
Complexity Theory
More Computability

Charles E. Hughes
COT6410 – Spring 2020 Notes



2SAT

A Subset of 3SAT
How hard?
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2SAT
• We showed that 3SAT is NP Complete
• What about 2SAT (two variable per 

clause)?
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Attacking 2SAT
First we need to convert a 2SAT instance to a different 
form, the so-called implicative normal form. Note that 
the expression a∨b is equivalent to
¬a⇒b ∧ ¬b⇒a
(if one of the two variables is false, then the other one 
must be true).
We now construct a directed graph of these 
implications: for each variable x there will be two 
vertices x and ¬x. The edges will correspond to the 
implications.
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2SAT Example
Let's look at an example in 2-CNF form:

(a ∨ ¬b) ∧ (¬a ∨ b) ∧ (¬a ∨ ¬b) ∧ (a ∨ ¬c)
The oriented graph will contain the following 
vertices:
(a ∨ ¬b) (¬a ∨ b) (¬a ∨ ¬b) (a ∨ ¬c)
¬a⇒¬b a⇒b a⇒¬b ¬a⇒¬c
b⇒a ¬b⇒¬a b⇒¬a c⇒a
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Graph from 2SAT Example
• If there is an edge a⇒b, then there also is an edge ¬b⇒¬a
• A contradiction exists if there is a cycle, for any variable x, that 

involves x and ¬x (means x Û ¬x, which is a self-contradiction)
• What if there is path from some variable x to ¬x or vice versa?
• x⇒¬x can only be satisfied if x is false (¬x true)
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Finding a Solution for 2SAT
• Looking at our graph, c must be false, but so must a and b, as each 

has a path to its complement
• Note that, if a is true, b is true, and if a is false, b is false
• Fortunately, there are no cycles involving a variable and its 

complement, so we have a solution <a = F; b = F; c = F)
• The trick now is to discover that solution in an algorithmic manner
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Strongly Connected 
Components (SCC)

• A directed graph is strongly connected if there is a path between all 
pairs of vertices.

• A strongly connected component (SCC) of a directed graph is a 
maximal strongly connected subgraph. For example, there are 3 
SCCs in the graph we have been investigating.
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Computing SCC
• There are several efficient linear time 

algorithms for finding the strongly 
connected components of a graph, based 
on depth first search

• The one commonly taught in Algorithm 
Design and Analysis is Tarjan’s
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Mapping 2SAT to SCC
• In terms of the implication graph, two literals belong to the same 

strongly connected component whenever there exist chains of 
implications from one literal to the other and vice versa. 

• Therefore, the two literals must have the same value in any 
satisfying assignment to the given 2-satisfiability instance. In 
particular, if a variable and its negation both belong to the same 
strongly connected component, the instance cannot be satisfied, 
because it is impossible to assign both of these literals the same 
value. 

• This is a necessary and sufficient condition: a 2-CNF formula is 
satisfiable if and only if there is no variable that belongs to the same 
strongly connected component as its negation.
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Solving SCC and 2SAT
• While some variable is not yet assigned

– Start at a partition that has no outgoing edges
– Assign true to all members of partition 
– Remove partition and its incoming edges

• Can also do DFS of partitions
• Either way, we get

– ¬c = T
– ¬a = ¬b = T
– And so, a = b = c = F
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Any Hard Problems Here?
• Minimum-ones 2SAT problem: Provide a 

satisfying assignment that sets a minimum 
number of variables to true. 

• Uniform Min-Ones-2SAT is the restriction of Min-
Ones-2SAT to input instances without mixed 
clauses (must be all positive or all negative 
literals in each clause)

• Positive Min-Ones-2SAT is the restriction of 
Uniform Min-Ones-2SAT to inputs containing 
only positive clauses (no negations)
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Uniform Min-Ones-2SAT
• Uniform Min-Ones-2SAT is NP-Hard as 

we can reduce Min-Vertex-Cover to it
• In fact, Uniform Min-Ones-2SAT is NP-

Equivalent
• The best known (to me) uniform minimum-

ones 2SAT problem algorithm has a 
running time of O(1.21061n) on a 
satisfiable 2SAT formula with n variables
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Positive Min-Ones-2SAT
• Positive Min-Ones-2SAT is also equivalent 

to Min-Vertex-Cover and therefore NP-
Equivalent as well

• This is interesting as the problem of 
determining haplotype classifications and 
propensity for certain genetic diseases can 
be mapped onto Positive Min-Ones-2SAT 
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VC to Positive Min-Ones-2SAT 
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A

B

E

D

C

F

Can we cover all edges with just 3 vertices?

