
Complexity Theory
More Computability

Charles E. Hughes
COT6410 – Spring 2020 Notes

2SAT

A Subset of 3SAT
How hard?

4/14/20 © UCF CS 2

2SAT
• We showed that 3SAT is NP Complete
• What about 2SAT (two variable per

clause)?

4/14/20 © UCF CS 3

Attacking 2SAT
First we need to convert a 2SAT instance to a different
form, the so-called implicative normal form. Note that
the expression a∨b is equivalent to
¬a⇒b ∧ ¬b⇒a
(if one of the two variables is false, then the other one
must be true).
We now construct a directed graph of these
implications: for each variable x there will be two
vertices x and ¬x. The edges will correspond to the
implications.

4/14/20 © UCF CS 4

2SAT Example
Let's look at an example in 2-CNF form:

(a ∨ ¬b) ∧ (¬a ∨ b) ∧ (¬a ∨ ¬b) ∧ (a ∨ ¬c)
The oriented graph will contain the following
vertices:
(a ∨ ¬b) (¬a ∨ b) (¬a ∨ ¬b) (a ∨ ¬c)
¬a⇒¬b a⇒b a⇒¬b ¬a⇒¬c
b⇒a ¬b⇒¬a b⇒¬a c⇒a

4/14/20 © UCF CS 5

Graph from 2SAT Example
• If there is an edge a⇒b, then there also is an edge ¬b⇒¬a
• A contradiction exists if there is a cycle, for any variable x, that

involves x and ¬x (means x Û ¬x, which is a self-contradiction)
• What if there is path from some variable x to ¬x or vice versa?
• x⇒¬x can only be satisfied if x is false (¬x true)

4/14/20 © UCF CS 6

Finding a Solution for 2SAT
• Looking at our graph, c must be false, but so must a and b, as each

has a path to its complement
• Note that, if a is true, b is true, and if a is false, b is false
• Fortunately, there are no cycles involving a variable and its

complement, so we have a solution <a = F; b = F; c = F)
• The trick now is to discover that solution in an algorithmic manner

4/14/20 © UCF CS 7

Strongly Connected
Components (SCC)

• A directed graph is strongly connected if there is a path between all
pairs of vertices.

• A strongly connected component (SCC) of a directed graph is a
maximal strongly connected subgraph. For example, there are 3
SCCs in the graph we have been investigating.

4/14/20 © UCF CS 8

Computing SCC
• There are several efficient linear time

algorithms for finding the strongly
connected components of a graph, based
on depth first search

• The one commonly taught in Algorithm
Design and Analysis is Tarjan’s

4/14/20 © UCF CS 9

Mapping 2SAT to SCC
• In terms of the implication graph, two literals belong to the same

strongly connected component whenever there exist chains of
implications from one literal to the other and vice versa.

• Therefore, the two literals must have the same value in any
satisfying assignment to the given 2-satisfiability instance. In
particular, if a variable and its negation both belong to the same
strongly connected component, the instance cannot be satisfied,
because it is impossible to assign both of these literals the same
value.

• This is a necessary and sufficient condition: a 2-CNF formula is
satisfiable if and only if there is no variable that belongs to the same
strongly connected component as its negation.

4/14/20 © UCF CS 10

Solving SCC and 2SAT
• While some variable is not yet assigned

– Start at a partition that has no outgoing edges
– Assign true to all members of partition
– Remove partition and its incoming edges

• Can also do DFS of partitions
• Either way, we get

– ¬c = T
– ¬a = ¬b = T
– And so, a = b = c = F

4/14/20 © UCF CS 11

Any Hard Problems Here?
• Minimum-ones 2SAT problem: Provide a

satisfying assignment that sets a minimum
number of variables to true.

