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Computability

The study of models of 

computation and what can/cannot 

be done via purely mechanical 

means
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Goals of Computability

• Provide precise characterizations (computational 
models) of the class of effective procedures / algorithms.

• Study the boundaries between complete and incomplete 
models of computation.

• Study the properties of classes of solvable and 
unsolvable problems.

• Solve or prove unsolvable open problems.

• Determine reducibility and equivalence relations among 
unsolvable problems.

• Our added goal is to apply these techniques and results 
across multiple areas of Computer Science.
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More Procedure Properties

• Useful Notations

– f(x)↓ means procedure f 

converges/halts/produces an output, when 

evaluated at x.

– f(x)↑ means procedure f diverges, when 

evaluated at x.

– f is an algorithm iff ∀x f(x)↓

4
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Sets and Decision Problems

• Set -- A collection of atoms from some 

universe U.  Ø denotes the empty set.

• (Decision) Problem -- A set of questions 

about elements of some universe. Each 

question has answer “yes” or “no”. The 

elements having answer “yes” constitute a 

set that is a subset of the corresponding 

universe. Those having answer “no” 

constitute the complement of the “yes” set.
5
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Categorizing Problems (Sets)

• Solvable or Decidable -- A problem P is said to be 

solvable (decidable) if there exists an algorithm F 

which, when applied to a question q in P, produces 

the correct answer (“yes” or “no”). This is an 

inherent property of P.

• Solved -- A problem P is said to solved if P is 

solvable and we have produced its solution. This is 

a temporal property in that P may have been 

unsolved for many years before being solved.

• Unsolved, Unsolvable (Undecidable) --

Complements of above
6
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Categorizing Problems (Sets) # 2

• Recursively enumerable -- A set S is recursively 
enumerable (re) if S is empty (S = Ø) or there exists an 
algorithm F, over the natural numbers N, whose range is 
exactly S.  A problem is said to be re if the set 
associated with it is re.

• Semi-Decidable -- A problem is said to be semi-
decidable if there is an effective procedure F which, 
when applied to a question q in P, produces the answer 
“yes” if and only if q has answer “yes”.  F need not halt 
if q has answer “no”.

• Semi-decidable is the same as the notion of 
recognizable used in the text.

7
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Immediate Implications

• P solved implies P solvable implies P

semi-decidable (re, recognizable).

• P non-re implies P unsolvable implies P

unsolved.

• P finite implies P solvable.

8



Slightly Harder Implications

• P enumerable iff P semi-decidable.

• P solvable iff both SP and (U - SP) are re 

(semi-decidable).

• We will prove these later.
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Existence of Undecidables

• A counting argument
– The number of mappings from N to N is at least as 

great as the number of subsets of N. But the number 
of subsets of N is uncountably infinite (1). However, 
the number of programs in any model of computation 
is countably infinite (0). This latter statement is a 
consequence of the fact that the descriptions must be 
finite and they must be written in a language with a 
finite alphabet. In fact, not only is the number of 
programs countable, it is also effectively enumerable; 
moreover, its membership is decidable. 

• A diagonalization argument
– Will be shown later in class

10



Hilbert’s Tenth

Diophantine Equations are 

Unsolvable

One Variable Diophantine 

Equations are Solvable
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Hilbert’s 10th

• In 1900 declared there were 23 really important 
problems in mathematics.

• Belief was that the solutions to these would help 
address math’s complexity.

• Hilbert’s Tenth asks for an algorithm to find the 
integral roots of polynomials with integral 
coefficients. For example
6x3yz2 + 3xy2 – x3 – 10 = 0 has roots
x = 5; y = 3; z = 0

• This is now known to be impossible to solve (In 
1970, Matiyacevič showed this undecidable).

12
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Hilbert’s 10th is Semi-Decidable

• Consider over one variable: P(x) = 0

• Can semi-decide by plugging in 

0, 1, -1, 2, -2, 3, -3, …

• This terminates and says “yes” if P(x) 

evaluates to 0, eventually. Unfortunately, it 

never terminates if there is no x such that 

P(x) =0.

• Can easily extend to P(x1,x2,..,xk) = 0.

13
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P(x) = 0 is Decidable

• cn xn + cn-1 xn-1 +… + c1 x + c0 = 0

• xn = -(cn-1 xn-1 + … + c1 x + c0)/cn

• |xn|  cmax(|x
n-1| + … + |x| + 1|)/|cn|

• |xn|  cmax(n |xn-1|)/|cn|, since |x|1

• |x|  ncmax/|cn|

14© UCF CS
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P(x) = 0 is Decidable

• Can bound the search to values of x in range [±
n * ( cmax / cn )], where
n = highest order exponent in polynomial
cmax = largest absolute value coefficient
cn = coefficient of highest order term 

• Once we have a search bound and we are 
dealing with a countable set, we have an 
algorithm to decide if there is an x.

• Cannot find bound when more than one 
variable, so cannot extend to P(x1,x2,..,xk) = 0.

15© UCF CS



Undecidability

We Can’t Do It All



Classic Unsolvable Problem

Given an arbitrary program P, in some language L, and 

an input x to P, will P eventually stop when run with input 

x?

The above problem is called the “Halting Problem.” It is 

clearly an important and practical one – wouldn't it be 

nice to not be embarrassed by having your program run 

“forever” when you try to do a demo? 

Unfortunately, there’s a fly in the ointment as one can 

prove that no algorithm can be written in L that solves 

the halting problem for L.
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Some terminology

We will say that a procedure, f, converges on input x if it eventually 

halts when it receives x as input. We denote this as f(x). 

We will say that a procedure, f, diverges on input x if it never halts 

when it receives x as input. We denote this as f(x). 

Of course, if f(x) then f defines a value for x. In fact we also say 

that f(x) is defined if f(x) and undefined if f(x).

Finally, we define the domain of f as {x | f(x)}. 

The range of f is {y | f(x) and f(x) = y }.
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Halting Problem

Assume we can decide the halting problem.  Then there exists some total 
function Halt such that

1 if x (y) 

Halt(x,y) =

0 if x (y) 

Here, we have numbered all programs and x refers to the x-th program in 
this ordering.  Now we can view Halt as a mapping from   into  by 
treating its input as a single number representing the pairing of two numbers 
via the one-one onto function

pair(x,y) = <x,y> = 2x (2y + 1) – 1

with inverses

<z>1 = log2(z+1)

<z>2 = ((( z + 1 ) // 2 <z>1 ) – 1 ) // 2
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The Contradiction

Now if Halt exist, then so does Disagree, where
0 if Halt(x,x) = 0, i.e, if x (x) 

Disagree(x) =

my (y == y+1) if Halt(x,x) = 1, i.e, if x (x) 

Since Disagree is a program from   into  , Disagree can be 
reasoned about by Halt.  Let d be such that Disagree = d, then

Disagree(d) is defined  Halt(d,d) = 0 
 d (d) 

 Disagree(d) is undefined

But this means that Disagree contradicts its own existence.  Since 
every step we took was constructive, except for the original 
assumption, we must presume that the original assumption was in 
error.  Thus, the Halting Problem is not solvable.