(AÚB)(AÚC),(BÚC),(BÚD),(CÚE),(DÚE),(DÚF)
Is minimum positive assignment 3 or fewer?
B,C,D works and tells us which vertices to choose to 3 cover above
If we added edge between E and F, the min would be 4 and we would 
require 4 vertices to cover all edges and 4 variables set to true
This shows Positive Min-Ones-2SAT is NP-Hard



Positive Min-Ones-2SAT to VC
• Associate every variable with a vertex
• If (v1Úv2) is a clause, add an edge 

between v1 and v2 in graph
• Now to find min, start with n/2, where we 

have n variables and do a binary search 
for min using oracle for VC

• Max number of queries of VC oracle is just 
log2n so this is NP-Easy and therefore NP-
Equivalent
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Propositional Calculus

Axiomatizable Fragments



4/14/20 © UCF CS 18

Propositional Calculus
• Unquantified logical expressions
• Essentially Boolean algebra
• Goal is to reason about propositions
• Often interested in determining

– Is a well-formed formula (wff) a tautology?
– Is a wff refutable (unsatisfiable)?
– Is a wff satisfiable? (classic NP-complete)
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Tautology and Satisfiability
• The classic approaches are:

– Truth Table
– Axiomatic System (axioms and inferences)

• Truth Table
– Clearly exponential in number of variables

• Axiomatic Systems Rules of Inference
– Substitution and Modus Ponens
– Resolution / Unification



4/14/20 © UCF CS 20

Proving Consequences
• Start with a set of axioms (all tautologies)
• Using substitution and MP 

(P, P ÉQ Þ Q)
derive consequences of axioms (also 
tautologies, but just a fragment of all)

• Can create complete sets of axioms
• Need 3 variables for associativity, e.g., 

(p1 Ú p2) Ú p3   É p1 Ú (p2 Ú p3)
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Some Undecidables
• Given a set of axioms,

– Is this set complete?
– Given a tautology T, is T a consequent of 

axiom set?
• The above are even undecidable with one 

axiom and with only 2 variables. I will 
show this result shortly.
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Refutation
• If we wish to prove that some wff, F, is a 

tautology, we could negate it and try to 
prove that the new formula is refutable 
(cannot be satisfied; contains a logical 
contradiction).

• This is often done using resolution.



4/14/20 © UCF CS 23

Resolution
• Put formula in Conjunctive Normal Form 

(CNF)
• If have terms of conjunction

(P Ú Q), (R  Ú ~Q)
then can determine that (P Ú R)

• If we ever get a null conclusion, we have 
refuted the proposition

• Resolution is not complete for derivation, 
but it is for refutation



Example Resolution
1. Premise: A Ú ¬I 
2. Premise: ¬ W Ú I 
3. Premise: ¬ A
4. Premise: W Ú I Ú C 
5. Negation of Conclusion. ¬ C (prove C from above)

6. W Ú I L4, L5, resolution 
7. I L2, L6, resolution, idempotence 
8. A L1, L7, resolution 
9. (A Ú ¬ A) L3, L8, resolution
#9 is a contradiction and so we can conclude FALSE from 
above, meaning C follows logically from Premises
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Axioms for a System that Can 
Deduce Only Tautogies

• Must be tautologies
• Can be incomplete
• Might have limitations on them and on 

WFFs, e.g.,
– Just implication
– Only n variables
– Single axiom
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Simulating Machines
• Linear representations require 

associativity, unless all operations can be 
performed on prefix only (or suffix only)

• Prefix and suffix-based operations are 
single stacks and limit us to CFLs

• Can simulate Post normal Forms with just 
3 variables – this is minimum when start 
with a string-based system
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Dyadic PIPC
• Dyadic limits us to two variables
• PIPC means Partial Implicational Propositional 