• Uniform Min-Ones-2SAT is the restriction of Min-
Ones-2SAT to input instances without mixed
clauses (must be all positive or all negative
literals in each clause)

• Positive Min-Ones-2SAT is the restriction of
Uniform Min-Ones-2SAT to inputs containing
only positive clauses (no negations)

4/14/20 © UCF CS 12

Uniform Min-Ones-2SAT
• Uniform Min-Ones-2SAT is NP-Hard as

we can reduce Min-Vertex-Cover to it
• In fact, Uniform Min-Ones-2SAT is NP-

Equivalent
• The best known (to me) uniform minimum-

ones 2SAT problem algorithm has a
running time of O(1.21061n) on a
satisfiable 2SAT formula with n variables

4/14/20 © UCF CS 13

Positive Min-Ones-2SAT
• Positive Min-Ones-2SAT is also equivalent

to Min-Vertex-Cover and therefore NP-
Equivalent as well

• This is interesting as the problem of
determining haplotype classifications and
propensity for certain genetic diseases can
be mapped onto Positive Min-Ones-2SAT

4/14/20 © UCF CS 14

VC to Positive Min-Ones-2SAT

4/14/20 © UCF CS 15

A

B

E

D

C

F

Can we cover all edges with just 3 vertices?

(AÚB)(AÚC),(BÚC),(BÚD),(CÚE),(DÚE),(DÚF)
Is minimum positive assignment 3 or fewer?
B,C,D works and tells us which vertices to choose to 3 cover above
If we added edge between E and F, the min would be 4 and we would
require 4 vertices to cover all edges and 4 variables set to true
This shows Positive Min-Ones-2SAT is NP-Hard

Positive Min-Ones-2SAT to VC
• Associate every variable with a vertex
• If (v1Úv2) is a clause, add an edge

between v1 and v2 in graph
• Now to find min, start with n/2, where we

have n variables and do a binary search
for min using oracle for VC

• Max number of queries of VC oracle is just
log2n so this is NP-Easy and therefore NP-
Equivalent

4/14/20 © UCF CS 16

Propositional Calculus

Axiomatizable Fragments

4/14/20 © UCF CS 18

Propositional Calculus
• Unquantified logical expressions
• Essentially Boolean algebra
• Goal is to reason about propositions
• Often interested in determining

– Is a well-formed formula (wff) a tautology?
– Is a wff refutable (unsatisfiable)?
– Is a wff satisfiable? (classic NP-complete)

4/14/20 © UCF CS 19

Tautology and Satisfiability
• The classic approaches are:

– Truth Table
– Axiomatic System (axioms and inferences)

• Truth Table
– Clearly exponential in number of variables

• Axiomatic Systems Rules of Inference
– Substitution and Modus Ponens
– Resolution / Unification

4/14/20 © UCF CS 20

Proving Consequences
• Start with a set of axioms (all tautologies)
• Using substitution and MP

(P, P ÉQ Þ Q)
derive consequences of axioms (also
tautologies, but just a fragment of all)

• Can create complete sets of axioms
• Need 3 variables for associativity, e.g.,

(p1 Ú p2) Ú p3 É p1 Ú (p2 Ú p3)

4/14/20 © UCF CS 21

Some Undecidables
• Given a set of axioms,

– Is this set complete?
– Given a tautology T, is T a consequent of

axiom set?
• The above are even undecidable with one

axiom and with only 2 variables. I will
show this result shortly.

4/14/20 © UCF CS 22

Refutation
• If we wish to prove that some wff, F, is a

tautology, we could negate it and try to
prove that the new formula is refutable
(cannot be satisfied; contains a logical
contradiction).

• This is often done using resolution.

4/14/20 © UCF CS 23

Resolution
• Put formula in Conjunctive Normal Form

(CNF)
• If have terms of conjunction

(P Ú Q), (R Ú ~Q)
then can determine that (P Ú R)

• If we ever get a null conclusion, we have
refuted the proposition

• Resolution is not complete for derivation,
but it is for refutation

Example Resolution
1. Premise: A Ú ¬I
2. Premise: ¬ W Ú I
3. Premise: ¬ A
4. Premise: W Ú I Ú C
5. Negation of Conclusion. ¬ C (prove C from above)

6. W Ú I L4, L5, resolution
7. I L2, L6, resolution, idempotence
8. A L1, L7, resolution
9. (A Ú ¬ A) L3, L8, resolution
#9 is a contradiction and so we can conclude FALSE from
above, meaning C follows logically from Premises
4/14/20 © UCF CS 24

4/14/20 © UCF CS 25

Axioms for a System that Can
Deduce Only Tautogies

• Must be tautologies
• Can be incomplete
• Might have limitations on them and on

WFFs, e.g.,
– Just implication
– Only n variables
– Single axiom

4/14/20 © UCF CS 26

Simulating Machines
• Linear representations require

associativity, unless all operations can be
performed on prefix only (or suffix only)

• Prefix and suffix-based operations are
single stacks and limit us to CFLs

• Can simulate Post normal Forms with just
3 variables – this is minimum when start
with a string-based system

4/14/20 © UCF CS 27

Dyadic PIPC
• Dyadic limits us to two variables
• PIPC means Partial Implicational Propositional

Calculus, and limits us to implication as the only
connective

• Partial just means we get a fragment
• Problems

– Is fragment complete?
– Can some chosen tautology C be derived by

substitution and MP?

