A Survey of Computational Models of Self-Assembly

COT6410 - Spring 2015

Alternate Presentation Title:

Proof that Theoretical Computer Science isn't Dead

What is Self Assembly?

- The automatic combination of less complex components into more complex components.
- Sounds crazy? This already happens in nature:
- Lipids come together to form cell membranes
- Virus proteins come together to form the capsid, which allows a virus to make you sick.

Algorithmic Construction

"The 'computable' numbers may be described briefly as the real numbers whose expressions as a decimal are calculable by finite means."
-- Alan Turing, On Computable Numbers

Am I Computable?

The Set	Computable?	Why?
	No!	There are uncountably many reals!
	Yes!	The set of integers is countable!

Ok Z is Computable. What is Easier to Compute?

$$
n=2^{10,000,000,000} \quad \text { or } \quad \text { A random number with } 10,000 \text { digits }
$$

- Actually, n is easier to compute. But why?
- The answer is found in the field of Kolmogorov complexity.

Which is Easier to Compute? A Different Perspective.

The K-Complexity (the smallest possible program) that represents the figure on the left is much smaller than the one on the right.

Algorithmic Construction, A Technical Aside

- In the pictures on the previous slide you were mislead a tiny bit.
- Any program that, in order to compute a result is the same size as the thing itself is not actually "computing" anything.
- In the context of Self Assembly, "algorithmic" essentially requires that the "program" for generating the final object is smaller than the final object.

So Then, Why Do This?

- Think of the second figure as a very long program that computes some integer.
- Clearly, this number is computable, but a program that computes it may be intractably large.
- DNA is a highly desirable computational medium.
- A single strand of human DNA contains approximately 3 billion base pairs
- Data density of 1 million Gbits / square inch
- Each strand is roughly equivalent to an entire processor.
- ...also, we can make really small things!

Models of Self-Assembly

- Many different models of self-assembly exist; the most important were pioneered in Winfree's Doctoral dissertation.
- High level conclusion is that ligation (linking) and annealing (combining base pairs) are enough for computation.
- Two major models of computation, both of which are generalizations of Wang tiles
- Abstract Tile Assembly Model (aTAM)
- Kinetic Tile Assembly Model (kTAM)

Abstract Tile Assembly Model

- Main Idea: Turing Universal computation via crystallization

- System has 3 controls:
- Boundary tiles (allowed to go along the edges)
- "Rule" tiles, marked tiles encoded with numbers and patterns
- Temperature, which is an abstraction that controls which tiles may bind with which tiles.

The Sierpinski Triangle

Kinetic Tile Assembly Model

- Though elegant, aTAM is not a realistic model of computation for DNA.
- aTAM assumes no tile may be lost; in reality this may happen frequently.
- kTAM adds the following:
- Allows for errors in assembly; provides a mechanism to correct them.
- Allows tiles to "detach" from structure
- More accurately models wet-lab assembly of structures.

Demonstration

Conclusions

- Algorithmic self-assembly, though quite young, is a branch of study that fuses together computer science, biology.
- In this talk we presented an introduction to the field of algorithmic self-assembly:
- Motivated the study of this very young field.
- Provided descriptions of two models of computation: aTAM and kTAM.
- Showed a simulation detailing the computational model presented in this talk using xgrow.

References

- Doty, D. (2012). Theory of algorithmic selfassembly. Communications of the ACM, 55(12), 78-88.
- Winfree, E. (1998). Algorithmic self-assembly of DNA (Doctoral dissertation, California Institute of Technology).
- Li, M., \& Vitányi, P. M. (2009). An introduction to Kolmogorov complexity and its applications. Springer Science \& Business Media.
- Pandey, B. (2007). Bioinformatics. APH Publishing Corporatiof

