subroutine that, each time we call it,
returns the next instance/solution in the list. We can simply put this in a
loop that gets the next instance/solution and checks to see if the instance
listed matches the instance we are to solve. If it does, we use the checking
program as a subroutine to tell us if the solution listed along with that instance
is correct. If it is we are done, otherwise we reiterate the loop.

This gives us an effective procedure that we claim is an algorithm for solv-
ing the problem. There are two things we need to prove to verify that it is.
First we must confirm that, for any input, it always produces a solution in a
finite amount of time (in other words, the procedure always terminates). Then
we must show that the solution it produces is, in fact, correct (in other words,
the procedure solves the problem). The second part is nearly immediate. The
procedure only produces a solution if the checking algorithm says it is cor-
rect. The correctness of the checking algorithm ensures the correctness of our
solution. The first part is nearly as simple. Since there is a correct solution
to every instance and every given combination of an instance and a possible
solution will be listed eventually, we are certain that our given instance and
its correct solution will show up in a finite amount of time. At that point, the
checking algorithm says “Yes” and our procedure halts. -

The converse of the claim is also true.

Claim 2 Under the assumptions above, if there is an algorithm for solving a
problem then there is an algorithm for checking it.

The proof of this is your first exercise.

1. Prove Claim 2. Show how, using an algorithm to solve the problem as
a subroutine, one can construct an algorithm for checking the problem.
This claim depends only on the assumption that there is a unique so-
lution for every instance (1 & 2), not on the assumption that instances
and solutions can be enumerated (3).

Putting the claims together we get a theorem.

Theorem 1 Under our assumptions, a problem can be solved algorithmaically
ioff it can be checked algorithmically.

In other words, the two models are equivalent computationally. It is possible
to compute solutions if and only if it is possible to check them. Given this, we

8 Basic FLT—Basic Concepts

will usually restrict attention to the simpler model, that is, we will usually be
concerned with identifying solved instances of a problem.

Without loss of generality we can assume that instances and solutions are
encoded as strings of symbols. Our task is to distinguish those strings that
encode solved instances of the problem among all strings drawn from the same
set of symbols. Such a distinguished set of strings is, of course, a language in
the formal sense. One approach, then, to studying computability in general is
to study how to define and recognize formal languages.

Formal Languages 9

2 Formal Languages

The purpose of this section is to give precise mathematical meaning to the
notions of string and language and the operations on them.

2.1 Alphabets, Strings and Languages
An alphabet is any finite set of symbols:

e.g., ¥ ={a,b,c}.

We will generally use X (the Greek capital letter sigma) to denote our alphabet.
When we need to distinguish two alphabets, the second will usually be denoted
by I' (the Greek capital letter gamma). Lower-case Greek letters will be used
to denote arbitrary symbols in an alphabet (e.g., 0 € &, v € T'.)

The set of all strings over ¥, denoted X*, is the set of all sequences of
symbols drawn from 3.

e.g., w = abbac € {a,b,c}".

We will usually employ lower case variables near w, v and u, sometimes primed
(w") and sometimes with subscripts (w;), to denote strings. Included in ¥* is
the empty string (the sequence of length zero), denoted here as €. Other ways
of denoting the empty string that you may encounter include A and A (lower
and upper case Greek letter lambda). We will always use «.

We can formalize this in the following way:

Definition 1 (Strings over an alphabet ¥) Given any alphabet X:
e The emply sequence is a string over ¥ (i.e., € € ¥*).

e If v is a string over X3, o is a symbol in ¥ and w = v - o, then w is a
string over ¥ (i.e., v € ¥*, 0 € ¥ and w = v - 0 implies w € ¥X*.

e Nothing else is a string over X.

This is an example of an inductive definition of a set: we supply a basis—
the simplest cases of members of the set (here just €), one or more inductive
clauses—ways of building new members of the set out of simpler ones, and
a closure clause a statement limiting the members of the set to those con-
structible from the basis by the operations of the inductive clauses. Every

10 Basic FLT—Basic Concepts

string in 3*, then, can be understood to have been built from the empty
string by finitely many concatenations of single symbols.