4/14/20 © UCF CS 28

Living without Associativity
• Consider a two-stack model of a TM
• Might be able to use one variable for left

stack and other for right
• Must find a way to encode a sequence as

a composition of forms – that’s the key to
this simulation

4/14/20 © UCF CS 29

Composition Encoding
• Consider (p É p), (p É (p É p)),

(p É (p É (p É p))), …
– No form is a substitution instance of any of the

other, so they can’t be confused
– All are tautologies

• Consider ((X É Y) É Y)
– This is just X Ú Y

4/14/20 © UCF CS 30

Encoding Stack
• Use (p É p) as form of bottom of stack
• Use (p É (p É p)) as form for letter 0
• Use (p É (p É (p É p))) as form for 1
• Etc.
• String 01 (reading top to bottom of stack) is

– (((p É p) É ((p É p) É ((p É p) É (p É p)))) É
(((p É p) É ((p É p) É ((p É p) É (p É p)))) É
((p É p) É ((p É p) É ((p É p) É (p É p))))))

TM to Encode
• Tape alphabet {0,1} 0 is blank
• State set {q1, q2, … , qm}

– q1 is start state
– Machine halts if we reach a discriminant

(state, scanned symbol) with no associated
action

4/14/20 © UCF CS 31

Encoding Functions
I(p) abbreviates [p É p] // stack bottom
F0(p) is [p É I(p)] which is [p É [p É p]] // symbol 0
F1(p) is [p É F0(p)] // symbol 1
x1(p) is [p É F1(p)] // helper 1
x2(p) is [p É x1 (p)] // helper 2
x3(p) is [p É x2 (p)] // helper 3
y1(p) is [p É x3 (p)] // symbol q1

y2(p) is [p É y1 (p)] // symbol q2

…
ym(p) is [p É ym-1 (p)] // symbol qm

4/14/20 © UCF CS 32

Example TM ID
• Let a TM’s ID be

110 q5 1101
• Tape could be represented by two stacks

Stack 1 is right side, reading left to right
q5 1101

• Stack 2 is left side, reading right to left
011

4/14/20 © UCF CS 33

Excoded Example TM ID
• q5 1101 (stack 1, read left to right)
• 011 (stack 2, read left to right)
• y5(F1(F1(F0(F1(I (p1)))))) Ú F0(F1(F1(I (p2))))
• Consider a Turing Table entry q5 1 L q2

• We could have an implication like
[y5(F1(p1)) Ú F0(p2)] É [y2(F0(F1(p1))) Ú p2]

• Using substitution (see red) and MP
[y5(F1(F1(F0(F1(I(p1)))))) Ú F0(F1(F1(I(p1))))] Þ
[y5(F0(F1(F1(F0(F1(I(p1))))))) Ú F1(F1(I(p1)))]

• This mimics one step of forward computation

4/14/20 © UCF CS 34

Running Backwards
• The simulation we show actually will mimic the

TM running backwards so the rule on the
previous page will actually be
[y2(F0(F1(p1))) Ú p2] É [y5(F1(p1)) Ú F0(p2)]

• To kick things off, my rules want to allow me to
deduce any arbitrary halting ID

• We use three helper forms to do this; they are
x1(p), x2(p), and x3(p)

4/14/20 © UCF CS 35

x1 Sets Up Stack 2
• The only axiom that does not involve a form for which MP can be

applied is
1. [x1I(p1) Ú I(p1)]

• The above reflects two empty stacks
• Using x1 rules, we generate any and all possible left-hand sides of

tape in stack 2
• This guarantees that left side is either empty (rule 4) or starts with a

1 (rule 2)
• If we apply rule 2 then rule 3 can expand the left side

4/14/20 © UCF CS 36

x2 Starts Up Stack1
• Two possibilities follow

Either Rule 4 replaces x1 with x2 and assures that the
right side of tape (stack 1) has a 1 as its leftmost symbol
Or Rule 5 replaces x1 with x3 and assures that the right
side of tape (stack 1) has just a scanned symbol (can be
a 0 or 1)

