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Who, What, Where and When
• Instructor: Charles Hughes; 

HEC-247C
charles.hughes@ucf.edu
(e-mail is a good way to get me)
Use Subject: COT6410 
Office Hours: TR 10:45AM-12:00PM

• Web Page: http://www.cs.ucf.edu/courses/cot6410/Spring2020
• Meetings: TR 1:30PM-2:45PM, HEC-103; 

28 periods, each 75 minutes long. 
Final Exam (Tuesday, April 21 from 1:00PM to 3:50PM) is 
separate from class meetings 

• GTA: ???
Use Subject: COT6410 
Office Hours: ???
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Text Material
• References: 
• Cooper, Computability Theory 2nd Ed., Chapman-Hall/CRC Mathematics Series, 2003.
• Garey&Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness, W. H. 

Freeman & Co., 1979.
• Davis, Sigal&Weyuker, Computability, Complexity and Languages 2nd Ed., Acad. Press (Morgan 

Kaufmann), 1994.
• Papadimitriou & Lewis, Elements of the Theory of Computation, Prentice-Hall, 1997.
• Bernard Moret, The Theory of Computation, Addison-Wesley, 1998.
• Hopcroft, Motwani&Ullman, Intro to Automata Theory, Languages and Computation 3rd Ed., Prentice-

Hall, 2006.
• Oded Goldreich, Computational Complexity: A Conceptual Approach, Cambridge University Press, 2008.
• Draft available at http://www.wisdom.weizmann.ac.il/~/oded/cc-drafts.html
• Oded Goldreich, P, NP, and NP-Completeness: The Basics of Complexity Theory, Cambridge University 

Press, 2010.
• Draft available at http://www.wisdom.weizmann.ac.il/~/oded/bc-drafts.html
• Arora&Barak, Computational Complexity: A Modern Approach, Cambridge University Press, 2009.
• Draft available at http://www.cs.princeton.edu/theory/complexity/
• Sipser, Introduction to the Theory of Computation 3rd Ed., Cengage Learning, 2013.
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Goals of Course
• Introduce Computability and Complexity Theory, including

– Review background on automata and formal languages
– Basic notions in theory of computation

• Algorithms and effective procedures
• Decision and optimization problems
• Decision problems have yes/no answer to each instance

– Limits of computation
• Turing Machines and other equivalent models
• Determinism and non-determinism
• Undecidable problems
• The technique of reducibility; The ubiquity of undecidability (Rice’s Theorem)
• The notions of semi-decidable (re) and of co-re sets

– Complexity theory
• Order notation (quick review)
• Polynomial reducibility
• Time complexity, the sets P, NP, co-NP, NP-complete, NP-hard, etc., and the question 

does P=NP? Sets in NP and NP-Complete. 
• Gadgets and other reduction techniques
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Expected Outcomes
• You will gain a solid understanding of various types of 

computational models and their relations to one another.
• You will have a strong sense of the limits that are 

imposed by the very nature of computation, and the 
ubiquity of unsolvable problems throughout CS. 

• You will understand the notion of computational 
complexity and especially of the classes of problems 
known as P, NP, co-NP, NP-complete and NP-Hard.

• You will (hopefully) come away with stronger formal 
proof skills and a better appreciation of the importance of 
discrete mathematics to all aspects of CS. 
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Keeping Up
• I expect you to visit the course web site regularly 

(preferably daily) to see if changes have been made or 
material has been added. 

• Attendance is preferred, although I do not take roll. 
• I do, however, ask lots of questions in class and give lots 

of hints about the kinds of questions I will ask on exams. 
It would be a shame to miss the hints, or to fail to 
impress me with your insightful in-class answers.

• You are responsible for all material covered in class, 
whether in the notes or not.
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Rules to Abide By
• Do Your Own Work

– When you turn in an assignment, you are implicitly telling me 
that these are the fruits of your labor. Do not copy anyone else's 
homework or let anyone else copy yours. In contrast, working 
together to understand lecture material and solutions to 
problems not posed as assignments is encouraged.

• Late Assignments
– I will accept no late assignments, except under very unusual 

conditions, and those exceptions must be arranged with me in 
advance unless associated with some tragic event.