Calculus, and limits us to implication as the only 
connective

• Partial just means we get a fragment
• Problems

– Is fragment complete?
– Can some chosen tautology C be derived by 

substitution and MP?
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Living without Associativity
• Consider a two-stack model of a TM
• Might be able to use one variable for left 

stack and other for right
• Must find a way to encode a sequence as 

a composition of forms – that’s the key to 
this simulation
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Composition Encoding
• Consider (p É p), (p É (p É p) ), 

(p É (p É (p É p) ) ), …
– No form is a substitution instance of any of the 

other, so they can’t be confused
– All are tautologies

• Consider ((X É Y) É Y)
– This is just X Ú Y
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Encoding Stack
• Use (p É p) as form of bottom of stack
• Use (p É (p É p)) as form for letter 0
• Use (p É (p É (p É p))) as form for 1
• Etc.
• String 01 (reading top to bottom of stack) is

– (   ( (p É p) É ( (p É p) É ( (p É p) É (p É p) ) ) ) É
( ( (p É p) É ( (p É p) É ( (p É p) É (p É p) ) ) ) É
( (p É p) É ( (p É p) É ( (p É p) É (p É p) ) ) ) ) )



TM to Encode
• Tape alphabet {0,1} 0 is blank
• State set {q1, q2, … , qm} 

– q1 is start state
– Machine halts if we reach a discriminant 

(state, scanned symbol) with no associated 
action
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Encoding Functions
I(p) abbreviates [p É p] // stack bottom
F0(p) is [p É I(p)] which is [p É [p É p]] // symbol 0
F1(p) is [p É F0(p)] // symbol 1
x1(p) is [p É F1(p)] // helper 1
x2(p) is [p É x1 (p)] // helper 2
x3(p) is [p É x2 (p)] // helper 3
y1(p) is [p É x3 (p)] // symbol q1

y2(p) is [p É y1 (p)] // symbol q2

…
ym(p) is [p É ym-1 (p)] // symbol qm
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Example TM ID
• Let a TM’s ID be

110 q5 1101
• Tape could be represented by two stacks

Stack 1 is right side, reading left to right 
q5 1101 

• Stack 2 is left side, reading right to left
011
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Excoded Example TM ID
• q5 1101  (stack 1, read left to right)
• 011 (stack 2, read left to right)
• y5( F1( F1( F0( F1( I (p1) ) ) ) ) ) Ú F0( F1( F1( I (p2) ) ) ) 
• Consider a Turing Table entry q5 1 L q2

• We could have an implication like
[y5(F1(p1)) Ú F0(p2)] É [y2(F0(F1(p1))) Ú p2] 

• Using substitution (see red) and MP
[y5(F1(F1(F0(F1(I(p1)))))) Ú F0(F1(F1(I(p1))))] Þ
[y5(F0(F1(F1(F0(F1(I(p1))))))) Ú F1(F1(I(p1)))]

• This mimics one step of forward computation
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Running Backwards
• The simulation we show actually will mimic  the 

TM running backwards so the rule on the 
previous page will actually be 
[y2(F0(F1(p1))) Ú p2] É [y5(F1(p1)) Ú F0(p2)]

• To kick things off, my rules want to allow me to 
deduce any arbitrary halting ID

• We use three helper forms to do this; they are 
x1(p), x2(p), and x3(p) 
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x1 Sets Up Stack 2
• The only axiom that does not involve a form for which MP can be 

applied is
1. [x1I(p1) Ú I(p1)]

• The above reflects two empty stacks
• Using x1 rules, we generate any and all possible left-hand sides of 

tape in stack 2
• This guarantees that left side is either empty (rule 4) or starts with a 

1 (rule 2)
• If we apply rule 2 then rule 3 can expand the left side
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x2 Starts Up Stack1
• Two possibilities follow

Either Rule 4 replaces x1 with x2 and assures that the 
right side of tape (stack 1) has a 1 as its leftmost symbol
Or Rule 5 replaces x1 with x3 and assures that the right 
side of tape (stack 1) has just a scanned symbol (can be 
a 0 or 1)