• If we use x2 then rule 6 can expand the right side but at
some point we use rule 7 to switch to x3

4/14/20 © UCF CS 37

x3 Insures Terminal
Discriminamt

• Rule 8 replaces x3 with any yk such that qki halts (no
rule) and i, represented by Fi, is on the top of stack 1
(new wff will be of form yk(Fi(p1)) Ú p2

• This is the point where the simulation of the TM begins,
except we run TM in reverse via rules 9-13 (and their
subparts)

• While these rules can be a bit complex at first they are
just the same ones we used to map a TM to a semi-Thue
system or a PSG

4/14/20 © UCF CS 38

Putting it Together
• The main point is that the axioms produce a bunch of

items that are easy to check for validity (the stuff
involving the forms x1, x2, and x3 plus exactly those
representations of starting IDs for which the TM halts

• If we could decide what Tautologies are producible by
this Propositional System then we would be able to solve
the Halting Problem for TMs

• This proves the deducibility problem for Fragments of the
2-Variable Implicational Calculus (PIPC) is unsolvable

• This is true even though two variables are insufficient to
represent the basic notion of associativity!!!

4/14/20 © UCF CS 39

4/14/20 © UCF CS 40

Creating Terminal IDs

4/14/20 © UCF CS 41

Reversing Print and Left

4/14/20 © UCF CS 42

Reversing Right

Constant time:
Not amenable to Rice’s

Constant Time
• CTime = { M | $K [M halts in at most K steps

independent of its starting configuration] }
• RT cannot be shown undecidable by Rice’s Theorem as

it breaks property 2
– Choose M1 and M2 to each Standard Turing Compute (STC)

ZERO
– M1 is R (move right to end on a zero)
– M2 is L R R (time is dependent on argument)
– M1 is in CTime; M2 is not , but they have same I/O behavior, so

CTime does not adhere to property 2

4/14/20 © UCF CS 44

Quantifier Analysis
• CTime = { M | $K "C [STP(M, C, K)] }
• This would appear to imply that CTime is not

even re. However, a TM that only runs for K
steps can only scan at most K distinct tape
symbols. Thus, if we use unary notation, CTime
can be expressed

• CTime = { M | $K "C|C|≤K [STP(M, C, K)] }
• We can dovetail over the set of all TMs, M, and

all K, listing those M that halt in constant time.

4/14/20 © UCF CS 45

Mortal Turing Machines
• A TM, M, is mortal if it halts on all initial IDs,

whether the tape is finitely or infinitely marked.
• A TM is immortal if it is not mortal, that is, if

there some starting configuration, with the tape
either finitely or infinitely marked, on which it
does not halt

• The possibility of infinitely marked tapes is
essential to the idea of mortality

4/14/20 © UCF CS 46

Complexity of CTime
• Can show it is equivalent to the Mortality

Problem for TM’s with Infinite Tapes (not
unbounded but truly infinite and potentially
infinitely marked)

• This was shown in 1966 to be undecidable*.
• It was also shown to be re, just as we have done

so for CTime.
• Details Later
*P.K. Hooper, The undecidability of the Turing machine
immortality problem, J. Symbolic Logic 31 (1966) 219-234.
4/14/20 © UCF CS 47

Finite Convergence for
Concatenation of Context-Free

Languages
Relation to Real-Time

(Constant Time) Execution

Powers of CFLs
Let G be a context free grammar.
Consider L(G)n
Question1: Is L(G) = L(G)2?
Question2: Is L(G)n = L(G)n+1, for some

finite n>0?
These questions are both undecidable.
Think about why question1 is as hard as

whether or not L(G) is S*.
Question2 requires much more thought.
4/14/20 © UCF CS 49

L(G) = L(G)2?

• The problem to determine if L = S* is Turing
reducible to the problem to decide if
L • L Í L, so long as L is selected from a
class of languages C over the alphabet S for
which we can decide if S È {l} Í L.

• Corollary 1:
The problem “is L • L = L, for L context free
or context sensitive?” is undecidable

4/14/20 © UCF CS 50

L(G) = L(G)2? is undecidable

• Question: Does L • L get us anything new?
– i.e., Is L • L = L?

