
  

MODELING MULTIPLE-OBJECT TRACKING AS CONSTRAINED 

FLOW OPTIMIZATION PROBLEM 

 

1 Introduction 

Solving optimization problems through greedy algorithms may cause the system to miss global 

optimum solution.  On the other hand, global optimum solution may require NP-hard algorithm. Object 

tracking is an interesting problem that can be solved by independent detection of objects in individual 

frames of a video sequence and then linking these detections into possible trajectories. This approach 

seems very robust and can easily deal with spurious or missed detections by incorporating information 

from neighboring video frames. For visually similar multiple objects, linking detections into possible 

trajectories is an optimization problem of high complexity. Greedy dynamic approach for this task 

ensures a speedy solution but does not guarantee a global optimal solution. This task can be formulated 

as an instance of integer linear program (ILP) with a few a-priori restrictions such as fixed number of 

objects throughout the video [1]. ILP formulation ensures global optimal solution but its solution is NP-

Complete problem. The main focus of this report is a research paper which presents a way to relax a-

priori conditions while formulating the problem as an instance of ILP [2]. This work also describes how 

the problem formulation can be relaxed to continuous linear program (LP) whose solvers have 

Polynomial time average complexity. Still the problem is too complex even for a reasonable number of 

objects being tracking in a relatively short video sequence. Therefore, the problem is further modified as 

an instance of k-path optimization problem which makes the solution scale well to practical applications. 

2 Multiple Object Tracking as Integer Linear Program 

This part studies the formalization of multi-target tracking problem in terms of an integer 

programing. To begin with, the physical area is divided into   discrete locations (cell) where for each cell 

      shows the indices of the neighborhoods of  .  Particularly, if an object was in location   in time  , 

then      shows the possible location can be reached by the object in time    . By this definition, the 



occupancy over the time can be modeled using a directed graph where    (location   in time frame  ) is 

a vertex and     
  is an edge defined form node       to node         if and only of       . 

Furthermore, there is an edge     
  in the case an object stays static between time frame   and    . 

There are also labels   
  and     

  assigned to each vertex and edge respectively where   
  shows the 

number of objects located in node   in time   and     
  indicates the number of objects moving from 

location   to   between time frames   and    . This concept is illustrated in figure 1. 

 
Figure 1. A flow model used for tracking objects moving on a 2D grid, such as in pedestrian tracking. 

By this definition, the sum of flows entering each vertex   from     in equal to vertex label   
  and 

equal to sum of flows leaving the node   in time  .  This is stated in the following equation.  

    ∑     
      

  ∑     
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However, the constraint applied to this approach is that each location (node) can be occupied by only 

one object at a time. In other words, the upper bound for sum of flows that can leave a location (or 

arrive to a location) in time   is 1. Moreover, flows are nonnegative. These two constraints are 

formulated in (2) and (2) as follows: 
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Additionally, the number of tracked objects may change since objects can enter to the tracking area 

or even leave this area. Thus to model that, it requires to add two virtual nodes                   

(named virtual nodes since they are not real location in the scene) to the graph and connect them to the 

entrance/exit locations such as borders of the scene and doors. Addition to that,         should be 

linked to all nodes in the first frame and nodes in the last frame should goes to      . This is shown in 

figure 2.  



 
Figure 2. A complete flow system for a simple graph consisting only of three positions and three time frames. Here, we 

assume that position 0 is connected to the virtual positions, and therefore is a possible entrance and exit point. Flows to and 
from the virtual positions are shown as dashed lines. 

This concept states a new constraint where sum of all flows entering the area is equal to sum of 

those leaving the area. 

                       (4) 

By using the object detector to process the sequences, the value of each location   in time   can be 

estimated. Hence, using this estimation and   
  as the random variable presenting the true value of   in 

time  , the posterior probability of an object in location   can be calculated as follows: 

  
   ̂(  

   |  )                             (5) 

Where   is the signal, such as sequence of pictures is taken with different cameras from a same 

scene, in time  . Using the equation 5 and variables   
 , the occupancy map   (holding variables   

 ) 

can be constructed where there exists a sets of flows      
  that satisfied constraints in (1) to (4). The set 

of these feasible maps called  . Therefore, the final goal of this study is solve the following equitation. 