Note that ‘-’ denotes the operation of concatenation, just as ‘+’ denotes the
operation of addition. The result of the concatenation is just the juxtaposition
of the two operands: aba - a = abaa, just as 2 +7 = 9. While it is a slight
abuse of notation, we will follow this even when the one or both of the strings
are represented by variables. Thus the string denoted by w - o will usually be
expressed as wo.

Inductive definitions of sets support recursive definitions of operations on
those sets. The length of a string w € ¥* is denoted |w|. We define this
recursively as follows:

Definition 2 (Length of a string) For all w € ¥*:

] = 0 if w=-¢,
Sl v+l ifw=we.

Note that, given the definition above, every string is either ¢ or is constructed
by concatenating some o € ¥ onto some v € ¥* and so the definition need only
treat these two cases. In the latter case, the definition recurs—the operation
is defined in terms of the result of applying the operation to v. The fact that
w is obtained from v by concatenation of ¢ and that all strings, by definition,
are obtained from ¢ by a finite series of such concatenations, insures that the
recursion is well-founded—all w will be reduced to ¢ in finitely many steps—
thus the recursion is guaranteed to terminate.

In a similar way, we can extend the operation of concatenation to apply to
pairs of strings (not just a string and a symbol).

Definition 3 (Concatenation of strings) For all w,v € ¥*:

w ifv=c¢
w,vz{ fo=c,

(w-u)-o if v=uo.

A string consisting of a single symbol is a unit string. It is conventional to
fail to distinguish a symbol from the unit string containing just that symbol.
Thus when we say a - a = aa, we do not need to worry about which, if either,
‘a’ is a symbol or a string.

Finally, we will denote the reversal of a string w as w®. This is just w
with the order of its symbols reversed, i.e.,

(aabac)® = cabaa (radar)® = radar at=a

Formal Languages 11

Definition 4 (Reversal of a string.) For all w € ¥*:

R {e ifw=g¢,
w = R .
o-v if w = vo.

Definition 5 (Language over an alphabet) A language, L, over an al-
phabet, 3, is any (not necessarily proper) subset of ¥*: L C ¥*.

Note that among the subsets of X* is the empty set () which is just the language
over X* that contains no strings, usually referred to as the empty language.
It is important not to confuse the empty string ¢ with the empty language 0.
They differ in type: the empty string is the sequence of no symbols, the empty
language is the set of no strings.

2.2 Operations on Languages

As they are just sets, all of the usual operations on sets apply to languages.
Pairwise union (U) and intersection (M) should be familiar.

Definition 6 (Union and intersection) For Li, L, C ¥*:

L1UL2 déf {’UJ'UJGLl O?”UJGLQ}

LiN Ly def {w|w € L and w € Ly}

The relative complement, or set difference, of two sets over the same alphabet
is:

Definition 7 (Relative complement) For Ly, L, C ¥*:

LizL, ¥ {w|weL andw ¢ Ly}

The complement of a language L over ¥* (denoted L) is just all the strings
over X that are not in L.

Definition 8 (Complement of a language) If L is a language over an al-
phabet X3, then

LY v\ L.

The cardinality of a set is its size:

12 Basic FLT—Basic Concepts

Definition 9 (Cardinality of a set) If A is any finite set then card(A) is
the number of elements in A. If A is not finite the we will say card(A) is
infinite.

(We will not distinguish between countably infinite sets and the larger infinite
sets.)
The Cartesian product of two sets is the set of pairs drawn from them:

Definition 10 (Cartesian product) If A and B are arbitrary sets:
AxBY {{a,b) | a € Abe B}
The powerset of a set is the set of all its subsets:

Definition 11 (Powerset) If A is any set:

P(A) ¥ {B|BC A}.

The characteristic function of s set is a function that tests for membership
in that set:

Definition 12 (Characteristic function of a set) If A is any set and B C
A, then xg: A — {0,1} is:

(@) déf{ 1 ifz€eB

0 otherwise .

We generalize pairwise union and intersection to allow union and intersec-
tion of possibly infinite families of languages. If Li, Lo, ... is such a family
of languages, then their infinite union is denoted J,[L;] and their infinite in-
tersection is denoted (),[L;]. These are just the set of strings that are in any
(union) or all (intersection) of the L;.