• Exams
– No communication during exams, except with me or a 

designated proctor, will be tolerated. A single offense will lead to 
termination of your participation in the class, and the assignment 
of a failing grade.
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Grading
• Grading of Assignments and Exams

– I will endeavor to return the midterm exam within a 
week of its taking place and each assignment within a 
week of its due date.

• Exam Weights
– The weights of exams will be adjusted to your 

personal benefits, as I weigh the exam you do well in 
more than one in which you do less well.
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Important Dates
• Midterm – Thursday, March 5 (tentative)
• Spring Break – March 9 – 14
• Withdraw Deadline – Friday, March 20
• Final – Tues., April 21, 1:00PM – 3:50PM
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Evaluation (tentative)
• Mid Term – 125 points ; Final – 200 points 
• Assignments – 75 points; 

Paper and Presentation – 75 points
• Extra – 25 points used to increase weight of 

exams or maybe paper/presentation, always to 
your benefit

• Total Available: 500 points
• Grading will be  A >= 90%, B+ >= 85%, 

B >= 80%, C+ >= 75%, C >= 70%, 
D >= 50%, F < 50% (Minuses might be used)
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Decision Problems
• A set of input data items (input "instances” or domain)
• Each input data item defines a question with an answer 

Yes/No or True/False or 1/0.
• A decision problem can be viewed as a relation between 

its domain and its binary range
• A decision problem can also be viewed as a partition of 

the input domain into those that give rise to true 
instances and those that give rise to false instances.

• In each case, we seek an algorithmic solution (in the 
form of a predicate) or a proof that none exists

• When an algorithmic solution exists, we seek an efficient 
algorithm, or proofs of the problem’s inherent complexity
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Assignment # 1 Includes
Financial Aid Related Activity

Complete questionnaire (in quizzes category) on Webcourses. 

Complete all questions on time for a few free points out of total points 
for all assignments.

Complete and submit by one minute before Midnight Friday, 1/10.
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S
Subset of interest,

maybe with ordered 
elements

UNIVERSE OF DISCOURSE
USUALLY STRINGS OR NATURAL NUMBERS

For some element, 
x, is x in S? 

DECISION PROBLEMS

Example 1: S is set of Primes and x is a natural number; is x in S (is x a prime)?
Example 2: S is an undirected graph (pairs for neighbors); is S 3-colorable?
Example 3: S is a program in C; is S syntactically correct?
Example 4: S is program in C; does S halt on all input?
Example 5: S is a set of strings; is the language S Regular, Context-Free, … ?

Question: How many 
subsets of Natural 
Numbers are there?
How many languages are 
there over some finite 
alphabet?



Recognizer and Generators
1. When we discuss languages and classes of languages, we discuss 

recognizers and generators
2. A recognizer for a specific language is a program or computational model 

that differentiates members from non-members of the given language
3. A portion of the job of a compiler is to check to see if an input is a legitimate 

member of some specific programming language – we refer to this as a 
syntactic recognizer

4. A generator for a specific language is a program that generates all and only 
members of the given language

5. In general, it is not individual languages that interest us, but rather classes 
of languages that are definable by some specific class of recognizers or 
generators

6. One type of recognizer is called an automata and there are multiple classes 
of automata

7. One type of generator is called a grammar and there are multiple classes of 
grammars

8. Our first journey will be a review of automata and grammars 
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Alphabets and Strings
• DEFINITION 1.  An alphabet S is a finite, non-empty set 

of abstract symbols.
• DEFINITION 2. S*, the set of all strings over the 

alphabet, S, is given inductively as follows.
– Basis:  l Î S* ( the null string is denoted by l, it is the string of 

length 0, that is |l| = 0) [text uses e but I avoid that as hate 
saying e Î A; it’s really confusing when manually written]
"a Î S, a Î S* (the members of S are strings of length 1, |a| = 1)

– Induction rule:  If  x Î S*, and a Î S, then  a×x Î S* and x×a Î S*. 
Furthermore, l×x = x×l = x, and |a×x| = |x×a| = 1+ |x|.