• Membership in a CFL is decidable.
• Claim is that L = S* iff

(1) S È {l} Í L ; and
(2) L • L = L

• Clearly, if L = S* then (1) and (2) trivially hold.
• Conversely, we have S* Í L*= È n³0 Ln Í L

– first inclusion follows from (1); second
from (2)

4/14/20 © UCF CS 51

Finite Power Problem
• The problem to determine, for an arbitrary

context free language L, if there exist a finite
n such that Ln = Ln+1 is undecidable.

• Let M be some Turing Machine
• L1 = { C1# C2

R $ | C1, C2 are configurations },
• L2 = { C1#C2

R$C3#C4
R … $C2k-1#C2k

R$ | where
k ³ 1 and, for some i, 1 £ i < 2k, Ci ÞM Ci+1 is
false },

• L = L1 È L2 È {l}.

4/14/20 © UCF CS 52

Undecidability of $n Ln = Ln+1

• L is context free.
• Any product of L1 and L2, which contains L2 at least

once, is L2. For instance, L1 • L2 = L2 • L1 = L2 • L2 =
L2.

• This shows that (L1 È L2)n = L1
n È L2.

• Thus, Ln = {l} È L1 È L1
2 … È L1

n È L2.
• Analyzing L1 and L2 we see that L1

n È L2 ¹ L2 just in
case there is a word C1 # C2

R $ C3 # C4
R … $ C2n-1 #

C2n
R $ in L1

n that is not also in L2.
• But then there is some valid trace of length 2n.
• L has the finite power property iff M executes in

constant time.
4/14/20 © UCF CS 53

Missing Step
• We have that CT (Constant-Time) is many-one reducible

to Finite Power Problem (FPC) for CFLs
• This means that if CT is unsolvable, so is FPC for CFLs.
• However, we still lack a proof that CT is unsolvable. To

achieve that we actually start with the 1966 result* that
the mortality problem for TMs with potentially infinite
initial tape markings is re/non-recursive
Note that the uniform halting problem for TMs with finite
initial tape markings is not even re – This is TOTAL

*P.K. Hooper, The undecidability of the Turing machine immortality
problem, J. Symbolic Logic 31 (1966) 219-234.

4/14/20 © UCF CS 54

Infinite Tape Markings
• If a TM halts for all tape markings, even if the TM’s initial

tape is infinitely marked, then there is some fixed
maximum amount of the tape that the machine can
traverse

• Why is the above so?
• Well, informally, if there was no bound built into the TM’s

table then it would be at the mercy of its data to decide
when to stop and that would lead a search for a zero (a
divider between items on the tape) to take an infinite
amount of time

4/14/20 © UCF CS 55

Uniformly Halting
• A TM, M, uniformly halts if there is some n,

dependent only on M, such that M halts in at
most n steps no matter what initial finite input it
is given

• Note that this concepts is restricted to normal
TMs that start with a finitely marked tape

• Clearly, a TM that uniformly halts runs in
constant time

4/14/20 © UCF CS 56

T uniformly halts iff T is mortal
• Let T be a TM that does not uniformly halt. If any finite ID does not

lead to a halt, then clearly T is immortal.
• Assume then that T does not uniformly halt but all finite ID’s cause it

to halt.
• Let I be the set of all ID’s such that, for each I Î I, when T starts in

I it will eventually scan each square of the tape containing a symbol
of I before it scans a square not containing a symbol of I.

• Let {q1, … , qm} be the states of T. We define a forest of m trees,
one for each state of T, such that the j-th tree has root qj.

• If I0, I1 Î I, and qj is a symbol of I0 and I1, and I1 = s I0 or I1 = I0 s ,
where s is a tape symbol, then I0 is a parent of I1 in the j-th tree.

• Note that when T starts in I1, the square containing s is scanned
after every other square of I1 but before any square not in I1.

4/14/20 © UCF CS 57

T uniformly halts iff T is mortal
• Since T does not uniformly halt but every finite ID causes

it to halt, at least one of the trees of the forest must be
infinite.

• The degree of each vertex in each tree is finite (it is
bounded by the number of tape symbols). By Koenig's
Infinity Lemma, at least one of the trees must have an
infinite branch. Therefore, there exists an infinite ID
which causes T to travel an infinite distance on the tape.
It follows that T is immortal.