Definition 13 (Infinite union, intersection) If Li, Lo, ... is an infinite se-
quence of languages then

L)€ LiuL,u--
1€N
L)€ LinL -

1€N

Formal Languages 13

Just as we extended concatenation to pairs of strings, we can extend it to
pairs of languages:

Definition 14 (Concatenation of languages) For any languages Ly and
Ly, (not necessarily over the same alphabet):

Li-Lo={w-v|wé€ L andv € Ly}.

Which is to say, the concatenation of two languages is just the concatenation
of all pairs of strings drawn from them.

If w is a string over some alphabet ¥ (i.e., w € X*) and ¢ is a natural
number (i.e., i € N where N = {0,1,2,...}), we will use the notation w' to
represent ¢ copies of w concatenated together. So

(aaba)® = aabaaabacaba

a7 = aaaaaaq

Definition 15 (Iteration of a Language) If L is a language and i € N

then:
TV L ifi=j+1.

Definition 16 (Closure of a Language) If L is a language L* is its Kleene

closure: _
L =Ly
i>0
L™ is the positive closure of L:
Lt =i
i>1

This leads the the second exercise.

2. Is L* ever empty? What about L*? Under what circumstances does L™
contain €? (Consider the cases: L = and L = {¢}.)

14 Basic FLT—Basic Concepts

3 An Informal Preview

We are going to focus on two related issues: how to define languages and how
to specify algorithms for recognizing them—for identifying the strings in the
language. These are actually just different perspectives on the same problem,
since an algorithm for recognizing a language can be understood as a definition
of that language. In the case of finite languages this is easy. We can define
a finite language simply by listing all of its strings, and such a list can be
“hard-coded” into a recognition algorithm (or “hard-wired” into a machine).
It is the infinite case that is more interesting. Since our descriptions and
algorithms must, necessarily, be finite, we will be studying, in essence, finite
ways of defining infinite sets. These will fall into three broad categories:

e Algebraic definitions—in which languages are defined by expressions
specifying how they are built up from a finite set of simple languages
using various operations for combining languages.

e Grammars—which can be understood as algorithms for generating languages—
for listing all and only the strings in the language.

e Automata—which are simply abstract models of computers specialized
to recognize particular languages.

Remarkably, while we can limit the power of these mechanisms in a variety
of independent ways it will frequently turn out that the languages definable
using a restricted mechanism of one sort will be exactly the languages definable
using another mechanism restricted in a completely independent way.

We can get an intuitive idea of what is involved by considering a range of
variations in what can be stored in the internal state of our second model of

computation.
VR
Y N

| [Internal State

i

Data Storage

Instance/
Solution

An Informal Preview 15

Here we have limited the internal state to include only a program counter
and perhaps some status information, all of which is finitely bounded. We
can then vary the power of the model by augmenting this with varying types
of data storage. Our objective is to get you thinking about the problem of
recognizing strings given various restrictions to your model of computation.
We will work with whatever representation of an algorithm you are comfortable
with (C or Pascal or, perhaps, some form of pseudo-code—just make sure it is
unambiguous). In all of the problems we will assume the same basic machine:

e The program is read-only (it can’t be modified, you might even think of
it as being hard-wired).

e For the sake of uniformity, let’s assume the following methods for access-
ing the input:

— input (), a function that returns the current input character. You

can use this in forms like

i:=input(), or

if (input() == ‘@’) then ..., or

push(input).
This does not consume the character; any subsequent calls to input ()
prior to a call to next () will return the same character. You may
assume that input() returns a unique value EOF if all of the input
has been consumed.

— next (), a function that bumps to the next position in the input.
This discards the previous character which cannot be re-read. You
can either assume that it returns nothing or that it returns TRUE in
the case the input is not at EOF and FALSE otherwise.

e There are no internal data registers. The way we are varying the power
of these models is by changing the type of data storage that is available.
You cannot save any data in any way except explicitly in the struc-
ture you are given. In particular, there are no temporary variables, no
malloc()s, etc.

e The program returns TRUE if the input is a string in the language and
FALSE otherwise.