             ̂    |                             (6) 

By assuming   
 , given   , as conditional independence variable, the equation can be formulated as it 

is stated in (7). 
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Since value of   
  is either zero or one, so: 
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By cutting out     ̂(  
   |  ) as a term that does not depend on  , the equation can be 

simplified as: 
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Finally, the variable    is defined as the linear expression of   
 . Thus, the equation can be 

translated into the integer programming where: 

Maximize        ∑ (   
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Subject to                    
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Using this formula, the stated integer programming can be solved using any generic LP solver. 

However, because the complexity of LP solver is NP-complete, using these solvers in a large size 

problems (like the one here) is not practicable. One solution to this issue is to use relation methods and 

solve a continuous Linear Program instead. In the following section using the linear programming in 

multiple objects tracking is studied. 

3 Multiple Objects Tracking as Linear Program 

Though the representation of multiple objects tracking problem as an instance of integer linear 

program (ILP) provides a valid mechanism to obtain global optimum solution, solution of integer linear 

program is an NP-complete problem. Thus a global optimum solution of multiple-object tracking seems 

to be beyond the limits of practical computational time.  

3.1 Continuous Linear Program 

A continuous linear program solver, on the other hand, has Polynomial complexity on average. It is 

intuitive to try to relax ‘integer’ condition of integer linear program representation of multiple object 

tracking problem and achieve an instance whose solution is possible within in Polynomial time. There 

are simplex-based algorithms with average case Polynomial complexity to solve an LP.  

3.1.1 Simplex Based LP Solution 

The simplex method was presented by G.B. Dantzig in 1949. The classical reference is his monograph 

from 1963 [3]. Solution of a system               lies at the bounrady of polytope of solutions of 

the form {  |             . For non-degenerate cases, only one set of vertices represent optimal 

solution of the system. In degenerate cases, there are multiple solutions. Even in degenerate case, at 

least two solutions are from the vertices of polytope. The simplex algorithm traverses on the polytope 



underlying the linear program from vertex to vertex along the edges until an optimal vertex is reached 

[4]. 

In Dantzig’s algorithm, slack variables (               ) are introduced to convert inequalities to 

equalities. For a system  
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Equalities are formed as 
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The algorithm is iterative. It starts with one solution of original variables which satisfies the equations 

and non-negativity condition and then iteratively look for a better solution. Having ties in choices to be 

made at each iteration and cycling are rare in real world problems. It is generally believed that LP 

problems in real world are disinclined to be degenerate [4].  

Klee and Minty created an artificial class of LP problem in 1972 for which simplex algorithm has to 

pass all      possible vertices, thus proving that worst-case performance of simplex algorithm is not 

Polynomial [4]. But average case complexity is believed to be Polynomial which is an improvement over 

having to solve an NP-complete problem in the form of ILP. 

3.1.2 Optimal Solution of LP 

The catch is that global optimum solution of the modified continuous linear program is, in general, 

not the same as global optimum solution of original integer linear program. Thus, there seem to be a 

trade-off between achieving a global optimum solution and time complexity of the system. 

The particular problem that this paper discusses [2], has a specific property that solves the problem 

of mismatch between global optimum solution of continuous and integer linear program. That specific 

property is called ‘Total Unimodularity’ and constraint matrix defined previously while presenting 

multiple objet tracking as an instance of integer linear program possesses this property.  



3.2 Total Unimodularity 

For a linear program of the form                      , a specific property of matrix   , called total-

unimodularity, ensures that optimum solution obtained is in the form of integers. Thus optimal solution 

of continuous linear program and original integer linear program is the same.  

3.2.1 Totally Unimodular Matrix 

“A rectangular matrix has total-unimodularity if all its square sub-matrices have determinants 

belonging to set {       .” 

If the matrix has this property, there are two theorems that hold for the linear program and its 

constraint matrix. 