Halting is recognizable

While the Halting Problem is not solvable, it is re, recognizable or 
semi-decidable. 

To see this, consider the following semi-decision procedure. Let P
be an arbitrary procedure and let x be an arbitrary natural number.  
Run the procedure P on input x until it stops. If it stops, say “yes.” If 
P does not stop, we will provide no answer. This semi-decides the 
Halting Problem. Here is a procedural description.

Semi_Decide_Halting() {

Read P, x;

P(x);

Print “yes”;

}
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Why not just algorithms?

A question that might come to mind is why we could not just have a 
model of computation that involves only programs that halt for all 
input. Assume you have such a model – our claim is that this model 
must be incomplete!

Here’s the logic. Any programming language needs to have an 
associated grammar that can be used to generate all legitimate 
programs. By ordering the rules of the grammar in a way that 
generates programs in some lexical or syntactic order, we have a 
means to recursively enumerate the set of all programs. Thus, the 
set of procedures (programs) is re. using this fact, we will employ 
the notation that x is the x-th procedure and x(y) is the x-th
procedure with input y. We also refer to x as the procedure’s index.
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The universal machine

First, we can all agree that any complete model of 
computation must be able to simulate programs in its 
own language. We refer to such a simulator (interpreter) 
as the Universal machine, denote Univ. This program 
gets two inputs. The first is a description of the program 
to be simulated and the second of the input to that 
program. Since the set of programs in a model is re, we 
will assume both arguments are natural numbers; the 
first being the index of the program. Thus,

Univ(x,y) = x(y)
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Non-re Problems

• There are even “practical” problems that are worse than 
unsolvable -- they’re not even semi-decidable.  

• The classic non-re problem is the Uniform Halting 
Problem, that is, the problem to decide of an arbitrary 
effective procedure P, whether or not P is an algorithm.  

• Assume that the algorithms can be enumerated, and that 
F accomplishes this.  Then

F(x) = Fx

where F0, F1, F2, … is a list of indexes of all and only the 
algorithms
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The Contradiction

• Define G( x ) = Univ ( F(x) , x ) + 1 = F(x)( x ) = Fx(x) + 1

• But then G is itself an algorithm.  Assume it is the g-th one

F(g) = Fg = G

Then, G(g) = Fg(g) + 1 = G(g) + 1

• But then G contradicts its own existence since G would need to be 
an algorithm.

• This cannot be used to show that the effective procedures are non-
enumerable, since the above is not a contradiction when G(g) is 
undefined.  In fact, we already have shown how to enumerate the 
(partial) recursive functions.



Consequences

• To capture all the algorithms, any model of computation 
must include some procedures that are not algorithms.

• Since the potential for non-termination is required, every 
complete model must have some for form of iteration 
that is potentially unbounded.

• This means that simple, well-behaved for-loops (the kind 
where you can predict the number of iterations on entry 
to the loop) are not sufficient. While type loops are 
needed, even if implicit rather than explicit.
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Insights



Non-re nature of algorithms

• No generative system (e.g., grammar) can produce 

descriptions of all and only algorithms

• No parsing system (even one that rejects by 

divergence) can accept all and only algorithms

• Of course, if you buy Church’s Theorem, the set of all 

procedures can be generated. In fact, we can build an 

algorithmic acceptor of such programs. 
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Many unbounded ways

• How do you achieve divergence, i.e., what are the 

various means of unbounded computation in each of 

our models?

• GOTO: Turing Machines and Register Machines

• Minimization: Recursive Functions

– Why not just simple finite iteration or recursion?

• Fixed Point: Ordered Petri Nets,  

(Ordered) Factor Replacement Systems
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Non-determinism

• It sometimes doesn’t matter

– Turing Machines, Finite State Automata, 

Linear Bounded Automata

• It sometimes helps

– Push Down Automata

• It sometimes hinders

– Factor Replacement Systems, Petri Nets
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Models of Computation

Turing Machines

Register Machines
Factor Replacement Systems

Recursive Functions



Turing Machines

1st Model

A Linear Memory Machine



Typical Textbook Description

• A Turing machine is a 7-tuple

(Q, Σ, Γ, δ, q0, qaccept, qreject)

• Q is finite set of states

• Σ, is a finite input alphabet not containing the 

blank symbol ⊔

• Γ is finite set of tape symbols that includes Σ and 

⊔ commonly Γ = Σ ∪ {⊔}

• δ: Q×Γ➝ Q×Γ×{R,L}

• q0 starts, qaccept accepts, qreject rejects
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Turing versus Post

• The Turing description just given requires you to write a new symbol 

and move off the current tape square

• Post had a variant where

δ: Q×Γ➝ Q×(Γ∪{R,L})

• Here, you either write or move, not both

• Also, Post did not have an accept or reject state – acceptance is 

giving an answer of 1; rejection is 0; this treats decision procedures 

as predicates (functions that map input into {0,1})

• The way we stop our machines from running is to omit actions for 

some discriminants making the transition function partial

• I tend to use Post’s notation and to create macros so machines are 

easy to create

• I am not a fan of having you build Turing tables
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Basic Description

• We will use a simplified form that is a variant of Post’s models.   

• Here, each machine is represented by a finite set of states Q, 
the simple alphabet {0,1}, where 0 is the blank symbol, and 
each state transition is defined by a 4-tuple of form 

q a X s

where q a is the discriminant based on current state q, 
scanned symbol a; X can be one of {R, L, 0, 1}, signifying 
move right, move left, print 0, or 1; and s is the new state.  

• Limiting the alphabet to {0,1} is not really a limitation.  We can 
represent a k-letter alphabet by encoding the j-th letter via j 
1’s in succession.  A 0 ends each letter, and two 0’s ends a 
word. 

• We rarely write quads.  Rather, we typically will build 
machines from simple forms. 
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Base Machines

• R -- move right over any scanned symbol

• L -- move left over any scanned symbol

• 0 -- write a 0 in current scanned square

• 1 -- write a 1 in current scanned square

• We can then string these machines together with 
optionally labeled arc.

• A labeled arc signifies a transition from one part of the 
composite machine to another, if the scanned square’s 
content matches the label.  Unlabeled arcs are 
unconditional.  We will put machines together without 
arcs, when the arcs are unlabeled. 
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Useful Composite Machines

R
1
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R -- move right to next 0 (not including current square)  

…?11…10…  …?11…10… 

L -- move left to next 0 (not including current square)  

…011…1?…  …011…1?… 
L

1

© UCF CS



Commentary on Machines

• These machines can be used to move 
over encodings of letters or encodings of 
unary based natural numbers.  

• In fact, any effective computation can 
easily be viewed as being over natural 
numbers.  We can get the negative 
integers by pairing two natural numbers.  
The first is the sign (0 for +, 1 for -). The 
second is the magnitude.
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Computing with TMs

A reasonably standard definition of a Turing 

computation of some n-ary function F is to 

assume that the machine starts with a tape 

containing the n inputs, x1, … , xn in the form

…01x101x20…01xn0…

and ends with

…01x101x20…01xn01y0…

where y = F(x1, … , xn).
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Addition by TM

Need the copy family of useful 

submachines, where Ck copies k-th 

preceding value.