There are a number of parts to this exercise, but none of them are intended
to be very difficult. Where you are told to sketch an algorithm, the algorithm

16 Basic FLT—Basic Concepts

should be pretty simple—the languages you are asked to recognize are more
or less tailored to the computational model you are using. Don’t be obsessive
about the format or your code—declarations, etc.—only include what is needed
to make the algorithm clear. The questions asking whether you can or can’t
recognize a language within a given model will take a little more thought, but
we are not looking for a rigorous proof, just an indication of what makes it
hard or even impossible for that model to do it.

3. First model: Computer has a fixed number of bits of storage. You will
model this by limiting your program to a single fixed-precision unsigned
integer variable, e.g., a single one-byte variable (which, of course, can
store only values in the range [0, ..., 255]), etc. Limit yourself, further,
to a single call to input() which occurs in the argument of a case (or
switch) statement. The reason for this will become clear in the last part
of this question.

(a) Sketch an algorithm to recognize the language: {(ab)’ | i > 0} (that
is, the set of strings in {a, b}* consisting of zero or more repetitions
of ab: {e, ab, abab, ababab, . ..}).

(b) How many bits do you need for this (how much precision do you
need)? Can you do it with a single bit integer?

(c) Sketch an algorithm to recognize the language: {(abbba)’ | i > 0}.
(d) How many bits do you need for this?

(e) Suppose we relax the last limitation and allow any (finite) number
of calls to input occurring anywhere in the program. Sketch an al-
gorithm for recognizing the language of part (a) using (apparently)
no data storage. Argue that any algorithm for recognizing this lan-
guage must store at least one bit of information. Where does your
program store it?

4. Second model: Computer has a single unbounded precision counter
which you can only increment, decrement and test for zero. (You may
assume that it is initially zero or you may include an explicit instruc-
tion to clear.) Limit your program to a single unsigned integer variable,
and limit your methods of accessing it to something like inc (i), dec (i)
and a predicate zero?(i) which returns true iff ¢ = 0. This integer
has unbounded precision—it can range over the entire set of natural
numbers—so you never have to worry about your counter overflowing.

An Informal Preview 17

It is, however, restricted to only the natural numbers—it cannot go nega-
tive, so you cannot decrement past zero. You may call input () as many
times as you like.

(a) Sketch an algorithm to recognize the language: {a‘b* | ¢ > 0}. This
is the set of strings consisting of zero or more ‘a’s followed by ezactly
the same number of ‘b’s.

(b) Can you do this within the first model of computation? Either
sketch an algorithm to do it, or make an informal argument that it
can’t be done.

¢) Give an informal argument that one can’t recognize the language:

Gi infi | arg t that 't gnize the languag
{a'b'c" | i > 0} within this second model of computation (i.e, with
a single counter).

5. Third model: Computer has a single LIFO stack containing fixed preci-
sion unsigned integers (so each integer is subject to overflow problems)
but which has unbounded depth (so the stack itself never overflows). In
your program you should limit yourself to accessing this with methods
like push(i), top(), pop(), and a predicate like empty?(). These will
push a value into the stack, return the value stored in the top of the
stack (the most recent value pushed), discard the top of stack, and test
the stack for empty, respectively. Don’t forget that you have no storage
outside of the stack, so you need to work directly with the values in the
stack—you can’t pull a value out of the stack and assign it to some other
variable. Similarly, while you can, again, call input() as often as you
wish, the only way to store the value of the input is to push it directly
into the stack (e.g., push(input())).

(a) Sketch an algorithm to recognize the language: {wcw® | w €
{a,b}*}. This is the set of strings made up of any sequence of
‘a’s and ‘b’s followed by a ’c’ and then exactly the same sequence of
‘a’s and ‘b’s in reverse order, so these are all palindromes over the
alphabet {a, b, c} in which ¢’ occurs only as the middle symbol. It
includes strings like:

abbacabba aca abaabcbaaba ¢ (which, of course, equals ece).

(b) What is your intuition about recognizing this language within the
second model (i.e., using just a single counter)?

18

Basic FLT—Basic Concepts

(c) What is your intuition about the possibility of recognizing the lan-
guage {wew | w € {a,b}*}? This is the set of strings made up of
any sequence of ‘a’s and ‘b’s followed by a ’c¢’ and then exactly the
same sequence of ‘a’s and ‘b’s in exactly the same order; it’s referred
to as the (deterministic) copy language.