Theorem 1: A square matrix   of size     is totally unimodular if and only if for every subset of its 

rows i.e.    {         , threre exists a partition         and           such that  

           ∑    
    

    ∑    
    

     {        

Theorem 2: If square matrix   is totally-unimodular, the vertices of the polytope {  |        

   have integer values for any integral  . 

The vertices of this polytope represent the optimal solution of the linear program. Thus the linear 

program has integral optimal solution even without the condition of integral solution being embedded 

into the program formulation. The authors of the papers have provided a proof for the total 

unimodularity of the constraint matrix for the linear program representing multiple object tracking 

problem [2]. This proof clearly implies that even after relaxing the ‘integer’ condition of the original 

integer linear program representation of multiple object tracking problem, the optimal solution 

obtained by LP solvers with Polynomial average complexity is the same as that of original 

representation. First we will discuss a simple proof of how total unimodularity ensures integral solutions 

for the linear program. 

3.2.2 Integral Solution Of Linear Program 

Consider a quadratic system     , and                                  representing a   

matrix with jth columns replaced with  . The Cramer’s rule gives the following solution for the system 

     
|  |

| |
        | |                                   



If we denote the matrix created by deleting ith row and jth column of   as   , then we can express 

determinant of    as following 

|  |   ∑        

 

   |   | 

We have already established from the definition of total unimodularity that if a matrix   has the 

property of total unimodularity, then for all of its square sub-matrices |   | {       . Thus the solution 

  will be integral as long as    is an integral vector. This is a simple demonstration of how totally-

unimodular constraint matrix ensures integral solution for linear program. 

3.2.3 Totally-Unimodular Constraint Matrix 

The particular constraint matrix for the linear program representing multiple object tracking problem 

represent the constraints of the system. It is straightforward to arrange column of the matrix in 

ascending order of time. Now each column represent one location   at one particular time instance  . 

The constraint of the system can be classified into two sets i.e. 
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The nature of these constraints makes it evident that for any particular column of the constraint 

matrix, there can be no more than three rows with non-zero entries and these entries belong to 

set {       .  

There can be no more than one object reaching at a particular location   from all of its neighbors at 

one time instance (U1).  Difference between number of objects reaching at a location    at one time 

instance from its neighboring location and number of objects reaching its neighboring locations a time 

instance earlier is either   (if the object moved to the location   ) or    (if the object did not move to   ). 

The same property applies to source and sink nodes as neighbors for a particular location   (U2).  

The rows of the constraint matrix    can be partitioned into two classes           based on which 

constraints they specify. From theorem 1, we have established that    is totally unimodular iff there 

exists a partition            for any of its sub-matrix    such that         and            and   

           ∑    
    

    ∑    
    

     {        



For the specific constraint matrix of the multiple object tracking problem, we assume that required 

partition is obtained as following 

                 

We know that for a particular column, there can be only three non-zero entries. For the partitions 

created by above formula, we can see that      can have only one non-zero entry and the value of entry 

can be 1.    Can have either    or   if we move a row from    to  . There a total of eight different 

possible cases. 

{         {         ∑   
    

    ∑    
    

  

{0…0,1} {0…0} 1 

{0…0,1} {0…0,1} 0 

{0…0,1} {0…0,-1} 2 

{0…0,1} {0…0,1,-1} 1 

{0…0} {0…0} 0 

{0…0} {0…0,1} -1 

{0…0} {0…0,-1} 1 

{0…0} {0…0,1,-1} 0 

 Only row 3 of the above table present a case where the property of total-unimodularity seems to be 

violated. But for this particular case, we can move the non-zero row from     to   . Now the partition 

will correspond to case in row 8 which adheres to the property of total-unimodularity.  

It can be concluded that there always exists a partition for the sub-matrix     which satisfies theorem 

1. Thus, constraint matrix is totally-unimodular and it ensures integral solution of the system even when 

the ‘integer’ condition has been relaxed. 

4 K-path Optimization 

Although solution to the continuous LP given above can be found, on average, in polynomial time but 

practical requirements, e.g. real time performance can’t be met due to the large size of the system.  

To be able to get multiple object tracking in reasonable time, the paper reformulates the ILP as KSP 

problem as discussed in the following sections [2]. 