4/14/20 © UCF CS 58

Undecidability of Finite
Convergence for Operators on

Formal Languages
Relation to Real-Time

(Constant Time) Execution

60

Simple Operators
• Concatenation

– A • B = { xy | x Î A & y Î B }

• Insertion
– A w B = { xyz | y Î A, xz Î B, x, y, z Î S*}
– Clearly, since x can be l, A • B Í A w B

4/14/20 © UCF CS

61

K-insertion
• A w [k] B = { x1y1x2y2 … xkykxk+1 |

y1y2 … yk Î A,
x1x2 … xkxk+1 Î B,
xi, yj Î S*}

• Clearly, B • A Í A w [k] B , for all k>0

4/14/20 © UCF CS

62

Iterated Insertion
• A (1) w[n] B = A w[n] B

• A (k+1) w[n] B = A w[n] (A (k) w[n] B)

4/14/20 © UCF CS

63

Shuffle
• Shuffle (product and bounded product)

– A ¯ B = È j ³ 1 A w[j] B
– A ¯[k] B = È 1£j£k A w[j] B = A w[k] B

• One is tempted to define shuffle product as
A ¯ B = A w[k] B where

k = µ y [A w[j] B = A w[j+1] B]
but such a k may not exist – in fact, we will show
the undecidability of determining whether or not
k exists

4/14/20 © UCF CS

64

More Shuffles
• Iterated shuffle

– A ¯0 B = A
– A ¯k +1 B = (A ¯[k] B) ¯ B

• Shuffle closure
– A ¯* B = È k ³ 0 (A ¯[k] B)

4/14/20 © UCF CS

65

Crossover
• Unconstrained crossover is defined by

A Äu B = { wz, yx | wxÎA and yzÎB}

• Constrained crossover is defined by
A Äc B = { wz, yx | wxÎA and yzÎB,

|w| = |y|, |x| = |z| }

4/14/20 © UCF CS

66

Who Cares?
• People with no real life (me?)
• Insertion and a related deletion operation are

used in biomolecular computing and
dynamical systems

• Shuffle is used in analyzing concurrency as
the arbitrary interleaving of parallel events

• Crossover is used in genetic algorithms

4/14/20 © UCF CS

67

Some Known Results
• Regular languages, A and B

– A • B is regular
– A w [k] B is regular, for all k>0
– A ¯ B is regular
– A ¯* B is not necessarily regular

• Deciding whether or not A ¯* B is regular is an
open problem

4/14/20 © UCF CS

68

More Known Stuff
• CFLs, A and B

– A • B is a CFL
– A w B is a CFL
– A w [k] B is not necessarily a CFL, for k>1

• Consider A=anbn; B = cmdm and k=2
• Trick is to consider (A w [2] B) Ç a*c*b*d*

– A ¯ B is not necessarily a CFL
– A ¯* B is not necessarily a CFL

• Deciding whether or not A ¯* B is a CFL is an open problem

4/14/20 © UCF CS

69

Immediate Convergence

• L = L2 ?
• L = L wL ?
• L = L ¯ L ?
• L = L ¯* L ?
• L = L Äc L ?
• L = L Äu L ?

4/14/20 © UCF CS

70

Finite Convergence
• $k>0 Lk = Lk+1

• $k³0 L (k) w L = L (k+1) w L
• $k³0 L w[k] L = L w[k+1] L
• $k³0 L ¯k L = L ¯k +1 L
• $k³0 L (k) Äc L = L (k+1) Äc L
• $k³0 L (k) Äu L = L (k+1) Äu L

• $k³0 A (k) w B = A (k+1) w B
• $k³0 A w[k] B = A w[k+1] B
• $k³0 A ¯k B = A ¯k +1 B
• $k³0 A (k) Äc B = A (k+1) Äc B
• $k³0 A (k) Äu B = A (k+1) Äu L

4/14/20 © UCF CS

71

Finite Power of CFG
• Let G be a context free grammar.
• Consider L(G)n

• Question1: Is L(G) = L(G)2?
• Question2: Is L(G)n = L(G)n+1, for some finite

n>0?
• These questions are both undecidable.
• We showed that question1 is as hard as whether

or not L(G) is S*.
• Question2 required more work.

4/14/20 © UCF CS

72

1981 Results
• Theorem 1:

The problem to determine if L = S* is Turing
reducible to the problem to decide if
L • L Í L, so long as L is selected from a class
of languages C over the alphabet S for which we
can decide if S È {l} Í L.