6. Fourth and final model: Computer has a single FIFO queue of fixed
precision unsigned integers with the length of the queue unbounded.
You can use access methods similar to those in the third model. In this
model you will have something like front () that will return the value
in the front of the queue (the eldest item) rather than top().

(a) Sketch an algorithm to recognize the copy language ({wew | w €
{a,b}"}).

(b) What is your intuition about the possibility of recognizing the palin-
drome language of Question 5a ({wcw® | w € {a,b}*})?

Inductive Proof 19

4 Inductive Proof

Inductive proofs exploit the structure of inductively defined sets. Since every
member of such a set is either one of the basis elements or is built from them
using finitely many applications of the inductive clauses, we can prove that
every member of the set has a certain property by proving that each of the
basis elements has that property and that the inductive clauses preserve it.

4.1 Simple Induction on the Natural Numbers

The most familiar application of induction is in proving properties of the nat-
ural numbers. Here we prove that the property holds for zero and that if it
holds for an arbitrary natural number n then it holds as well for n + 1. As an
example, consider the proposition:

Pn): S li]= w

0<i<n

Proof:
(Basis)
> o<icolil =0=0(0+1)/2.
(Inductive Hypothesis)
Suppose) o<;c,[t] = n(n +1)/2.
(Induction)
To show that } 3y ;cniy[i] = (n+1)((n+1) + 1)/2:

ZOSiS(n—H) [i] = Zogignm +(n+1)

n(n+1)/2+(m-+1) byIH
(n(n+1)+2(n+1))/2

(n+2)(n+1)/2 distributive law
= (n+1)((n+1)+1)/2.

_|

It is worth considering why this works. The only case we explicitly prove
is the base case (n = 0). To see that the proof implies that the proposition
holds for all natural numbers, let £ be an arbitrary natural number. Now

20 Basic FLT—Basic Concepts

either £ = 0 and we are done, or k£ is n + 1 for some n, namely £ — 1, and we
can apply the inductive step. But this actually proves a hypothetical: If the
property is true of £k — 1 then it is also true of k. By itself this does not prove
the k case; all it does is replace the need to prove the k case with a need to
prove the k£ — 1 case. If £ — 1 happened to be 0 we would, again, be done,
since this case is proved. On the other hand, if £ — 1 # 0 then the inductive
step applies again, reducing the £ — 1 case to the k£ — 2 case; the inductive step
applies uniformly to all cases other than the base case. So, in a sense, we are
building a chain of hypotheticals:

P(k) < P(k—1) < P(k—2) < -

(The ‘<=’ should be read “is implied by” or “if”.) The key is that for any actual
value of n we are guaranteed to arrive at the base case after some finite number
of applications of the inductive step. So, invariably, the chain of hypotheticals
has the form:

Pk)<=Pk—1) <= P(k—2)«<--- < P(1) < P(0).

Since we have proved P(0), the implication proves P(1) which in turn proves
P(2), etc. Each of the propositions in the chain is true. In particular, P(k) is
true and, since the choice of £ was arbitrary, P(n) is true for all n € N.

4.2 Simple Induction on Inductively Defined Sets

In general induction is valid for any well-ordered set, that is, for any set with
a well-defined notion of predecessor for which there are no infinite sequences
of elements related by predecessor. What this means is that, while any given
point may have many immediate predecessors, if one follows any chain of
predecessors from that point one will invariably arrive at a minimal element—
one with no predecessors. The minimal elements form the basis of the set.

Sets that are defined inductively are always well-ordered. The basis of the
definition is the set of minimal elements. The predecessors of an element in-
troduced by an inductive clause are the elements from which it is constructed.
Since every element is either a basis element or is constructed by finitely many
applications of the inductive clauses, it is certain that every chain of predeces-
sors will reach minimal elements in finitely many steps.