The add machine is then

C2 C2 L 1 R L 0
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k+1 

1 
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Turing Machine Variations

• Two tracks

• N tracks

• Non-deterministic *********

• Two-dimensional

• K dimensional

• Two stack machines

• Two counter machines
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Register Machines

2nd Model

Feels Like Assembly Language



Register Machine Concepts

• A register machine consists of a finite length program, 
each of whose instructions is chosen from a small 
repertoire of simple commands.

• The instructions are labeled from 1 to m, where there are 
m instructions.  Termination occurs as a result of an 
attempt to execute the m+1-st instruction.

• The storage medium of a register machine is a finite set 
of registers, each capable of storing an arbitrary natural 
number.

• Any given register machine has a finite, predetermined 
number of registers, independent of its input.
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Computing by Register Machines

• A register machine partially computing some n-
ary function F typically starts with its argument 
values in registers 1 to n and ends with the 
result in the 0-th register.

• We extend this slightly to allow the computation 
to start with values in its k+1-st through k+n-th
register, with the result appearing in the k-th
register, for any k, such that there are at least 
k+n+1 registers.
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Register Instructions

• Each instruction of a register machine is of 
one of two forms:

INCr[i] –
increment r and jump to i.

DECr[p, z] –

if register r > 0, decrement r and jump to p

else jump to z

• Note, we do not use subscripts if obvious.

2/20/2020 © UCF CS



46

Addition by RM

Addition (r0  r1 + r2)

1. DEC0[1,2] : Zero result (r0) and work (r3) registers 

2. DEC3[2,3]

3. DEC1[4,6] : Add r1 to r0, saving original r1 in r3

4. INC0[5]

5. INC3[3]

6. DEC3[7,8] : Restore r1

7. INC1[6]

8. DEC2[9,11] : Add r2 to r0, saving original r2 in r3

9. INC0[10]

10. INC3[8]

11.DEC3[12,13] : Restore r2

12. INC2[11]

13. : Halt by branching here

In many cases we just assume registers, other those with input, are zero 
at start. That would remove the need for instructions 1 and 2.
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Limited Subtraction by RM

Subtraction (r0  r1 - r2, if r1≥r2; 0, otherwise)

1. DEC0[1,2] : Zero result (r0) and work (r3) registers 

2. DEC3[2,3]

3. DEC1[4,6] : Add r1 to r0, saving original r1 in r3

4. INC0[5]

5. INC3[3]

6. DEC3[7,8] : Restore r1

7. INC1[6]

8. DEC2[9,11] : Subtract r2 from r0, saving original r2 in r3

9. DEC0[10,10]   : Note that decrementing 0 does nothing

10. INC3[8]

11.DEC3[12,13] : Restore r2

12. INC2[11]

13. : Halt by branching here

2/20/2020



Factor Replacement 

Systems

3rd Model

Deceptively Simple
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Factor Replacement Concepts

• A factor replacement system (FRS) consists of a finite 
(ordered) sequence of fractions, and some starting 
natural number x.  

• A fraction a/b is applicable to some natural number x, 
just in case x is divisible by b.  We always chose the first 
applicable fraction (a/b), multiplying it times x to produce 
a new natural number x*a/b.  The process is then 
applied to this new number.  

• Termination occurs when no fraction is applicable.  

• A factor replacement system partially computing n-ary
function F typically starts with its argument encoded as 
powers of the first n odd primes.  Thus, arguments 
x1,x2,…,xn are encoded as 3x15x2…pn

xn.  The result 
then appears as the power of the prime 2.

2/20/2020
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Addition by FRS

Addition is 3x15x2 becomes 2x1+x2

or, in more details, 203x15x2 becomes 2x1+x2 3050

2 / 3

2 / 5

Note that these systems are sometimes presented as 
rewriting rules of the form

bx → ax

meaning that a number that has can be factored as bx
can have the factor b replaced by an a.  
The previous rules would then be written

3x  → 2x

5x  → 2x

2/20/2020
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Limited Subtraction by FRS

Subtraction is 3x15x2 becomes 2max(0,x1-x2)

35x  → x

3x     → 2x

5x     → x

2/20/2020
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Ordering of Rules

• The ordering of rules are immaterial for the 
addition example but are critical to the workings 
of limited subtraction.

• In fact, if we ignore the order and just allow any 
applicable rule to be used, we get a form of non-
determinism that makes these systems 
equivalent to Petri nets.  

• The ordered kind are deterministic and are 
equivalent to a Petri net in which the transitions 
are prioritized.

2/20/2020
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Why Deterministic?

To see why determinism makes a difference, consider

35x  → x

3x     → 2x

5x     → x

Starting with 135 = 3351, deterministically we get

135  9  6  4 = 22

Non-deterministically we get a larger, less selective set.

135  9  6  4 = 22

135  90  60  40  8 = 23

135  45  3  2 = 21

135  45  15  1 = 20

135  45  15  5  1 = 20

135  45  15  3  2 = 21

135  45  9  6  4 = 22

135  90  60  40  8 = 23

… 

This computes 2z where 0 ≤ z≤x1. Think about it.
2/20/2020
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More on Determinism

In general, we might get an infinite set 

using non-determinism, whereas 

determinism might produce a finite set.  To 

see this consider a system

2x  → x

2x  → 4x

starting with the number 2.

2/20/2020



Sample RM and FRS

Present a Register Machine that computes IsOdd. Assume R1=x at 

starts; at termination, set R0=1 if x is odd; 0 otherwise. We 

assume R0=0 at start. We also are not concerned about destroying 

input.

1. DEC1[2, 4]

2. DEC1[1, 3]

3. INC0[4]

4.

Present a Factor Replacement System that computes IsOdd. 

Assume starting number is 3^x; at termination, result is 2=2^1 if x 

is odd; 1= 2^0 otherwise.

3*3 x → x

3 x → 2 x
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Sample FRS

Present a Factor Replacement System that computes IsPowerOf2. 

Assume starting number is 3x 5; at termination, result is 2=21 if x is 

a power of 2; 1= 20 otherwise

32*5 x → 5*7 x

3*5*7 x → x

3*5 x → 2 x

5*7 x → 7*11 x

7*11 x → 3*11 x

11 x → 5 x

5 x → x

7 x → x

2/20/2020 © UCF CS 56
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Systems Related to FRS

• Petri Nets:
– Unordered

– Ordered

– Negated Arcs

• Vector Addition Systems:
– Unordered

– Ordered

• Factors with Residues:
– a x + c   → b x + d

• Finitely Presented Abelian Semi-Groups

2/20/2020
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Petri Net Operation

• Finite number of places, each of which can hold zero of more 

markers.

• Finite number of transitions, each of which has a finite number of 

input and output arcs, starting and ending, respectively, at places.

• A transition is enabled if all the nodes on its input arcs have at least 

as many markers as arcs leading from them to this transition.

• Progress is made whenever at least one transition is enabled. 

Among all enabled, one is chosen randomly to fire.

• Firing a transition removes one marker per arc from the incoming 

nodes and adds one marker per arc to the outgoing nodes.