• Corollary 1:
The problem “is L • L = L, for L context free or
context sensitive?” is undecidable

4/14/20 © UCF CS

73

Proof #1
• Question: Does L • L get us anything new?

– i.e., Is L • L = L?
• Membership in a CSL is decidable.
• Claim is that L = S* iff

(1) S È {l} Í L ; and
(2) L • L = L

• Clearly, if L = S* then (1) and (2) trivially hold.
• Conversely, we have S* Í L*= È n³0 Ln Í L

– first inclusion follows from (1); second from (2)

4/14/20 © UCF CS

74

Subsuming •
• Let Å be any operation that subsumes

concatenation, that is A • B Í A Å B.
• Simple insertion is such an operation,

since A • B Í A w B.
• Unconstrained crossover also subsumes
•,
A Äc B = { wz, yx | wxÎA and yzÎB}

4/14/20 © UCF CS

75

L = L Å L ?
• Theorem 2:

The problem to determine if L = S* is
Turing reducible to the problem to decide if
L Å L Í L, so long as
L • L Í L Å L and L is selected from a
class of languages C over S for which we
can decide if
S È {l} Í L.

4/14/20 © UCF CS

76

Proof #2
• Question: Does L Å L get us anything new?

– i.e., Is L Å L = L?
• Membership in a CSL is decidable.
• Claim is that L = S* iff

(1) S È {l} Í L ; and
(2) L Å L = L

• Clearly, if L = S* then (1) and (2) trivially hold.
• Conversely, we have S* Í L*= È n³0 Ln Í L

– first inclusion follows from (1); second from (1), (2)
and the fact that L • L Í L Å L

4/14/20 © UCF CS

Quotients of CFLs

Quotients of CFLs (Trace-Like
Sequences)

Let L1 = L(G1) = { $ # Y0 # Y1 # Y2 # Y3 # … # Y2j #
Y2j+1 # }
where Y2i Þ Y2i+1 , 0 ≤ i ≤ j.
This checks the even/odd steps of an even length
computation.
Now, let L2=L(G2)=
{X0 $ # X0 # X1 # X2 # X3 # X4 # … # X2k-1 # X2k# Z0 #}
where X2i-1 Þ X2i , 1 ≤ i ≤ k and Z0 is a unique halting
configuration.
This checks the odd/steps of an even length
computation and includes an extra copy of the
starting number prior to its $.

4/14/20 78© UCF CS

If a Turing Machine Trace
Let L1 = L(G1) = { $ # Y0

R # Y1 # Y2
R # Y3 # … # Y2j

R # Y2j+1 # }
where Y2i Þ Y2i+1 , 0 ≤ i ≤ j.
This checks the even/odd steps of an even length
computation.

Now, let L2=L(G2)=
{X0 $ # X0

R # X1 # X2
R # X3 # X4

R # … # X2k-1 # X2k
R# Z0 #}

where X2i-1 Þ X2i , 1 ≤ i ≤ k and Z0 is a unique halting
configuration.

This checks the odd/steps of an even length computation
and includes an extra copy of the starting number prior to its
$.

4/14/20 79© UCF CS

Quotients of CFLs (results)
L1 = { $ # Y0 # Y1 # Y2 # Y3 # Y4 # … #Y2k-1 # Y2j # Y2j+1 # }
L2 = {X0 $ # X0 # X1 # X2 # X3 # X4 # … # X2k-1 # X2k# Z0 #}
Now, consider the quotient of L2 / L1 . The only way a member of L1 can
match a final substring in L2 is to line up the $ signs. But then they serve
to check out the validity and termination of the computation. Moreover,
the quotient leaves only the starting point (the one on which the machine
halts.) Thus,

L2 / L1 = { X0 | the system being traced halts}.

Since deciding the members of an re set is in general undecidable, we
have shown that membership in the quotient of two CFLs is also
undecidable.
Note: Intersection of two CFLs is a CSL but quotient of two CFLs is an re
set and, in fact, all re sets can be specified by such quotients.