As an example, consider the following set EXPR of simple algebraic ex-
pressions over a set of variables V = {vy,v9,...}:

Inductive Proof 21

e Every v; € V is an expression in EXPR.
e If z and y are expressions in EXPR then

— (z + y) is an expression in EXPR,

— (z x y) is an expression in EXPR.
e Nothing else is an expression in EXPR.
Here we have a set of fully parenthesized expressions including, for instance,
Vo (v1 + v9) ((vs +v5) X ((ve X v) + v1)).
The basis elements are just the v;. The predecessors of (v; + vg) are v; and
ve, and the predecessors of ((vs + vs) X ((va X v3) + v1)) are (vs + vs) and

((vg X v2) 4+ w1). It is often helpful to analyze elements of sets like this in terms
of their syntaz tree. For ((vs 4+ vs) X ((ve X v3) + v1)) this is:

X
/\

+ +
P P
Vs Vs X v
P
V2 U2

The leaves of the syntax tree are labeled with the basis elements from which
the expression is built; the interior nodes are labeled with the operations of
the inductive clauses that build it.

The steps of an inductive proof of a property of such a set are modeled
directly on the steps of its definition. First one proves that the property holds
for each of the basis elements. Then one proves that if the property holds for
each of the predecessors of an element then it holds for that element as well.

For example, to prove that every expression in EXPR has properly balanced
parentheses it suffices to prove that every right parenthesis has a matching left
parenthesis and v.v.. It is not hard to see that this comes down to the prop-
erty that every expression has equal numbers of left and right parentheses and
every prefix of the expression has at least as many left parentheses as right.
We can prove that every expression in EXPR has this property as follows:

22 Basic FLT—Basic Concepts

Proof:

(Basis)
Every v; € V is an expression with neither left nor right parenthesis and
therefore satisfies the property.

(Inductive Hypothesis)
Suppose that x is a non-minimal expression in EXPR and that each of the
predecessors of x satisfy the property.

(Induction)

By the definition of EXPR z is either (y + z) or (y X z), where y and z are
the predecessors of z. Suppose, for the sake of the argument, that = is (y + z);
a similar argument applies to (y X z). By the induction hypothesis, both y
and z have equal numbers of left and right parentheses, and every prefix either
of y or of z has at least as many left as right parentheses. Since z adds one
left and one right parenthesis, these occur in equal numbers in x as well. Note
that every prefix of z either is empty, is ‘(’ followed by a (possibly empty, not
necessarily proper) prefix of y, is ‘(y+’ followed by a similar prefix of z, or is
‘(y + 2z)’. It is easy to verify that under each of these conditions the fact that
the prefixes of y and z have at least as many left as right parentheses implies
that the prefixes of x do as well. -

The key thing to note about all of this is that the proof follows the definition
exactly. This is one compelling reason to define sets inductively, and we shall
generally endeavor to do so whenever we reasonably can. While one can fre-
quently find simpler (read cleverer) proofs, if a proposition over an inductively
defined set is valid the inductive proof will always go through. Furthermore,
it can be applied nearly automatically. When in doubt, use induction.

If, following Peano, we define the Natural Numbers inductively in terms
of zero and the successor function s(n) then induction over N becomes an
instance of this schema:

Definition 17 (Natural Numbers (Peano))
e 0eN.
e Ifn €N then s(n) € N.

e Nothing else.

Inductive Proof 23

Here the number we usually denote with the numeral ‘3’ (or ‘11’, working
in binary, ‘10’ in ternary, etc.) is defined as s(s(s(0)))—the successor of the
successor of the successor of zero—a much more satisfactory definition than
“the number we usually denote with the numeral ‘3””. The predecessor of s(n)
is just n, or, in the earlier terms, the predecessor of n + 1 is n.

4.3 Complete Induction

It often occurs that the way one needs to decompose a case in an inductive
proof does not reduce it to immediate predecessors. Under these circum-
stances, one can use the superficially stronger form known as complete induc-
tion in which one shows that if the proposition is satisfied by every element
“smaller” than the case to be proved (in the ordering induced by predecessor)
then it is satisfied by that case as well. This is sometimes referred to as strong
induction but it, in fact, is no stronger than simple induction (at least over
countable sets). It is, however, often more convenient than simple induction
and is no harder to use.
Consider, as an example, the proposition:

oo L (14vE) 1 [1-45

th

where F;, is the n'™ Fibonacci number:

F, =0, P, Frps ® Fupr + Fy m>0.