• If we use x2 then rule 6 can expand the right side but at 
some point we use rule 7 to switch to x3

4/14/20 © UCF CS 37



x3 Insures Terminal 
Discriminamt

• Rule 8 replaces x3 with any yk such that qki halts (no 
rule) and i, represented by Fi, is on the top of stack 1 
(new wff will be of form yk(Fi(p1)) Ú p2

• This is the point where the simulation of the TM begins, 
except we run TM in reverse via rules 9-13 (and their 
subparts)

• While these rules can be a bit complex at first they are 
just the same ones we used to map a TM to a semi-Thue
system or a PSG
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Putting it Together
• The main point is that the axioms produce  a bunch of 

items that are easy to check for validity (the stuff 
involving the forms x1, x2, and x3 plus exactly those 
representations of starting IDs for which the TM halts

• If we could decide what Tautologies are producible by 
this Propositional System then we would be able to solve 
the Halting Problem for TMs

• This proves the deducibility problem for Fragments of the 
2-Variable Implicational Calculus (PIPC) is unsolvable

• This is true even though two variables are insufficient to 
represent the basic notion of associativity!!!
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Creating Terminal IDs
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Reversing Print and Left
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Reversing Right 



Constant time: 
Not amenable to Rice’s



Constant Time
• CTime = { M | $K [ M halts in at most K steps 

independent of its starting configuration ] }
• RT cannot be shown undecidable by Rice’s Theorem as 

it breaks property 2
– Choose M1 and M2 to each Standard Turing Compute (STC) 

ZERO
– M1 is R (move right to end on a zero)
– M2 is L R R (time is dependent on argument)
– M1 is in CTime; M2 is not , but they have same I/O behavior, so 

CTime does not adhere to property 2
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Quantifier Analysis
• CTime = { M | $K "C [ STP(M, C, K) ] }
• This would appear to imply that CTime is not 

even re. However, a TM that only runs for K 
steps can only scan at most K distinct tape 
symbols. Thus, if we use unary notation, CTime
can be expressed

• CTime = { M | $K "C|C|≤K [ STP(M, C, K) ] }
• We can dovetail over the set of all TMs, M, and 

all K, listing those M that halt in constant time.
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Mortal Turing Machines
• A TM, M, is mortal if it halts on all initial IDs, 

whether the tape is finitely or infinitely marked. 
• A TM is immortal if it is not mortal, that is, if 

there some starting configuration, with the tape 
either finitely or infinitely marked, on which it 
does not halt

• The possibility of infinitely marked tapes is 
essential to the idea of mortality
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Complexity of CTime
• Can show it is equivalent to the Mortality 

Problem for TM’s with Infinite Tapes (not 
unbounded but truly infinite and potentially 
infinitely marked)

• This was shown in 1966 to be undecidable*.
• It was also shown to be re, just as we have done 

so for CTime.
• Details Later
*P.K. Hooper, The undecidability of the Turing machine 
immortality problem, J. Symbolic Logic 31 (1966) 219-234.
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Finite Convergence for 
Concatenation of Context-Free 

Languages
Relation to Real-Time 

(Constant Time) Execution



Powers of CFLs
Let G be a context free grammar.
Consider L(G)n
Question1: Is L(G) = L(G)2?
Question2: Is L(G)n = L(G)n+1, for some 

finite n>0?
These questions are both undecidable.
Think about why question1 is as hard as 

whether or not L(G) is S*. 
Question2 requires much more thought.
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L(G) = L(G)2?

• The problem to determine if L = S* is Turing 
reducible to the problem to decide if 
L • L Í L, so long as L is selected from a 
class of languages C over the alphabet S for 
which we can decide if S È {l} Í L. 

• Corollary 1: 
The problem “is L • L = L, for L context free 
or context sensitive?” is undecidable 
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L(G) = L(G)2? is undecidable

• Question: Does L • L get us anything new?
– i.e., Is L • L = L?