4.1 KSP Problem: 

Given a graph G(V,E), the goal is to find ‘k’ different shortest paths between a designated pair of 

nodes (vsource,vsink).  The problem has been studied extensively in the network optimization literature and 



for different versions of the problem; solutions of varying degree of complexity (from NP-Complete to 

polynomial) exist.  

The version of problem that was discussed in the paper that is main focus of this report deals with 

directed acyclic graphs (DAGs) with two specific constraints, viz. the nodes in the paths being disjoint 

and simple [2]. Node disjoint implies that no nodes are shared among different paths. Node simple 

means that loops are not allowed in the solution.  

 

Figure 4.The difference between simple and non-simple KSP: the three shortest simple paths have lengths 6,20,21. Without 

the simplicity constraint, paths may use the cycles (a,b,a) and (d,e,d), giving shortest paths of lengths 6,8,10 [7]. 

Moreover, to track multiple objects, ‘k’ is discovered iteratively that minimize the overall cost (min-

cost/max flow problem). The aforementioned constraints (node-disjoint and node-simple) apply 

naturally to the problem because two distinct objects do not share the same position simultaneously 

and the object trajectory is essentially loop-less with respect to time. 

4.2 The KSP formulation of ILP: 

The feasible solutions to ILP contain all solutions of KSP with arbitrary number of ‘k’ shortest paths. 

We, therefore, need only define the edge cost function in terms of the marginal posterior probability of 

an object at location ‘i’ given a video frame It at time instant ‘t’. 

 (    
 )      (

  

    
)  

The edge cost function shows that edge cost can be negative if the probability estimate is low. The 

objective function for KSP is, therefore, the negation of that for ILP and is given as follows: 
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The optimum value of ‘k’ for KSP is the one that minimizes the cost of flow (min. cost flow) and hence 

is the one that achieves maximum flow in the original ILP. 

4.3 Finding k-shortest paths: 

The paper implements an iterative algorithm of Suurballe [8] that uses Dijkstra’s algorithm at every 

iteration for ‘k’,i.e., at most O(n) calls. The algorithm involves transformations to the original graph at 

every step to find alternate shortest routes (called as interlacings).  

Given a directed graph G=(V,E), where ‘V’ is the set of vertices, and ‘E’ is the set of edges, the 

algorithm below computes the k-shortest paths between vsource and vsink iteratively for l=1,2,…,k, where 

for each iteration ‘k’ is fixed. Thus at the ith iteration, l-shortest paths are computed by using l-1 shortest 

paths from the previous iteration. 

 

4.3.1 Explanation of the k-shortest path algorithm 

Given the original flow graph, step-2 simply applies Dijkstra’s single source shortest path algorithm to 

compute the shortest path tree which can be obtained in O(n) using topological sort of its vertices (the 

graph is a DAG!). 



Step-6 simply checks if we have reached the optimal solution by comparing total cost at iteration ‘l’ 

to that in the previous iteration ‘l+1’. If it is so, the set of all previous paths is returned and the algorithm 

exits. This is further explained in section 4.4. 

Steps 10-11 involve transformations to the original graph in order to efficiently compute alternate 

non-decreasing cost paths as follows: 

i) Every node in the previously computed shortest path is split into two nodes(except for the 

source and sink) respecting the in and out degree of the original node and then joining the 

split nodes with an auxiliary edge of zero cost. 

ii) Every edge in the previous shortest path is reversed in direction (changing algebraic sign of 

the associated cost) including the auxiliary edges. 

iii) All edge costs in the previous shortest path are changed as follows: 

    
                                                                            

The process of transformations is depicted in the following illustration (Figure 5). 

 

Figure 5. (a) Original shortest path (shown in bold arrows) in the graph (b) Transformed path 

Step-12 is again a version of Dijkstra’s algorithm specifically for non-negative edge costs. This step 

finds the edge-simple interlacing p* of Pl. 