4/14/20 80© UCF CS

81

Quotients of CFLs (precise)
• Let (n, ((a1,b1,c1,d1) , … ,(ak,bk,ck,dk)) be some factor replacement

system with residues. Define grammars G1 and G2 by using the 4k+4 rules
G : Fi ® 1aiFi1ci | 1ai+bi#1ci+di 1 ≤ i ≤ k

T1 ® # Fi T1 | # Fi # 1 ≤ i ≤ k
A ® 1 A 1 | $ #
S1 ® $T1
S2 ® A T1 # 1z0 # Z0 is 0 for us

G1 starts with S1 and G2 with S2
• Thus, using the notation of writing Y in place of 1Y,

L1 = L(G1) = { $ #Y0 # Y1 # Y2 # Y3 # … # Y2j # Y2j+1 # }
where Y2i Þ Y2i+1 , 0 ≤ i ≤ j.
This checks the even/odd steps of an even length computation.
But, L2 = L(G2) = {X0 $ #X0 # X1 # X2 # X3 # X4 # … # X2k-1 # X2k# Z0 # }
where X2i-1 Þ X2i , 1 ≤ i ≤ k and X = X0
This checks the odd/steps of an even length computation, and

includes an extra copy of the starting number prior to its $.

4/14/20 © UCF CS

82

Summarizing Quotient
Now, consider the quotient L2 / L1 where L1
and L2 are the CFLs on prior slide. The only
way a member of L1 can match a final substring
in L2 is to line up the $ signs. But then they
serve to check out the validity and termination of
the computation. Moreover, the quotient leaves
only the starting number (the one on which the
machine halts.) Thus,
L2 / L1 = { X | the system F halts on zero }.
Since deciding the members of an re set is in
general undecidable, we have shown that
membership in the quotient of two CFLs is also
undecidable.

4/14/20 © UCF CS

A Complexity Summary

PSPACE
• PSPACE is set of problems solvable in polynomial space with unlimited time

PSPACE = ∪ SPACE(nk)
• PSPACE = co-PSPACE = NPSPACE
• PSPACE is a strict superset of CSLs
• PSPACE-Complete Problem is, given a regular expression E over Σ, does E

denote all strings in Σ*?
• The above, while solvable, is potentially hard
• Another PSPACE-Complete problem is QSAT
• PSPACE is suspected to outside the P/NP hierarchy

4/14/20 © UCF CS 84

EXPTIME and EXPSPACE
• EXPTIME is the set of problems solvable

in 2p(n) where is p is some polynomial.
• NEXPTIME is the set of problems solvable

in 2p(n) on a non-deterministic TM.
• EXPSPACE is set of problems solvable in

2p(n) space and unbounded time

4/14/20 © UCF CS 85

Elementary Functions

4/14/20 © UCF CS 86

Alternating TM (ATM)
• ATM adds to NDTM notation the notion

where, for each state q, q has one of the
following properties: (accept, reject, Ú, Ù)
– Ú means mean accept the string if any final

state reached after q is accepting
– Ù means mean accept the string if all final

states reached after q are accepting
• AP = PSPACE where AP is class of

problems solvable in polynomial time on
an ATM 4/14/20 © UCF CS 87

QSAT, Petri Net, Presburger
• QSAT is solvable by an alternating TM in

polynomial time and polynomial space
• As noted, before, QSAT is PSPACE-Complete
• Petri net reachability is EXPSPACE-hard and

requires 2-EXPTIME
• Presburger arithmetic is at least in 2-EXPTIME,

at most in 3-EXPTIME, and can be solved by an
ATM with n alternating quantifiers in doubly
exponential time

4/14/20 © UCF CS 88

Complexity Hierarchy
• P Í NP Í PSPACE = NPSPACE ⊆ EXPTIME Í NEXPTIME Í EXPSPACE ⊈

2-EXPTIME ⊈ 3-EXPTIME ⊈ … ⊈ ELEMENTARY ⊈ PRF ⊈ REC
• What if P ¹ EXPTIME; At least one of these is true

– P ⊈ NP
– NP ⊈ PSPACE
– PSPACE ⊈ EXPTIME

• If NP ¹ NEXPTIME; At least of these is true
– NP ⊈ PSPACE
– PSPACE ⊈ EXPTIME
– EXPTIME ⊈ NEXPTIME

• Note that EXPTIME = NEXPTIME iff P=NP
• Note that k-EXPTIME ⊈ (k+1)-EXPTIME, k>0

• What If PSPACE ¹ EXPSPACE; At least one of these is true
– PSPACE ⊈ EXPTIME
– EXPTIME ⊈ EXPSPACE

4/14/20 © UCF CS 89