• Membership in a CFL is decidable.
• Claim is that L = S* iff

(1) S È {l} Í L ; and
(2) L • L = L 

• Clearly, if L = S* then (1) and (2) trivially hold.
• Conversely, we have S* Í L*= È n³0 Ln Í L

– first inclusion follows from (1); second 
from (2)
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Finite Power Problem
• The problem to determine, for an arbitrary 

context free language L, if there exist a finite 
n such that Ln = Ln+1 is undecidable.

• Let M be some Turing Machine
• L1 = { C1# C2

R $ | C1, C2 are configurations },
• L2 = { C1#C2

R$C3#C4
R … $C2k-1#C2k

R$ | where 
k ³ 1 and, for some i, 1 £ i < 2k, Ci ÞM Ci+1 is 
false },

• L = L1 È L2 È {l}.
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Undecidability of $n Ln = Ln+1

• L is context free. 
• Any product of L1 and L2, which contains L2 at least 

once, is L2. For instance, L1 • L2 = L2 • L1 = L2 • L2 = 
L2.  

• This shows that (L1 È L2)n = L1
n È L2. 

• Thus, Ln = {l} È L1 È L1
2 …  È L1

n È L2. 
• Analyzing L1 and L2 we see that L1

n È L2 ¹ L2 just in 
case there is a word C1 # C2

R $ C3 # C4
R … $ C2n-1 # 

C2n
R $ in L1

n that is not also in L2. 
• But then there is some valid trace of length 2n. 
• L has the finite power property iff M executes in 

constant time.
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Missing Step
• We have that CT (Constant-Time) is many-one reducible 

to Finite Power Problem (FPC) for CFLs
• This means that if CT is unsolvable, so is FPC for CFLs.
• However, we still lack a proof that CT is unsolvable. To 

achieve that we actually start with the 1966 result* that 
the mortality problem for TMs with potentially infinite
initial tape markings is re/non-recursive
Note that the uniform halting problem for TMs with finite
initial tape markings is not even re – This is TOTAL

*P.K. Hooper, The undecidability of the Turing machine immortality 
problem, J. Symbolic Logic 31 (1966) 219-234.
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Infinite Tape Markings
• If a TM halts for all tape markings, even if the TM’s initial 

tape is infinitely marked, then there is some fixed 
maximum amount of the tape that the machine can 
traverse

• Why is the above so?
• Well, informally, if there was no bound built into the TM’s 

table then it would be at the mercy of its data to decide 
when to stop and that would lead a search for a zero (a 
divider between items on the tape) to take an infinite 
amount of time
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Uniformly Halting
• A TM, M, uniformly halts if there is some n, 

dependent only on M, such that M halts in at 
most n steps no matter what initial finite input it 
is given

• Note that this concepts is restricted to normal 
TMs that start with a finitely marked tape

• Clearly, a TM that uniformly halts runs in 
constant time
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T uniformly halts iff T is mortal
• Let T be a TM that does not uniformly halt. If any finite ID does not 

lead to a halt, then clearly T is immortal. 
• Assume then that T does not uniformly halt but all finite ID’s cause it 

to halt.
• Let I be the set of all ID’s such that, for each I Î I, when T starts in 

I it will eventually scan each square of the tape containing a symbol 
of I before it scans a square not containing a symbol of I. 

• Let {q1, … , qm} be the states of T. We define a forest of m trees, 
one for each state of T, such that the j-th tree has root qj. 

• If I0, I1 Î I, and qj is a symbol of I0 and I1, and I1 = s I0 or I1 = I0 s ,
where s is a tape symbol, then I0 is a parent of I1 in the j-th tree. 

• Note that when T starts in I1, the square containing s is scanned 
after every other square of I1 but before any square not in I1. 
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T uniformly halts iff T is mortal
• Since T does not uniformly halt but every finite ID causes 

it to halt, at least one of the trees of the forest must be 
infinite. 