2/20/2020
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Petri Net Computation

• A Petri Net starts with some finite number of markers distributed 

throughout its n nodes. 

• The state of the net is a vector of n natural numbers, with the i-th

component’s number indicating the contents of the i-th node. E.g., 

<0,1,4,0,6> could be the state of a Petri Net with 5 places, the 2nd, 

3rd and 5th, having 1, 4, and 6 markers, resp., and the 1st and 4th 

being empty.

• Computation progresses by selecting and firing enabled transitions. 

Non-determinism is typical as many transitions can be 

simultaneously enabled.

• Petri nets are often used to model coordination algorithms, 

especially for computer networks.

2/20/2020
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Variants of Petri Nets

• A Petri Net is not computationally complete. In fact, its halting and 
word problems are decidable. However, its containment problem 
(are the markings of one net contained in those of another?) is not 
decidable.

• A Petri net with prioritized transitions, such that the highest priority 
transitions is fired when multiple are enabled is equivalent to an 
FRS. (Think about it).

• A Petri Net with negated input arcs is one where any arc with a 
slash through it contributes to enabling its associated transition only 
if the node is empty. These are computationally complete. They can 
simulate register machines. (Think about this also).

2/20/2020
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Petri Net Example

Marker

Place

Transition

Arc

… …

2/20/2020



© UCF CS 62

Vector Addition

• Start with a finite set of vectors in integer n-space.

• Start with a single point with non-negative integral 

coefficients.

• Can apply a vector only if the resultant point has non-

negative coefficients.

• Choose randomly among acceptable vectors.

• This generates the set of reachable points.

• Vector addition systems are equivalent to Petri Nets.

• If order vectors, these are equivalent to FRS. 
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Vectors as Resource Models

• Each component of a point in n-space 
represents the quantity of a particular 
resource.

• The vectors represent processes that 
consume and produce resources.

• The issues are safety (do we avoid bad 
states) and liveness (do we attain a 
desired state).

• Issues are deadlock, starvation, etc.
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Factors with Residues

• Rules are of form

– ai x + ci → bi x + di

– There are n such rules

– Can apply if number is such that you get a residue 

(remainder) ci when you divide by ai

– Take quotient x and produce a new number 

bi x + di

– Can apply any applicable one (no order)

• These systems are equivalent to Register 

Machines.
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Abelian Semi-Group

S = (G, •) is a semi-group if

G is a set, • is a binary operator, and

1. Closure: If x,y  G then x • y  G 

2. Associativity: x • (y • z) = (x • y) • z

S is a monoid if

3. Identity: e  G x  G [e • x = x • e = x]

S is a group if 

4. Inverse: x  G x-1  G [x-1 • x = x • x-1 = e]

S is Abelian if • is commutative
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Finitely Presented

• S = (G, •), a semi-group (monoid, group), is finitely 

presented if there is  a finite set of symbols, , called the 

alphabet or generators, and a finite set of equalities 

(ai = bi), the reflexive transitive closure of which 

determines equivalence classes over G. 

• Note, the set G is the closure of the generators under the 

semi-group’s operator •.

• The problem of determining membership in equivalence 

classes for finitely presented Abelian semi-groups is 

equivalent to that of determining mutual derivability in an 

unordered FRS or Vector Addition System with inverses 

for each rule.
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Basis of PRFs

• The primitive recursive functions are defined by 
starting with some base set of functions and 
then expanding this set via rules that create new 
primitive recursive functions from old ones.

• The base functions are:

Ca(x1,…,xn) = a : constant functions

(x1,…,xn) = xi : identity functions

: aka projection 

S(x) = x+1 : an increment function

  i
n

I
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Building New Functions

• Composition:

If G, H1, … , Hk are already known to be primitive 
recursive, then so is F, where

F(x1,…,xn) = G(H1(x1,…,xn), … , Hk(x1,…,xn))

• Iteration (aka primitive recursion): 

If G, H are already known to be primitive recursive, then 
so is F, where

F(0, x1,…,xn) = G(x1,…,xn)

F(y+1, x1,…,xn) = H(y, x1,…,xn, F(y, x1,…,xn))

We also allow definitions like the above, except iterating 
on y as the last, rather than first argument.
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Addition & Multiplication

Example: Addition

+(0,y) =    (y)

+(x+1,y) = H(x,y,+(x,y))

where H(a,b,c) = S(    (a,b,c))

Example: Multiplication

*(0,y) = C0(y)

*(x+1,y) = H(x,y,*(x,y)) 

where H(a,b,c) = +(     (a,b,c),    (a,b,c)) 

= b+c = y + *(x,y) = (x+1)*y
  2

3
I

  1
1

I

  3
3

I

  3
3

I
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Intuitive Composition

• Any time you have already shown some functions to be 
primitive recursive, you can show others are by building 
them up through composition

• Example#1: If g and h are primitive recursive functions 
(prf) then so is f(x) = g(h(x)). As an explicit example
Add2(x) = S(S(x))  = x+2 is a prf

• Example#2: This can also involve multiple functions and 
multiple arguments like, if g, h and j are prf’s then so is 
f(x,y) = g(h(x), j(y))
The problem with giving an explicit example here is that 
interesting compositions tend to also involve induction.
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Intuitive Inductions

• A function F can be defined inductively using existing 
prf’s. Typically, we have one used for the basis and 
another for building inductively.

• Example#1: We can build addition from successor (S)
x+0 = x  (formally +(x,0) = I(x) )
x+y+1 = S(x+y)  (more formally +(x,y+1) = S(+(x,y) )

• Example#2: We can build multiplication from addition
x*0 = 0  (formally *(x,0) = C0)
x*(y+1) = +(x,x*y))  (more formally *(x,y+1) = +(x,*(x,y)) )
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Basic Arithmetic

x + 1:

x + 1 = S(x)

x – 1:

0 - 1 = 0

(x+1) - 1 = x

x + y:

x + 0 = x

x+ (y+1) = (x+y) + 1

x – y: // limited subtraction

x – 0 = x 

x – (y+1) = (x–y) – 1
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2nd Grade Arithmetic

x * y:

x * 0 = 0

x * (y+1) = x*y + x

x!:

0! = 1

(x+1)! = (x+1) * x!
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Basic Relations

x == 0:

0 == 0 = 1

(y+1) == 0 = 0

x == y:

x==y = ((x – y) + (y – x )) == 0

x ≤y :

x≤y = (x – y) == 0

x ≥ y:

x≥y = y≤x

x > y :

x>y = ~(x≤y)  /* See ~ on next page */

x < y :

x<y = ~(x≥y)
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Basic Boolean Operations

~x:

~x = 1 – x  or  (x==0)

signum(x): 1 if x>0; 0 if x==0

~(x==0)

x && y:

x&&y = signum(x*y)

x || y:

x||y = ~((x==0) && (y==0))
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Definition by Cases 

One case

g(x) if P(x) 

f(x) = 

h(x) otherwise

f(x) = P(x) * g(x) + (1-P(x)) * h(x)

Can use induction to prove this is true for all k>0, where

g1(x) if P1(x) 

g2(x) if P2(x) && ~P1(x)

f(x) = …

gk(x) if Pk(x) && ~(P1(x) || … || ~Pk-1(x))

h(x) otherwise
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Bounded Minimization 1

f(x) = m z (z ≤ x) [ P(z) ] if  such a z,

= x+1, otherwise

where P(z) is primitive recursive. 