Step-13 involves finding alternate shortest paths by the augmentation (referred to as interlacing in 

the paper) to the previously computed shortest path and the interlacing p* from the previous step. It is 

important to note that shortest interlacings in the transformed graph (referred to as canonical graph) 

correspond one-to-one to that in original graph ‘G’. The process of finding interlacing to Pl using p* is 

described in the following section. 

Step-14 simply stores the shortest paths computed thus far. 

4.3.2 Getting from Pl to Pl+1: 

Given that we have found the shortest path Pl and interlacing p* at iteration ‘l’, we can find the 

alternate path Pl+1at the next iteration ‘l+1’ as: 



i) Label each edge in ‘p*’ as ‘+’ if it is in the direction from source to sink and ‘-‘ otherwise.  

ii) An edge is common to both p* and Pl if and only if it has a negative label. 

iii) A node is common to both p* and Pl if and only if it is incident to an edge with negative label. 

Condition (ii) and (iii) add the constraint of the path being node-disjoint. 

Finally Pl+1 is computed by adding positive labeled edges and removing negative labeled edges of p* 

to Pl. 

4.4 Guaranty of optimality of KSP solution: 

At each iteration of finding l-shortest paths for l= 2,3,4…., we compute the total cost of the shortest 

paths as follows:  

          ∑       
  

 

   

 

In the above total cost function, each summand is given by the following: 

       
    ∑       

  

    
    

 

 

Since our path costs are monotonically increasing, i.e.,          
          

       , the total cost 

function          is convex with respect to    . Therefore, the global minimum is guaranteed 

when        
   changes sign and becomes non-negative: 

         
          

            
   

The above condition is set as the termination criterion in the algorithm. 

5 Applications 

The research described in this report has a number of contributions, which can be further applied to 

other problem. We will discuss some potential applications in the following section. 

5.1 Optimization By Relaxing ILP To LP 

Relaxation of integer linear program to linear program generally produces results different from 

optimal results of integer linear program, unless the constraint structure has the property of total-

unimodularity. Classical examples are fractional vertex-cover and fractional graph-coloring. But 

important point is that every solution of integer linear program is also a solution of linear program. Thus 

quality of linear program solution is at least as good as that of integer linear program. For maximization 



problem, linear program will produce a value equal to or larger than the solution of integer linear 

program. In minimization problems, linear program solution is equal to or smaller than the solution of 

integer linear program. Thus, this relaxation is good to finding upper or lower bound of the solution i.e. 

finding bounds for optimization problems. 

Branch and Bound approach: One approach of [potentially reaching an integer solution while solving 

a continuous LP is to use branch and bound (B&B) algorithm. This is basically a divide-and-conquer 

approach in which problem is recursively split into disjoint sub-parts and only subparts holding 

potentially optimal values are kept while others are pruned. For example, if     is the current optimal 

value in the solution of LP, LP is split into 2 parts; one with inequality         and other with 

inequality        . Successive partitioning leads to optimal solution with integer values [5]. 

5.2 Unimodularity In 3D Segmentation 

Shortest path algorithms have been used widely in image segmentation in 2D problems. In 3D 

segmentation, however, object boundary is actually a 2D surface.  Thus, it is necessary to extend 

shortest path approach to minimal weight surface for 3D segmentation application. The new problem 

can be modeled as an instance of integer linear program. 

   
 

      ∑  

 

     

Subject to              

Where     is the indicator variable indicating whether or not ith face is part of minimum weight 

surface or not, while    is the weight of the face. Entries of constraint matrix indicate if the edge 

borders the face with coherent or anti-coherent orientation.     Indicates coherence or anti-coherence 

of contour of ith edge.  Constraint matrix is a totally-unimodular constraint matrix, making it possible for 

the problem to be solved by LP solvers [6]. 

5.3 Real Time Multiple Object Tracking 

This work discusses how visually similar objects can be tracked with an algorithm with practically 

reasonable computational time. The reduction in complexity is important if this problem is to be solved 

in real-time. Thus, this work lays the ground work for real-time multiple visually-similar object tracking 

which has wide application in surveillance field. In a scenario like an airport or a train-station, 

surveillance videos have a huge number of humans. Tracking multiple humans in such videos is similar to 

tracking visually similar balls in test videos.  
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