– NOTE: “a×x” denotes “a concatenated to x” and is formed by 
appending the symbol a to the left end of x.  Similarly, x×a, 
denotes appending a to the right end of x.  In either case, if x is 
the null string (l), then the resultant string is “a”.

– We could have skipped saying "a Î S, a Î S*, as this is covered 
by the induction step.
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Languages
• DEFINITION 3.  Let S be an alphabet. A language over S is a subset, L, of 
S*.

• Example.  Languages over the alphabet S = {a, b}.
– Ø (the empty set) is a language over S
– S* (the universal set) is a language over S
– {a, bb, aba } (a finite subset of S*) is a language over S.
– { abnam | n = m2, n, m  ³ 0 } (infinite subset) is a language over S.

• DEFINITION 4.  Let L and M be two languages over S.  Then the
concatenation of L with M, denoted L×M is the set,
L×M = { x×y | x Î L and y Î M }
The concatenation of arbitrary strings x and y is defined inductively as 
follows. 
Basis:  When |x| £ 1 or |y| £ 1, then x×y is defined as in Definition 2. 
Inductive rule: when |x| > 1 and |y| > 1, then x = x’ × a for some a Î S and x’ Î S*, 
where |x’| = |x|-1.  Then x×y = x’×(a×y).
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UNIVERSE OF LANGUAGES

Non-RE

RE = Semi-Dec = Phrase-Structured

Recursive = Decidable

Context-Sensitive

Context-Free

DCFL

REGULAR



AUTOMATA 
Recognizers

Turing Machines (DTM = NDTM)

LBAs (DLBAs = NDLBAs)

NPDAs

DFAs = 
NDFAs

DPDAs

MODELS OF COMPUTATION

Of these models, only TMs can do general computation



GRAMMARS
Generators Type 0=Phrase-Structured

Type 1=Context-Sensitive

Type 2=Context-Free

LR(k)

Type 3=
Regular = 

Right Linear

Deterministic CFG

REWRITING SYSTEMS



What We are Studying
Computability Theory

The study of what 
can/cannot be done 
via purely 
computational means.

Complexity Theory

The study of what 
can/cannot be done 
well via purely 
computational means.
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Graph Coloring
• Instance: A graph G = (V, E) and an integer k.
• Question: Can G be "properly colored" with at most k colors?

• Proper Coloring: a color is assigned to each vertex so that adjacent 
vertices have different colors.

• Suppose we have two instances of this problem (1) is True (Yes) 
and the other (2) is False (No).

• AND, you know (1) is Yes and (2) is No. (Maybe you have a secret 
program that has analyzed the two instance.)
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Checking a “Yes” Answer
• Without showing how your program works (you may not even know), how 

can you convince someone else that instance (1) is, in fact, a Yes instance?

• We can assume the output of the program was an actual coloring of G. Just 
give that to a doubter who can easily check that no adjacent vertices are 
colored the same, and that no more than k colors were used.

• How about the No instance?

• What could the program have given that allows us to quickly "verify" (2) is a 
No  instance?

• No One Knows!!

• For all seems to be harder than there exists in many contexts
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Checking a “No” Answer
• The only thing anyone has thought of is to have it test all 

possible ways to k-color the graph – all of which fail, of 
course, if “No” is the correct answer.

• There are an exponential number of things (colorings) to 
check.

• For some problems, there seems to be a big difference 
between verifying Yes and No instances.

• To solve a problem efficiently, we must be able to solve 
both Yes and No instances efficiently.
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Hard and Easy
• True Conjecture: If a problem is easy to solve, then it is 

easy to verify (just solve it and compare).

• Contrapositive: If a problem is hard to verify, then it is 
(probably) hard to solve.

• There is nothing magical about Yes and No instances –
sometimes the Yes instances are hard to verify and No 
instances are easy to verify.

• And, of course, sometimes both are hard to verify.
1/7/20 © UCF CS 24



Easy Verification
• Are there problems in which both Yes and No instances 

are easy to verify?

• Yes. For example: Search a list L of n values for a key x.
• Question: Is x in the list L?

• Yes and No instances are both easy to verify.

• In fact, the entire problem is easy to solve!!
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Verify vs Solve
• Conjecture: If both Yes and No instances are easy to verify, then the 

problem is easy to solve.