Can show f is primitive recursive by 
f(0) = 1-P(0)

f(x+1) = f(x) if f(x) ≤ x 

= x+2-P(x+1) otherwise
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Bounded Minimization 2

f(x) = m z (z < x) [ P(z) ] if  such a z,

= x, otherwise

where P(z) is primitive recursive. 

Can show f is primitive recursive by 
f(0) = 0

f(x+1) = m z (z ≤ x) [ P(z) ]  
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Intermediate Arithmetic

x // y:

x//0 = 0 : silly, but want a value

x//(y+1) = m z (z<x) [ (z+1)*(y+1) > x ]

x | y: x is a divisor of y

x|y = ((y//x) * x) == y
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Primality

firstFactor(x): first non-zero, non-one factor of x.

firstfactor(x) = m z  (2 ≤ z ≤ x) [ z|x ] , 

0 if none

isPrime(x):

isPrime(x) = firstFactor(x) == x && (x>1)

prime(i) = i-th prime:

prime(0) = 2

prime(x+1) = m z(prime(x)< z ≤prime(x)!+1)[isPrime(z)]

We will abbreviate this as pi for prime(i)
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Exponents

x^y:

x^0 = 1

x^(y+1) = x * x^y

exp(x,i): the exponent of pi in number x.

exp(x,i) = m z  (z<x) [ ~(pi^(z+1) | x) ]
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Pairing Functions

• pair(x,y) = <x,y> = 2x (2y + 1) – 1

• with inverses

<z>1 = exp(z+1,0)

<z>2 = ((( z + 1 ) // 2 <z>1 ) – 1 ) // 2

• These are very useful and can be extended to 

encode n-tuples

<x,y,z> = <x, <y,z> > (note: stack analogy)
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Pairing Function is 1-1 Onto

Prove that the pairing function <x,y> = 2^x (2y + 1) - 1 

is 1-1 onto the natural numbers.

Approach 1:

We will look at two cases, where we use the following 

modification of the pairing function, <x,y>+1, which implies 

the problem of mapping the pairing function to Z+.
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Case 1 (x=0)

Case 1:

For x = 0, <0,y>+1 = 20(2y+1) = 2y+1. But every odd 

number is by definition one of the form 2y+1, where y≥0; 

moreover, a particular value of y is uniquely associated 

with each such odd number and no odd number is 

produced when x=0. Thus, <0,y>+1 is 1-1 onto the odd 

natural numbers.
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Case 2 (x > 0)

Case 2:

For x > 0, <x,y>+1 = 2x(2y+1), where 2y+1 ranges over all odd number 

and is uniquely associated with one based on the value of y (we saw 

that in case 1). 2x must be even, since it has a factor of 2 and hence 

2x(2y+1) is also even. Moreover, from elementary number theory, we 

know that every even number except zero is of the form 2xz, where 

x>0, z is an odd number and this pair x,y is unique. Thus, <x,y>+1 is 1-

1 onto the even natural numbers, when x>0.

The above shows that <x,y>+1 is 1-1 onto Z+, but then <x,y> is 1-1 onto 

, as was desired.

2/20/2020 © UCF CS 87



Pairing Function is 1-1 Onto

Approach 2:

Another approach to show a function f over S is 

1-1 onto T is to show that 

f -1(f(x)) = x, for arbitrary xS and that 

f (f-1 (z)) = z, for arbitrary zT. 

Thus, we need to show that 

(<x,y>1,<x,y>2) = (x,y) for arbitrary (x,y) and 

<<z>1,<z>2> = z for arbitrary z. 
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Alternate Proof

Let x,y be arbitrary natural number, then <x,y> = 2x(2y+1)-1. 

Moreover, <2x(2y+1)-1>1 = Factor(2x(2y+1),0) = x, since 2y+1 must be 

odd, and 

<2x(2y+1)-1>2 = ((2x(2y+1)/2^Factor(2x(2y+1),0))-1)/2 = 2y/2 = y.

Thus, (<x,y>1,<x,y>2) = (x,y), as was desired.

Let z be an arbitrary natural number, then the inverse of the pairing is 

(<z>1,<z>2)

Moreover, <<z>1,<z>2> = 2^<z>1 *(2<z>2+1)-1

= 2^Factor(z+1,0)*(2*((z+1)/ 2^Factor(z+1,0))/2-1+1)-1

= 2^Factor(z+1,0)*( (z+1)/ 2^Factor(z+1,0))-1

= (z+1) – 1

= z, as was desired.
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Application of Pairing

Show that prfs are closed under Fibonacci induction. Fibonacci 

induction means that each induction step after calculating the 

base is computed using the previous two values, where the 

previous values for f(1) are f(0) and 0; and for x>1, f(x) is based on 

f(x-1) and f(x-2). 

The formal hypothesis is: 

Assume g and h are already known to be prf, then so is f, where

f(0,x) = g(x); 

f(1,x) = h(f(0,x), 0); and 

f(y+2,x) = h(f(y+1,x), f(y,x))

Proof is by construction
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Fibonacci Recursion

Let K be the following primitive recursive function, defined by induction 

on the primitive recursive functions, g, h, and the pairing function.

K(0,x) = B(x)

B(x) = < g(x), C0(x) > // this is just <g(x), 0>

K(y+1, x) = J(y, x, K(y,x))

J(y,x,z) = < h(<z>1, <z>2), <z>1 > 

// this is < f(y+1,x), f(y,x)>, even though f is not yet shown to be prf!!

This shows K is prf. 

f is then defined from K as follows:

f(y,x) = <K(y,x)>1 // extract first value from pair encoded in K(y,x)

This shows it is also a prf, as was desired.
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m Recursive

4th Model

A Simple Extension to Primitive 

Recursive
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m Recursive Concepts

• All primitive recursive functions are algorithms 

since the only iterator is bounded.  That’s a clear 

limitation.

• There are algorithms like Ackerman’s function 

that cannot be represented by the class of 

primitive recursive functions.  

• The class of recursive functions adds one more 

iterator, the minimization operator (m), read “the 

least value such that.”
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Ackermann’s Function

• A(1, j)=2j for j ≥ 1 

• A(i, 1)=A(i-1, 2) for i ≥ 2 

• A(i, j)=A(i-1, A(i, j-1)) for i, j ≥ 2

• Wilhelm Ackermann observed in 1928 that this is not a 
primitive recursive function.

• Ackermann’s function grows too fast to have a for-loop 
implementation.