• The degree of each vertex in each tree is finite (it is 
bounded by the number of tape symbols). By Koenig's 
Infinity Lemma, at least one of the trees must have an 
infinite branch. Therefore, there exists an infinite ID 
which causes T to travel an infinite distance on the tape. 
It follows that T is immortal.
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Undecidability of Finite 
Convergence for Operators on 

Formal Languages
Relation to Real-Time 

(Constant Time) Execution
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Simple Operators
• Concatenation

– A • B = { xy | x Î A & y Î B }

• Insertion
– A w B = { xyz |  y Î A, xz Î B, x, y, z Î S*}
– Clearly, since x can be l, A • B Í A w B
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K-insertion 
• A w [ k ] B = { x1y1x2y2 … xkykxk+1 |  

y1y2 … yk Î A, 
x1x2 … xkxk+1 Î B, 
xi, yj Î S*}

• Clearly, B • A Í A w [ k ] B , for all k>0
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Iterated Insertion
• A (1) w[ n ] B = A w[ n ] B

• A (k+1) w[ n ] B = A w[ n ] (A (k) w[ n ] B)
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Shuffle
• Shuffle (product and bounded product)

– A ¯ B = È j ³ 1 A w[ j ] B 
– A ¯[ k ] B = È 1£j£k A w[ j ] B = A w[ k ] B 

• One is tempted to define shuffle product as 
A ¯ B = A w[ k ] B where 

k = µ y [ A w[ j ] B = A w[ j+1] B ]
but such a k may not exist – in fact, we will show 
the undecidability of determining whether or not 
k exists
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More Shuffles
• Iterated shuffle

– A ¯0 B = A
– A ¯k +1 B = (A ¯[ k ] B) ¯ B 

• Shuffle closure
– A ¯* B = È k ³ 0 (A ¯[ k ] B)
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Crossover
• Unconstrained crossover is defined by 

A Äu B = { wz, yx | wxÎA and yzÎB}

• Constrained crossover is defined by
A Äc B = { wz, yx | wxÎA and yzÎB, 

|w| = |y|, |x| = |z| }
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Who Cares?
• People with no real life (me?)
• Insertion and a related deletion operation are 

used in biomolecular computing and 
dynamical systems

• Shuffle is used in analyzing concurrency as 
the arbitrary interleaving of parallel events

• Crossover is used in genetic algorithms
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Some Known Results
• Regular languages, A and B

– A • B is regular
– A w [ k ] B is regular, for all k>0
– A ¯ B is regular
– A ¯* B is not necessarily regular 

• Deciding whether or not A ¯* B is regular is an 
open problem
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More Known Stuff
• CFLs, A and B

– A • B is a CFL
– A w B is a CFL
– A w [ k ] B is not necessarily a CFL, for k>1

• Consider A=anbn; B = cmdm and k=2
• Trick is to consider (A w [ 2 ] B) Ç a*c*b*d*

– A ¯ B is not necessarily a CFL
– A ¯* B is not necessarily a CFL 

• Deciding whether or not A ¯* B is a CFL is an open problem
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Immediate Convergence

• L = L2 ?
• L = L wL ?
• L = L ¯ L ?
• L = L ¯* L ?
• L = L Äc L ?
• L = L Äu L ?
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Finite Convergence
• $k>0 Lk = Lk+1

• $k³0 L (k) w L = L (k+1) w L 
• $k³0 L w[ k ] L = L w[ k+1 ] L
• $k³0 L ¯k  L = L ¯k +1 L
• $k³0 L (k) Äc L = L (k+1) Äc L 
• $k³0 L (k) Äu L = L (k+1) Äu L 

• $k³0 A (k) w B = A (k+1) w B
• $k³0 A w[ k ] B = A w[ k+1 ] B 
• $k³0 A ¯k  B = A ¯k +1 B
• $k³0 A (k) Äc B = A (k+1) Äc B 
• $k³0 A (k) Äu B = A (k+1) Äu L 
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Finite Power of CFG
• Let G be a context free grammar.
• Consider L(G)n

• Question1: Is L(G) = L(G)2?
• Question2: Is L(G)n = L(G)n+1, for some finite 

n>0?
• These questions are both undecidable.
• We showed that question1 is as hard as whether 

or not L(G) is S*. 
• Question2 required more work.
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1981 Results
• Theorem 1:

The problem to determine if L = S* is Turing 
reducible to the problem to decide if 
L • L Í L, so long as L is selected from a class 
of languages C over the alphabet S for which we 
can decide if S È {l} Í L. 

• Corollary 1: 
The problem “is L • L = L, for L context free or 
context sensitive?” is undecidable 
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Proof #1
• Question: Does L • L get us anything new?