• No one has yet proven this claim, but most researchers believe it to 
be true.

• Note: It is usually relatively easy to prove something is easy – just 
write an algorithm for it and prove it is correct and that it is fast 
(usually,  we mean polynomial).

• But, it is usually very difficult to prove something is hard – we may  
not be clever enough yet. So, you will often see "appears to be 
hard."
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Instances vs Problems
• Each instance has an 'answer.‘

– An instance’s answer is the solution of the 
instance - it is not the solution of the problem.

– A solution of the problem is a computational 
procedure that finds the answer of any 
instance given to it – the procedure must halt 
on all instances – it must be an 'algorithm.'
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Three Classes of Problems
Problems are often classified in one of three 
groups (classes):

Undecidable (impossible), Exponential (hard), 
and Polynomial (easy).

Theoretically, all problems belong to exactly 
one of these three classes and our job is often 
to find which one. 
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Why do we Care?
When given a new problem to solve (design an algorithm 
for), if it's undecidable, or even exponential, you will 
waste a lot of time trying to write a polynomial solution 
for it!!

If the problem really is polynomial, it will be worthwhile 
spending some time and effort to find a polynomial 
solution and, better yet, the lowest degree polynomial 
solution.

You should know something about how hard a problem 
is before you try to solve it.
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Effective Procedure
• A process whose execution is clearly specified to the 

smallest detail
• Such procedures have, among other properties, the 

following:
– Processes must be finitely describable, and the language used 

to describe them must be over a finite alphabet.
– The current state of the machine model must be finitely 

presentable.
– Given the current state, the choice of actions (steps) to move to 

the next state must be easily determinable from the procedure’s 
description.

– Each action (step) of the process must be capable of being 
carried out in a finite amount of time.

– The semantics associated with each step must be clear and 
unambiguous.
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Algorithm
• An effective procedure that halts on all input
• The key term here is “halts on all input”
• By contrast, an effective procedure may halt on 

all, none or some of its input.
• The domain of an algorithm is its entire universe 

of possible inputs
• The domain of a procedure is the inputs on

which it converges (stops).
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Sample Algorithm/Procedure
{ Example algorithm: 

Linear search of a finite list for a key;
If key is found, answer “Yes”;
If key is not found, answer “No”; }

{ Example procedure: 
Linear search of a finite list for a key;
If key is found, answer “Yes”;
If key is not found, try this strategy again; }

Note: Latter is not unreasonable if the list can be 
increased in size by some properly synchronized 
concurrent thread.
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Procedure vs Algorithm
Looking back at our approaches to “find a key in a finite 
list,” we see that the algorithm always halts and always 
reports the correct answer. In contrast, the procedure 
does not halt in some cases, but never lies. 

What this illustrates is the essential distinction between 
an algorithm and a procedure – algorithms always halt in 
some finite number of steps, whereas procedures may 
run on forever for certain inputs. A particularly silly 
procedure that never lies is a program that never halts 
for any input.
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Notion of Solvable
• A problem is solvable if there exists an algorithm that 

solves it (provides the correct answer for each instance). 
• The fact that a problem is solvable or, equivalently, 

decidable or, equivalently, recursive does not mean it is 
solved. To be solved, someone must have produced a 
correct algorithm. 

• The distinction between solvable and solved is subtle. 
Solvable is an innate property – an unsolvable problem 
can never become solved, but a solvable one may or 
may not be solved in an individual’s lifetime.
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An Old Solvable Problem
Does there exist a set of positive whole numbers, a, b, 
c and an n>2 such that an+bn = cn?

In 1637, the French mathematician, Pierre de Fermat, claimed that 
the answer to this question is “No”. This was called Fermat’s Last 
Theorem, even though he never produced a proof of its correctness. 
While this problem remained unsolved until Fermat’s claim was 
verified in 1995 by Andrew Wiles, the problem was always solvable, 
since it had just one question, so the solution was either “Yes” or 
“No”, and an algorithm exists for each of these candidate solutions.
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Research Territory
Decidable – vs – Undecidable

(area of Computability Theory)

Exponential – vs – polynomial   
(area of Computational Complexity)

For “easy” problems, we want to 
determine lower and upper bounds on 
complexity and develop best Algorithms

(area of Algorithm Design/Analysis)
1/7/20 © UCF CS 36



A CS Grand Challenge
Does P=NP?