• The inverse of Ackermann’s function is important to analyze 
Union/Find algorithm. Note: A(4,4) is a super exponential 
number involving six levels of exponentiation. A(5,5) exceeds 
the number of atoms in known universe

 a(n) = A-1(n,n) grows so slowly that it is less than 5 for any 
value of n that can be written.
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Union/Find

• Start with a collection S of unrelated elements –

singleton equivalence classes

• Union(x,y), x and y are in S, merges the class 

containing x ([x]) with that containing y ([y])

• Find(x) returns the canonical element of [x]

• Can see if xy, by seeing if Find(x)==Find(y)

• How do we represent the classes? 
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The m Operator

• Minimization: 

If G is already known to be recursive, then 

so is F, where

F(x1,…,xn) = my (G(y,x1,…,xn) == 1)

• We also allow other predicates besides 

testing for one.  In fact any predicate that 

is recursive can be used as the stopping 

condition.
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Equivalence of Models

Equivalency of computation by 
Turing machines,

register machines, 
factor replacement systems, 

recursive functions
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Proving Equivalence

• Constructions do not, by themselves, 
prove equivalence. 

• To do so, we need to develop a notion of 
an “instantaneous description” (id) of each 
model of computation (well, almost as 
recursive functions are a bit different). 

• We then show a mapping of id’s between 
the models.
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Instantaneous Descriptions

• An instantaneous description (id) is a finite description of 
a state achievable by a computational machine, M.

• Each machine starts in some initial id, id0. 

• The semantics of the instructions of M define a relation 
M such that, idi M idi+1, i0, if the execution of a 
single instruction of M would alter M’s state from idi to 
idi+1 or if M halts in state idi and idi+1=idi.

• +
M is the transitive closure of M

• *M is the reflexive transitive closure of M
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id Definitions

• For a register machine, M, an id is an s+1 tuple of the form 

(i, r1,…,rs)M specifying the number of the next instruction to be 

executed and the values of all registers prior to its execution.  

• For a factor replacement system, an id is just a natural number.

• For a Turing machine, M, an id is some finite representation of the 

tape, the position of the read/write head and the current state. This 

is usually represented as a string aqxb, where a (b) is the shortest 

string representing all non-blank squares to the left (right) of the 

scanned square, x is the symbol at the scanned square and q is the 

current state.

• Recursive functions do not have id’s, so we will handle their 

simulation by an inductive argument, using the primitive functions as 

the basis and composition, induction and minimization in the 

inductive step.
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Equivalence Steps

• Assume we have a machine M in one model of computation and a 

mapping of M into a machine M’ in a second model.

• Assume the initial configuration of M is id0 and that of M’ is id’0

• Define a mapping, h, from id’s of M into those of M’, such that, 

RM = { h(d) | d is an instance of an id of M }, and

– id’0*M’ h(id0), and h(id0) is the only member of RM in the 

configurations encountered in this derivation.

– h(idi)
+
M’ h(idi+1), i0, and h(idi+1) is the only member of RM in 

this derivation.

• The above, in effect, provides an inductive proof that 

– id0*M id implies id’0*M’ h(id), and

– If id’0*M’ id’ then either id0*M id, where id’ = h(id), or 

id’  RM
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All Models are Equivalent

Equivalency of computation by 
Turing machines, register machines, 

factor replacement systems, 
recursive functions
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Our Plan of Attack

• We will now show 

TURING ≤ REGISTER ≤ FACTOR ≤ 

RECURSIVE ≤ TURING 

where, by A ≤ B, we mean that every 

instance of A can be replaced by an 

equivalent instance of B. 

• The transitive closure will then get us the 

desired result.
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Encoding a TM’s State

• Assume that we have an n state Turing machine.  Let 
the states be numbered 0,…, n-1.  

• Assume our machine is in state 7, with its tape 
containing
… 0 0 1 0 1 0 0 1 1 q7 0 0 0 …

• The underscore indicates the square being read.  We 
denote this by the finite id
1 0 1 0 0 1 1 q7 0

• In this notation, we always write down the scanned 
square, even if it and all symbols to its right are blank.  
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More on Encoding of TM

• An id can be represented by a triple of natural numbers, 
(R,L,i), where R is the number denoted by the reversal 
of the binary sequence to the right of the qi, L is the 
number denoted by the binary sequence to the left, and i
is the state index.  

• So, 
… 0 0 1 0 1 0 0 1 1 q7 0 0 0 … 
is just (0, 83, 7).
… 0 0 1 0 q5 1 0 1 1 0 0 …
is represented as (13, 2, 5).

• We can store the R part in register 1, the L part in 
register 2, and the state index in register 3. 
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Simulation by RM

1. DEC3[2,q0] : Go to simulate actions in state 0

2. DEC3[3,q1] : Go to simulate actions in state 1

…

n. DEC3[ERR,qn-1] : Go to simulate actions in state n-1

…

qj. IF_r1_ODD[qj+2] : Jump if scanning a 1

qj+1. JUMP[set_k] : If (qj 0 0 qk) is rule in TM

qj+1. INC1[set_k] : If (qj 0 1 qk) is rule in TM

qj+1. DIV_r1_BY_2 : If (qj 0 R qk) is rule in TM

MUL_r2__BY_2

JUMP[set_k]

qj+1. MUL_r1_BY_2 : If (qj 0 L qk) is rule in TM

IF_r2_ODD then INC1

DIV_r2__BY_2[set_k]

…

set_n-1. INC3[set_n-2] : Set r3 to index n-1 for simulating state n-1

set_n-2. INC3[set_n-3] : Set r3 to index n-2 for simulating state n-2

…

set_0. JUMP[1] : Set r3 to index 0 for simulating state 0
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Fixups

• Need epilog so action for missing quad 
(halting) jumps beyond end of simulation 
to clean things up, placing result in r0.  

• Can also have a prolog that starts with 
arguments in registers r1 to rn and stores 
values in r1, r2 and r3 to represent Turing 
machines starting configuration.
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Prolog

Example assuming n arguments (fix as needed)

1. MUL_rn+1_BY_2[2] : Set rn+1 = 11…102, where, #1's = r1

2. DEC1[3,4] : r1 will be set to 0

3. INCn+1[1] : 

4. MUL_rn+1_BY_2[5] : Set rn+1 = 11…1011…102, where, #1's = r1, then r2

5. DEC2[6,7] : r2 will be set to 0

6. INCn+1[4] : 

…

3n-2. DECn[3n-1,3n+1] : Set rn+1 = 11…1011…1011…12, where, #1's = r1, r2,…

3n-1. MUL_rn+1_BY_2[3n] : rn will be set to 0

3n. INCn+1[3n-2] : 

3n+1 DECn+1[3n+2,3n+3] : Copy rn+1 to r2, rn+1 is set to 0

3n+2. INC2[3n+1] : 

3n+3. : r2 = left tape, r1 = 0 (right), r3 = 0 (initial state)
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Epilog

1. DEC3[1,2] : Set r3 to 0 (just cleaning up)

2. IF_r1_ODD[3,5] : Are we done with answer?

3. INC0[4] : putting answer in r0

4. DIV_r1_BY_2[2] : strip a 1 from r1

5. : Answer is now in r0
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Encoding a RM’s State

• This is a really easy one based on the fact that every member of Z+

(the positive integers) has a unique prime factorization.  Thus all 
such numbers can be uniquely written in the form

where the pi's are distinct primes and the ki's are non-zero values, 
except that the number 1 would be represented by 20. 