– i.e., Is L • L = L?
• Membership in a CSL is decidable.
• Claim is that L = S* iff  

(1) S È {l} Í L ; and
(2) L • L = L 

• Clearly, if L = S* then (1) and (2) trivially hold.
• Conversely, we have S* Í L*= È n³0 Ln Í L

– first inclusion follows from (1); second from (2)  
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Subsuming •
• Let Å be any operation that subsumes 

concatenation, that is A • B Í A Å B. 
• Simple insertion is such an operation, 

since A • B Í A w B. 
• Unconstrained crossover also subsumes 
•, 
A Äc B = { wz, yx | wxÎA and yzÎB}
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L = L Å L ?
• Theorem 2: 

The problem to determine if L = S* is 
Turing reducible to the problem to decide if 
L Å L Í L, so long as 
L • L Í L Å L and L is selected from a 
class of languages C over S for which we 
can decide if 
S È {l} Í L. 
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Proof #2
• Question: Does L Å L get us anything new?

– i.e., Is L Å L = L?
• Membership in a CSL is decidable.
• Claim is that L = S* iff  

(1) S È {l} Í L ; and
(2) L Å L = L 

• Clearly, if L = S* then (1) and (2) trivially hold.
• Conversely, we have S* Í L*= È n³0 Ln Í L

– first inclusion follows from (1); second from (1), (2) 
and the fact that L • L Í L Å L 
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Quotients of CFLs



Quotients of CFLs (Trace-Like 
Sequences)

Let L1 =  L( G1 ) = { $ # Y0 # Y1 # Y2 # Y3 # … # Y2j # 
Y2j+1 # }
where Y2i Þ Y2i+1 , 0 ≤ i ≤ j.  
This checks the even/odd steps of an even length 
computation.
Now, let L2=L( G2 )=
{X0 $ # X0 # X1 # X2 # X3 # X4 # … # X2k-1 # X2k# Z0 #}
where X2i-1 Þ X2i , 1 ≤ i ≤ k and Z0 is a unique halting 
configuration.
This checks the odd/steps of an even length 
computation and includes an extra copy of the 
starting number prior to its $.
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If a Turing Machine Trace
Let L1 =  L( G1 ) = { $ # Y0

R # Y1 # Y2
R # Y3 # … # Y2j

R # Y2j+1 # }
where Y2i Þ Y2i+1 , 0 ≤ i ≤ j.  
This checks the even/odd steps of an even length 
computation.

Now, let L2=L( G2 )=
{X0 $ # X0

R # X1 # X2
R # X3 # X4

R # … # X2k-1 # X2k
R# Z0 #}

where X2i-1 Þ X2i , 1 ≤ i ≤ k and Z0 is a unique halting 
configuration.

This checks the odd/steps of an even length computation 
and includes an extra copy of the starting number prior to its 
$.
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Quotients of CFLs (results)
L1 =     { $ # Y0 # Y1 # Y2 # Y3 # Y4 # … #Y2k-1 # Y2j # Y2j+1 # }
L2 = {X0 $ # X0 # X1 # X2 # X3 # X4 # … # X2k-1 # X2k#   Z0 #} 
Now, consider the quotient of L2 / L1 .  The only way a member of L1 can 
match a final substring in L2 is to line up the $ signs.  But then they serve 
to check out the validity and termination of the computation.  Moreover, 
the quotient leaves only the starting point (the one on which the machine 
halts.)  Thus,

L2 / L1  = { X0 | the system being traced halts}. 

Since deciding the members of an re set is in general undecidable, we 
have shown that membership in the quotient of two CFLs is also 
undecidable. 
Note: Intersection of two CFLs is a CSL but quotient of two CFLs is an re 
set and, in fact, all re sets can be specified by such quotients.