There are many equivalent ways to describe P and NP. For now, we 
will use the following. 
P is the set of decision problems (those whose instances have 
“Yes”/ “No” answers) that can be solved in polynomial time on a 
deterministic computer (no concurrency or guesses allowed). 
NP is the set of decision problems that can be solved in polynomial 
time on a non-deterministic computer (equivalently one that  can 
spawn an unbounded number of parallel threads; equivalently one 
that can be verified in polynomial time on a deterministic computer). 
Again, as “Does P=NP?” has just one question, it is solvable, we 
just don’t yet know which solution, “Yes” or “No”, is the correct one.

1/7/20 © UCF CS 37



Computability vs Complexity
Computability focuses on the distinction between 
solvable and unsolvable problems, providing tools that 
may be used to identify unsolvable problems – ones that 
can never be solved by mechanical (computational) 
means. Interestingly, unsolvable problems are 
everywhere as you will see. 
In contrast, complexity theory focuses on how hard it is 
to solve problems that are known to be solvable. Hard 
solvable problems abound in the real world. We will 
address computability theory for the first part of this 
course, returning to complexity theory later in the 
semester.
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HISTORY

The Quest for Mechanizing 
Mathematics
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Hilbert, Russell and Whitehead

• Until 1800’s there were no formal systems to 
reason about mathematical properties

• Major advances in late 1800’s/early 1900’s
• Axiomatic schemes

– Axioms plus sound rules of inference
– Much of focus on number theory

• First Order Predicate Calculus
– "x$y [y > x]

• Second Order (Peano’s Axiom)
– "P [[P(0) && "x[P(x) ÞP(x+1)]] Þ "xP(x)]
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Hilbert
• In 1900 declared there were 23 really important

problems in mathematics.
• Belief was that the solutions to these would help 

address math’s complexity.
• Hilbert’s Tenth asks for an algorithm to find the 

integral zeros of polynomial equations with integral 
coefficients. This is now known to be impossible (In 
1970, Matiyacevič showed this undecidable).

• Davis based on prior work by Julia Robinson, him 
and Hilary Putnam provided more readable proof in 
1972.
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Hilbert’s Belief
• All mathematics could be developed within 

a formal system that allowed the 
mechanical creation and checking of 
proofs. 
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Gödel
• In 1931 he showed that any first order theory 

that embeds elementary arithmetic is either 
incomplete or inconsistent.

• He did this by showing that such a first order 
theory cannot reason about itself. That is, there 
is a first order expressible proposition that 
cannot be either proved or disproved, or the 
theory is inconsistent (some proposition and its 
complement are both provable).

• Gödel also developed the general notion of 
recursive functions but made no claims about 
their strength.
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Turing (Post, Church, Kleene)
• In 1936, each presented a formalism for computability.

– Turing and Post devised abstract machines and 
claimed these represented all mechanically 
computable functions.

– Church developed the notion of lambda-computability 
from recursive functions (as previously defined by 
Gödel and Kleene) and claimed completeness for this 
model.

• Kleene demonstrated the computational equivalence of 
recursively defined functions to Post-Turing machines. 

• Church’s notation was the lambda calculus, which later 
gave birth to Lisp.
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More on Emil Post
• In the 1920’s, starting with notation developed by Frege and 

others in 1880s, Post devised the truth table form we all use 
now for Boolean expressions (propositional logic). This was a 
part of his PhD thesis in which he showed the axiomatic 
completeness of the propositional calculus (all tautologies can 
be deduced from a finite set of tautologies and a finite set of 
rules of inference – substitution and modus ponens).

• In the late 1930’s and the 1940’s, Post devised symbol 
manipulation systems in the form of rewriting rules 
(precursors to Chomsky’s grammars). He showed their 
equivalence to Turing machines.

• In 1940s, Post showed the complexity (undecidability) of 
determining what is derivable from an arbitrary set of 
propositional axioms. 
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