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Automated Theorem Proving

● A subfield of automated reasoning

– Which is itself a subfield of artificial intelligence

● Deals with the proving theorems using 
computer programs, heuristics, AI... (With or 
without human involvement)

● Involves generating a theorem as a conclusion 
of previously established statements, such as 
other theorems/accepted statements/axioms.



  

Automated Theorem Proving

● Simplest form: systematically apply rules of inference to construct all possible valid logical 
deductions.

–  1950: Logic Theory Machine of Alan Newell and Herbert Simon

● In practice can find only very simple short proofs, because combinatorial explosion quickly 
exhaust any computer resources.

● Modern versions are just enhancements of the same old approaches: 
Heuristics/Exhaustive search (Large libraries of lemmas...), and various ways to prune the 
combinatorial explosion of possibilities of putting the parts together. Search algorithm, 
most rely on forms of hill-climbing algorithm, back-tracking or a best-first heuristic...

● Modern popular techniques are based on:

– First-order resolution with unification, Lean theorem proving, Model elimination, Method of analytic 
tableaux, Superposition and term rewriting, Model checking, Binary decision diagrams, Higher-order 
unification

● Evolution is a general, and very powerful global search algorithm. Could it be the answer?



  

Evolutionary Computation

● Nature inspired search algorithm

● A global search, and has lower chance of getting stuck in 
local optima

● A simple algorithm, easy to parallelize

1. Generate initial population

2. Evaluate fitness of each agent

3. Choose fit agents

4. Produce new generation of agents through variation (mutation 
and/or crossover)

5. Goto Step-2



  

Evolutionary Computation



  

Evolutionary Computation 
Approaches

● Genetic Algorithms (John Holland, 73-75)
 Population of fixed length genotypes, bit strings, evolved through perturbation/crossing

● Genetic Programming (John Koza, 92)
 Variable sized chromosome based programs represented as treelike structures, with specially 

crafted genetic operators

● Evolutionary Strategies (Ingo Rechenberg, 73)
 Normal distribution based, adaptive perturbations (self-adaptation)

● Evolutionary Programming (L. & D. Fogel, 63)
 Like ES, but for evolution of state transition tables for finite-state machines (FSMs)



  

Genetic Algorithm



  

Genetic Programming
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Genetic Programming
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Genetic Reasoning Based ATP

● Genetic programming applied to ATP, what do we 
need?

● Standard of all evolutionary computation based 
systems:

– agent/solution/genotype representation

– problem/theorem representation

– mutation/crossover methods that can be applied to 
agent's representation

– fitness function



  

●Agent/Solution/Genotype 
representation

● Linear genotype composed of rules of inference.

– The solution is a list of replacement rules (production rules). System should be 
able to handle statements about arithmetics in a logic as powerful as first order 
logic. Showing them to either be true or false.

– In paper: quantifier-free first order logic with equality. The rules of inference are 
from propositional logic and equality.

● An available pool of functions, where each function represents a rule of 
inference.

– Exp: X + 0 => X

– Universal quantification is indicated by leaving variables free. Existential 
quantification is represented by a Skolem function, as common in several 
approaches to ATP.

– Natural numbers presented in the form of the zero (0) symbol and the successor 
function.



  

Genotype



  

Mutation Operators & Crossover

● Steady state replacement with a tournament selection of four 
individuals.

● Mutations of the children occur with a specified probability 
and intensity. A number of positions are selected and replaced 
randomly according to the intensity specified by the 
researcher.

● Population size: Varies (chosen by researcher, depends on 
problem difficulty).

● Initial genotype: Minimal, randomly chosen initial list of 
replacement rules, ranging in size from 1 to 1/3 of the number 
of nodes in the problem.



  

Mutation Operators & Crossover



  

Problem/Theorem Representation

Representation of the statement 3 = 2 + 0.



  

Putting it all together

Application of func_1 to the statement 3 = 2 + 0.
Where func_1(x) = x + 0 => x



  

Fitness Function

● In many ways this is the most difficult part in 
these types of problems.

● We need a smooth path towards greater fitness 
(a way to discern that one solution is better than 
another, that it's getting closer to the full proof)

● GR based ATP Fitness: # of nodes in tree after 
all replacement rules have been applied.

– Solution: 1 node (true/axiom or false/contradiction)



  

Current state of GR based ATP

● As noted, at this time the system can only be applied to: 
quantifier-free first order logic with equality problems. 
The rules of inference are from propositional logic and 
equality.

● Functions defining all boolean arithmetic operations are 
built-in ( ,  ,¬ ,→) are available.∧ ∨

● The natural numbers and arithmetics are defined by the 
Peano axioms and the symmetry relation.

● It is possible to add functions defining abstract data 
types and lemmas to support a specific application.



  

Benchmarks

● 3 problems dealing with algebraic simplification, standard 
axiomatization of the real numbers. 

– “The axiomatization is not complete. For example, inequality and the axiom of 
choice are not represented. Nevertheless, it is sufficient for our purposes in this 
paper. The production rules and their representation are listed in table”

● Two identities from basic algebra:

– A  0 = 0: (*A0)�
– N  N = 1: (*NN)�
– “To prove these identities, one has to expand the initial expressions 

significantly before it is possible to apply a greedy approach, and only go 
”downhill”.”

● Difficult because it demands several operations without any fitness 
feedback: (+A(+(+B(N*A))C))



  

Available Replacement Rules



  

Results



  

Example Proof



  

Conclusion

● Not a very clear paper

● They did not continue this work, unfortunately, 
and there are only 3 papers that deal directly 
with this particular approach.

● I still found the approach rather elegant and 
viable, even if it was not presented in the best 
of ways.

● I'm currently working on extending it.
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Questions

● A better fitness function?

● Hybridization with another ATP?

● Why so few papers with this approach, are 
there particular innate flaws in applying EC to 
ATP?