This is not a simple inductive definition and, as a result, the most direct way
to approach the proof is to base the induction on n. But this leads to a
difficulty for simple induction because in order to prove the proposition for
the m 4 2 case we will need to assume the proposition not only for m + 1 but
for m as well. Thus we will need the IH to cover both the predecessor and the
predecessor of the predecessor. Complete induction gives us both of these and
everything else down to the base cases.

Proof: Let

1 5 1-—
a= +2\/_ and b =

IS

The claim, then, is

F, a —b").

1
:%(

24 Basic FLT—Basic Concepts

The proof contains one possibly non-obvious algebraic trick:

2
oo (LEVE) _1+2vBes) 14vE L
2 4 2
and, similarly,
2
1—+/5 1-2vV/5+5 1—+5
b = V5 =¢:1+ f=b+1.
2 4 2
(Basis)
FO %(ao - bO) =0.
F1 = %(a—b)
L(M)
V5 2
| —
= xVo=1

(Inductive Hypothesis)
Suppose that the proposition is true for all F,, where n < m + 2.

(Induction)
To show that it is true for Fj, o as well:

Fm+2 = Fm+1+Fm
L(am—l—l — pmt +a™ — bm) by 1H

NG
= Z(@™(a+1)-b"(b+1))
%(amJr2 — pmt?) by result above.

4.4 Induction Loading

Note that all that differs between simple and complete induction is the induc-
tion hypothesis: the hypothesis used in complete induction (that the proposi-
tion holds for all smaller cases) is stronger than that used in simple induction
(that it holds only for the immediate predecessors). It is just as valid, since

Inductive Proof 25

the same kinds of sequences of hypotheticals work for every element of the set.
But being stronger, it makes it easier to prove the inductive case.

This idea of strengthening the hypothesis to simplify the proof often works
not only when we assume the proposition is true of more elements, but also
when we strengthen the proposition itself, that is, when using induction, it
is often easier to prove a stronger property than the result you are trying to
obtain. This is because the induction hypothesis is formed from that property;
the stronger it is, the stronger the hypothesis one has to work with. While
there is more to prove, one has more ammunition with which to prove it.
Consider, for instance, the following set of strings L C {a, b}*:

e acl, ab € L.
e Ifwe LandvéeLthenw-v € L.
e Nothing else.

We would like to prove the proposition: ‘bb’ does not occur as a substring of
any string in L. Intuitively, this should be fairly obvious. The only stumbling
block to proving this by induction (on the structure of the string) is proving
that concatenating two strings in L never juxtaposes ‘b’s at the boundary be-
tween them. This is simplified if we strengthen the proposition to: If w € L
then ‘bb’ does not occur as a substring of w and w = aw' for some w' € {a,b}*.

Proof:
(Basis)

Clearly, the strengthened proposition is satisfied by both a and ab.
(Inductive Hypothesis)

Suppose w = v - u for some v, u € L and that the strengthened proposition
is true of both u and v.

(Induction)

By the induction hypothesis ‘bb’ does not occur in either of v or u. More-
over, the initial symbol in v is an ‘a’, so ‘bb’ does not occur at the boundary
between the two either. Finally, by the IH again, the initial symbol of v is also
‘a’ and, thus, so is the initial symbol of w. .

Now for a couple of exercises.

26

Basic FLT—Basic Concepts

7. Prove for all w,v € ¥* for any alphabet X, that (wv)R =R . k.
8. Let T, be the set of all binary-branching trees, where

e The trivial tree (consisting of a single node) is in T5.

e If t; and ¢ are trees in 75, then the tree formed by taking ¢, as the
left subtree, t5 as the right subtree, and a new node as a root is also
a tree in T5.

e Nothing else.

Graphically, the inductive clause says:

, eTy = eTy
t1 to

t1 to

For every tree t € Ty let d(t) be the depth of ¢ defined:
d(t) = 0 if ¢ is trivial,
| 14+ max(d(t1),d(t2)) if ¢ is constructed from ¢; and ¢,.

The leaves in a tree t € T, are its trivial subtrees—the nodes which have
no descendents. Let [(t) denote the number of leaves in the tree t.
Prove for all ¢ € Tj that d(t) + 1 < I(t) < 240,