4/14/20 80© UCF CS



81

Quotients of CFLs (precise)
• Let (n, ((a1,b1,c1,d1) , … ,(ak,bk,ck,dk) ) be some factor replacement 

system with residues.  Define grammars G1 and G2 by using the 4k+4 rules
G : Fi ® 1aiFi1ci |  1ai+bi#1ci+di 1 ≤ i ≤ k

T1 ® # Fi T1 |  # Fi # 1 ≤ i ≤ k
A ® 1 A 1 | $ #
S1 ® $T1
S2 ® A T1 # 1z0 # Z0 is 0 for us

G1 starts with S1 and G2 with S2
• Thus, using the notation of writing Y in place of 1Y, 

L1 =  L( G1 ) = { $ #Y0 # Y1 # Y2 # Y3 # … # Y2j # Y2j+1 # }
where Y2i Þ Y2i+1 , 0 ≤ i ≤ j.  
This checks the even/odd steps of an even length computation.
But, L2 =  L( G2 ) = {X0 $ #X0 # X1 # X2 # X3 # X4 # … # X2k-1 # X2k# Z0 # }
where X2i-1 Þ X2i , 1 ≤ i ≤ k and X = X0
This checks the odd/steps of an even length computation, and 

includes an extra copy of the starting number prior to its $.  
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Summarizing Quotient
Now, consider the quotient L2 / L1 where L1
and L2 are the CFLs on prior slide.  The only 
way a member of L1 can match a final substring 
in L2 is to line up the $ signs.  But then they 
serve to check out the validity and termination of 
the computation.  Moreover, the quotient leaves 
only the starting number (the one on which the 
machine halts.)  Thus,
L2 / L1  = { X | the system F halts on zero }. 
Since deciding the members of an re set is in 
general undecidable, we have shown that 
membership in the quotient of two CFLs is also 
undecidable.
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A Complexity Summary



PSPACE
• PSPACE is set of problems solvable in polynomial space with unlimited time 

PSPACE = ∪ SPACE(nk)
• PSPACE = co-PSPACE = NPSPACE
• PSPACE is a strict superset of CSLs
• PSPACE-Complete Problem is, given a regular expression E over Σ, does E 

denote all strings in Σ*?
• The above, while solvable, is potentially hard
• Another PSPACE-Complete problem is QSAT
• PSPACE is suspected to outside the P/NP hierarchy
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EXPTIME and EXPSPACE
• EXPTIME is the set of problems solvable 

in 2p(n) where is p is some polynomial.
• NEXPTIME is the set of problems solvable 

in 2p(n) on a non-deterministic TM.
• EXPSPACE is set of problems solvable in 

2p(n) space and unbounded time
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Elementary Functions
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Alternating TM (ATM)
• ATM adds to NDTM notation the notion 

where, for each state q, q has one of the 
following properties: (accept, reject, Ú, Ù)
– Ú means mean accept the string if any final 

state reached after q is accepting
– Ù means mean accept the string if all final 

states reached after q are accepting
• AP = PSPACE where AP is class of 

problems solvable in polynomial time on 
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QSAT, Petri Net, Presburger
• QSAT is solvable by an alternating TM in 

polynomial time and polynomial space
• As noted, before, QSAT is PSPACE-Complete
• Petri net reachability is EXPSPACE-hard and 

requires 2-EXPTIME
• Presburger arithmetic is at least in 2-EXPTIME, 

at most in  3-EXPTIME, and can be solved by an 
ATM with n alternating quantifiers in doubly 
exponential time
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Complexity Hierarchy
• P Í NP Í PSPACE = NPSPACE ⊆ EXPTIME Í NEXPTIME Í EXPSPACE ⊈

2-EXPTIME ⊈ 3-EXPTIME ⊈ … ⊈ ELEMENTARY ⊈ PRF ⊈ REC
• What if P ¹ EXPTIME; At least one of these is true

– P ⊈ NP
– NP ⊈ PSPACE
– PSPACE ⊈ EXPTIME

• If NP ¹ NEXPTIME; At least of these is true
– NP ⊈ PSPACE
– PSPACE ⊈ EXPTIME
– EXPTIME ⊈ NEXPTIME 

• Note that EXPTIME = NEXPTIME iff P=NP
• Note that k-EXPTIME ⊈ (k+1)-EXPTIME, k>0

• What If PSPACE ¹ EXPSPACE; At least one of these is true
– PSPACE ⊈ EXPTIME
– EXPTIME ⊈ EXPSPACE
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