• Let R be an arbitrary n+1-register machine, having m instructions.

Encode the contents of registers r0,…,rn by the powers of p0,…pn . 

Encode rule number's 1,…,m by primes pn+1 ,…, pn+m

Use pn+m+1 as prime factor that indicates simulation is done.

• This is, in essence, a Gödel number of the RM’s state.

1i
1kp

2i
2kp 

ji
jkp
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Simulation by FRS

• Now, the j-th instruction (1≤j≤m) of R has 
associated factor replacement rules as follows:

j. INCr[i]
pn+jx → pn+iprx

j. DECr[s, f]
pn+jprx → pn+sx

pn+jx → pn+fx

• We also add the halting rule associated with 
m+1 of

pn+m+1x → x 
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Importance of Order

• The relative order of the two rules to 
simulate a DEC are critical.  

• To test if register r has a zero in it, we, in 
effect, make sure that we cannot execute 
the rule that is enabled when the r-th
prime is a factor.  

• If the rules were placed in the wrong order, 
or if they weren't prioritized, we would be 
non-deterministic.  
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Sample RM and FRS (repeat)

Present a Register Machine that computes IsOdd. Assume R1=x at 

starts; at termination, set R0=1 if x is odd; 0 otherwise. We 

assume R0=0 at start. We also are not concerned about destroying 

input.

1. DEC1[2, 4]

2. DEC1[1, 3]

3. INC0[4]

4.

Present a Factor Replacement System that computes IsOdd. 

Assume starting number is 3^x; at termination, result is 2=2^1 if x 

is odd; 1= 2^0 otherwise.

3*3 x → x

3 x → 2 x
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Example of Order

Consider the simple machine to compute 

r0:=r1 – r2 (limited)

1. DEC2[2,3]

2. DEC1[1,1]

3. DEC1[4,5]

4. INC0[3]

5.
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Subtraction Encoding

Start with 3x5y7

7 • 5 x → 11 x

7 x → 13 x

11 • 3 x → 7 x

11 x → 7 x

13 • 3 x → 17 x

13 x → 19 x

17 x → 13 • 2 x

19 x → x
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Analysis of Problem

• If we don't obey the ordering here, we could take 
an input like 35527 and immediately apply the 
second rule (the one that mimics a failed 
decrement).  

• We then have 355213, signifying that we will 
mimic instruction number 3, never having 
subtracted the 2 from 5.  

• Now, we mimic copying r1 to r0 and get 255219 . 

• We then remove the 19 and have the wrong 
answer.
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Universal Machine

• In the process of doing this reduction, we will 

build a Universal Machine.  

• This is a single recursive function with two 

arguments.  The first specifies the factor system 

(encoded) and the second the argument to this 

factor system.  

• The Universal Machine will then simulate the 

given machine on the selected input.
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Encoding FRS

• Let (n, ((a1,b1), (a2,b2), … ,(an,bn)) be 

some factor replacement system, where 

(ai,bi) means that the i-th rule is

aix → bix

• Encode this machine by the number F,

pppp
nnnn

n bababa nn

2212212117532 2211

++−

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Simulation by Recursive # 1

• We can determine the rule of F that applies to x by

RULE(F, x) = m z (1 ≤ z ≤ exp(F, 0)+1) [ exp(F, 2*z-1) | x ]

• Note: exp(F,2*i-1) = ai where ai is the exponent of the prime factor 
p2i-1 of F. 

• If x is divisible by ai, and i is the least integer, 1≤i≤n, for which this is 
true, then RULE(F,x) = i. 

If x is not divisible by any ai, 1≤i≤n, then x is divisible by 1, and 
RULE(F,x) returns n+1.  That’s why we added p2n+1 p2n+2.

• Given the function RULE(F,x), we can determine NEXT(F,x), the 
number that follows x, when using F, by

NEXT(F, x) = (x // exp(F, 2*RULE(F, x)-1)) * exp(F, 2*RULE(F, x))
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Simulation by Recursive # 2

• The configurations listed by F, when started on x, are

CONFIG(F, x, 0) = x

CONFIG(F, x, y+1) = NEXT(F, CONFIG(F, x, y))

• The number of the configuration on which F halts is

HALT(F, x) = m y [CONFIG(F, x, y) == CONFIG(F, x, y+1)]

This assumes we converge to a fixed point as our 

means of halting. Of course, no applicable rule meets 

this definition as the n+1-st rule divides and then 

multiplies the latest value by 1.
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Simulation by Recursive # 3

• A Universal Machine that simulates an arbitrary Factor 
System, Turing Machine, Register Machine, Recursive 
Function can then be defined by 

Univ(F, x) =  exp ( CONFIG ( F, x, HALT ( F, x ) ), 0)

• This assumes that the answer will be returned as the 
exponent of the only even prime, 2.  We can fix F for any 
given Factor System that we wish to simulate.  It is that 
ability that makes this function universal.
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FRS Subtraction
• 203a5b  2a-b

3*5x → x or 1/15
5x → x or 1/5
3x → 2x or 2/3

• Encode F = 23 315 51 75 111 133 172 191 231

• Consider a=4, b=2

• RULE(F, x) = m z (1 ≤ z ≤ 4) [ exp(F, 2*z-1) | x ]
RULE (F,34 52) = 1, as 15 divides 34 52

• NEXT(F, x) = (x // exp(F, 2*RULE(F, x)-1)) * exp(F, 2*RULE(F, x))
NEXT(F,34 52) = (34 52 // 15 * 1) = 3351

NEXT(F,33 51) = (33 51 // 15 * 1) = 32

NEXT(F,32) = (32 // 3 * 2) = 2131

NEXT(F, 2131) = (2131 // 3 * 2) = 22

NEXT(F, 22) = (22 // 1 * 1) = 22
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Rest of simulation

• CONFIG(F, x, 0) = x

CONFIG(F, x, y+1) = NEXT(F, CONFIG(F, x, y))

• CONFIG(F,34 52,0) = 34 52

CONFIG(F,34 52,1) = 3351

CONFIG(F,34 52,2) = 32

CONFIG(F,34 52,3) = 2131

CONFIG(F,34 52,4) = 22

CONFIG(F,34 52,5) = 22

• HALT(F, x)=my[CONFIG(F,x,y)==CONFIG(F,x,y+1)] = 4

• Univ(F, x) =  exp ( CONFIG ( F, x, HALT ( F, x ) ), 0)

= exp(22,0) = 2
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Simplicity of Universal

• A side result is that every computable 

(recursive) function can be expressed in 

the form

F(x) = G(m y H(x, y))

where G and H are primitive recursive. 
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Standard Turing Computation

• Our notion of standard Turing computability of 
some n-ary function F assumes that the 
machine starts with a tape containing the n
inputs, x1, … , xn in the form

…01x101x20…01xn0…

and ends with

…01x101x20…01xn01y0…

where y = F(x1, … , xn).
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More Helpers

• To build our simulation we need to construct some useful 
submachines, in addition to the R, L, R, L, and Ck machines already 

defined.

