

Overview

● Automated Theorem Prover (ATP)

● Genetic Programming (GP)

● Genetic Reasoning

● GR-ATP-Genotype Encoding

● GR-ATP-Phenotype Encoding

● GR-ATP-Fitness Function

● Benchmarks

● Results

● Conclusion

● Questions

Automated Theorem Proving

● A subfield of automated reasoning

– Which is itself a subfield of artificial intelligence

● Deals with the proving theorems using
computer programs, heuristics, AI... (With or
without human involvement)

● Involves generating a theorem as a conclusion
of previously established statements, such as
other theorems/accepted statements/axioms.

Automated Theorem Proving

● Simplest form: systematically apply rules of inference to construct all possible valid logical
deductions.

– 1950: Logic Theory Machine of Alan Newell and Herbert Simon

● In practice can find only very simple short proofs, because combinatorial explosion quickly
exhaust any computer resources.

● Modern versions are just enhancements of the same old approaches:
Heuristics/Exhaustive search (Large libraries of lemmas...), and various ways to prune the
combinatorial explosion of possibilities of putting the parts together. Search algorithm,
most rely on forms of hill-climbing algorithm, back-tracking or a best-first heuristic...

● Modern popular techniques are based on:

– First-order resolution with unification, Lean theorem proving, Model elimination, Method of analytic
tableaux, Superposition and term rewriting, Model checking, Binary decision diagrams, Higher-order
unification

● Evolution is a general, and very powerful global search algorithm. Could it be the answer?

Evolutionary Computation

● Nature inspired search algorithm

● A global search, and has lower chance of getting stuck in
local optima

● A simple algorithm, easy to parallelize

1. Generate initial population

2. Evaluate fitness of each agent

3. Choose fit agents

4. Produce new generation of agents through variation (mutation
and/or crossover)

5. Goto Step-2

Evolutionary Computation

Evolutionary Computation
Approaches

● Genetic Algorithms (John Holland, 73-75)
 Population of fixed length genotypes, bit strings, evolved through perturbation/crossing

● Genetic Programming (John Koza, 92)
 Variable sized chromosome based programs represented as treelike structures, with specially

crafted genetic operators

● Evolutionary Strategies (Ingo Rechenberg, 73)
 Normal distribution based, adaptive perturbations (self-adaptation)

● Evolutionary Programming (L. & D. Fogel, 63)
 Like ES, but for evolution of state transition tables for finite-state machines (FSMs)

Genetic Algorithm

Genetic Programming

*

+ tanh

x0.27x

Tree encoded genotype:

Phenotype: (x+0.27)*tanh(x)

Genetic Programming

*

+ tanh

x0.27x

/

sin pi

x

Agent: A Agent: B

*

+

0.27x

sin

x

Offspring of A & B
created through
crossover
between agent A
and B.

Agent: C

/

sin *

x

Offspring of B,
created by
mutating a clone
of B.

Agent: D

e x

Pi mutated
to *

New leaf
e added

New leaf
x added

Genetic Reasoning Based ATP

● Genetic programming applied to ATP, what do we
need?

● Standard of all evolutionary computation based
systems:

– agent/solution/genotype representation

– problem/theorem representation

– mutation/crossover methods that can be applied to
agent's representation

– fitness function

●Agent/Solution/Genotype
representation

● Linear genotype composed of rules of inference.

– The solution is a list of replacement rules (production rules). System should be
able to handle statements about arithmetics in a logic as powerful as first order
logic. Showing them to either be true or false.

– In paper: quantifier-free first order logic with equality. The rules of inference are
from propositional logic and equality.

● An available pool of functions, where each function represents a rule of
inference.

– Exp: X + 0 => X

– Universal quantification is indicated by leaving variables free. Existential
quantification is represented by a Skolem function, as common in several
approaches to ATP.

– Natural numbers presented in the form of the zero (0) symbol and the successor
function.

Genotype

Mutation Operators & Crossover

● Steady state replacement with a tournament selection of four
individuals.

● Mutations of the children occur with a specified probability
and intensity. A number of positions are selected and replaced
randomly according to the intensity specified by the
researcher.

● Population size: Varies (chosen by researcher, depends on
problem difficulty).

● Initial genotype: Minimal, randomly chosen initial list of
replacement rules, ranging in size from 1 to 1/3 of the number
of nodes in the problem.

Mutation Operators & Crossover

Problem/Theorem Representation

Representation of the statement 3 = 2 + 0.

Putting it all together

Application of func_1 to the statement 3 = 2 + 0.
Where func_1(x) = x + 0 => x

Fitness Function

● In many ways this is the most difficult part in
these types of problems.

● We need a smooth path towards greater fitness
(a way to discern that one solution is better than
another, that it's getting closer to the full proof)

● GR based ATP Fitness: # of nodes in tree after
all replacement rules have been applied.

– Solution: 1 node (true/axiom or false/contradiction)

Current state of GR based ATP

● As noted, at this time the system can only be applied to:
quantifier-free first order logic with equality problems.
The rules of inference are from propositional logic and
equality.

● Functions defining all boolean arithmetic operations are
built-in (, ,¬ ,→) are available.∧ ∨

● The natural numbers and arithmetics are defined by the
Peano axioms and the symmetry relation.

● It is possible to add functions defining abstract data
types and lemmas to support a specific application.

Benchmarks

● 3 problems dealing with algebraic simplification, standard
axiomatization of the real numbers.

– “The axiomatization is not complete. For example, inequality and the axiom of
choice are not represented. Nevertheless, it is sufficient for our purposes in this
paper. The production rules and their representation are listed in table”

● Two identities from basic algebra:

– A 0 = 0: (*A0)�
– N N = 1: (*NN)�
– “To prove these identities, one has to expand the initial expressions

significantly before it is possible to apply a greedy approach, and only go
”downhill”.”

● Difficult because it demands several operations without any fitness
feedback: (+A(+(+B(N*A))C))

Available Replacement Rules

Results

Example Proof

Conclusion

● Not a very clear paper

● They did not continue this work, unfortunately,
and there are only 3 papers that deal directly
with this particular approach.

● I still found the approach rather elegant and
viable, even if it was not presented in the best
of ways.

● I'm currently working on extending it.

References

● [1] Nordin, Peter, and Wolfgang Banzhaf. Genetic
reasoning evolving proofs with genetic search. Univ.,
Systems Analysis Research Group, 1996.

● [2] Nordin, Peter, Anders Eriksson, and Mats Nordahl.
"Genetic reasoning: evolutionary induction of
mathematical proofs." Genetic Programming. Springer
Berlin Heidelberg, 1999. 221-231.

● [3] Dumitrescu, D. & Oltean, M. “An evolutionary
Algorithm for theorem proving.” Studia Univ. “Babes-
Bolayi”, Informatica, Volume XLIV , Number 2, 1999

Questions

● A better fitness function?

● Hybridization with another ATP?

● Why so few papers with this approach, are
there particular innate flaws in applying EC to
ATP?