• T -- translate moves a value left one tape square 

…?01x0…  …?1x00… 

• Shift -- shift a rightmost value left, destroying value to its left

…01x101x20…  …01x20… 

• Rotk -- Rotate a k value sequence one slot to the left  

…01x101x20…01xk0… 

 …01x20…01xk01x10…

 R1 L0 R 

 
R 

1 

L T 

R 

0 

k L k 

k+1 
1 L k 

L 0 T 
k L k+1 

 
L 

1 
T 

L 0 T 

0 
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Basic Functions

All Basis Recursive Functions are Turing 

computable:

• Ca
n(x1,…,xn) = a

(R1)aR

• (x1,…,xn) = xi

Cn-i+1

• S(x) = x+1

C11R

  i
n

I
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Closure Under Composition

If G, H1, … , Hk are already known to be Turing computable, then so 
is F, where

F(x1,…,xn) = G(H1(x1,…,xn), … , Hk(x1,…,xn))

To see this, we must first show that if E(x1,…,xn) is Turing 
computable then so is 

E<m>(x1,…,xn, y1,…,ym) = E(x1,…,xn)

This can be computed by the machine

Ln+m (Rotn+m)n Rn+m E  Ln+m+1 (Rotn+m)m Rn+m+1

Can now define F by 

H1 H2<1> H3<2> … Hk<k-1> G Shiftk
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Closure Under Induction

To prove that Turing Machines are closed under induction (primitive 

recursion), we must simulate some arbitrary primitive recursive function 

F(y,x1,x2, …, xn) on a Turing Machine, where

F(0, x1,x2, …, xn) = G(x1,x2, …, xn)

F(y+1, x1,x2, …, xn) = H(y, x1,x2, …, xn, F(y,x1,x2, …, xn))

Where, G and H are Standard Turing Computable.  We define the 

function F for the Turing Machine as follows:

Since our Turing Machine simulator can produce the same value for 

any arbitrary PRF, F, we show that Turing Machines are closed under 

induction (primitive recursion).
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GLn+1 L

1

0

0Rn+2 H Shift Ln+2 1

Rn+2 
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Closure Under Minimization

If G is already known to be Turing 

computable, then so is F, where

F(x1,…,xn) = my (G(x1,…,xn, y) == 1)

This can be done by
 

R G L 
1 

0 L 

0 

1 
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Consequences of Equivalence

• Theorem: The computational power of 
Recursive Functions, Turing Machines, Register 
Machine, and Factor Replacement Systems are 
all equivalent.

• Theorem: Every Recursive Function (Turing 
Computable Function, etc.) can be performed 
with just one unbounded type of iteration.

• Theorem: Universal machines can be 
constructed for each of our formal models of 
computation.
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We Can’t Do It All



Computable Languages 1

Let’s go over some important facts to this point:

1. * denotes the set of all strings over some finite alphabet 

2. | * | = |N|, where N is the set of natural numbers = the smallest 

infinite cardinal (the countable infinity)

3. A language L over  is a subset of *; that is, L  P(*) = 2*

Here P denotes the power set constructor

4. | L | is countable because L  * (that is, | L | ≤ | * | = |N| )

5. | * | < | P(*) | (uncountable infinity) implies there are an 

uncountable number of languages over a given alphabet, .

6. A program, P, in some programming language L, can be 

represented as a string over a finite alphabet, P that obeys the 

rules of constructing programs defined by L.  As P  P*, there are 

at most a countably infinite number of programs that can be formed 

in the language L.
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Computable Languages 2

7. Each program, P, in a programming language L, defines a function, FP: 
I* → O* where I is the input alphabet and O is the output alphabet.

8. FP defines an input language PI for which FP is defined (halts and 
produces an output). This is referred to as its domain in our terminology 
(I is its universe of discourse). The range of FP, PO, is the set of outputs. 
That is, PO = { y | ∃x in PI and y = FP (x) }

9. Since there are a countable number of programs, P, there can be at most 
a countable number of functions FP and consequently, only a countable 
number of distinct input languages and output languages associated with 
programs in LP.  Thus, there are only a countable number of languages 
(input or output) that can be defined by any program, P.

10. But, there are an uncountable number of possible languages over any 
given alphabet – see 3 and 5.

11. Thus there must be languages over a given alphabet that have no 
descriptions – in terms of a program – or in terms of an algorithm.  Thus, 
there are only a countably infinite number of languages that are 
computable among the uncountable number of possible languages.
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Programming Languages

1. Programming languages that we use as software developers are in a sense 
“complete.” By complete we mean that they can be used to implement all 
procedures that we think are computable (definable by a computational 
model that we can “agree” covers all procedural activities).

2. Challenge: Why did I say “agree” rather than “prove”?
3. We mostly like programs that halt on all input (we call these algorithms), but 

we know it’s always possible to do otherwise in every programming 
language we think is complete (C, C++, C#, Java, Python, et al.)

4. We can, of course, define programming languages that define only 
algorithms.

5. Unfortunately, we cannot define a programming language that produces all 
and only algorithms (all and just programs that always halt).

6. The above (#5) is one of the main results shown in this course
7. However, before focusing on #5 we should recall that finite-state, push 

down and linear bounded automata are computational models that produce 
only algorithms (when we monitor the latter two for loops) – it’s just that 
these get us a subset of algorithms.
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Classic Unsolvable Problem

Given an arbitrary program P, in some language L, and 

an input x to P, will P eventually stop when run with input 

x?

The above problem is called the “Halting Problem.”
Book denotes the Halting Problem as ATM.

It is clearly an important and practical one – wouldn't it 

be nice to not be embarrassed by having your program 

run “forever” when you try to do a demo for the boss or 

professor? Unfortunately, there’s a fly in the ointment as 

one can prove that no algorithm can be written in L that 

solves the halting problem for L.
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Some terminology

We will say that a procedure, f, converges on input x if it eventually 

halts when it receives x as input. We denote this as f(x). 

We will say that a procedure, f, diverges on input x if it never halts 

when it receives x as input. We denote this as f(x). 

Of course, if f(x) then f defines a value for x. In fact we also say 

that f(x) is defined if f(x) and undefined if f(x).

Finally, we define the domain of f as {x | f(x)}. 

The range of f is {y | there exists an x, f(x) and f(x) = y }.
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Numbering Procedures

Any programming language needs to have an 
associated grammar that can be used to generate all 
legitimate programs. 

By ordering the rules of the grammar in a way that 
generates programs in some lexical or syntactic order, 
we have a means to recursively enumerate the set of all 
programs. Thus, the set of procedures (programs) is re. 

Using this fact, we will employ the notation that x is the 
x-th procedure and x(y) is the x-th procedure with input 
y. We also refer to x as the procedure’s index.
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The universal machine

First, we can all agree that any complete model of 
computation must be able to simulate programs in its 
own language. We refer to such a simulator (interpreter) 
as the Universal machine, denote Univ. This program 
gets two inputs. The first is a description of the program 
to be simulated and the second of the input to that 
program. Since the set of programs in a model is re, we 
will assume both arguments are natural numbers; the 
first being the index of the program. Thus,

Univ(x,y) = x(y)
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Halting Problem (ATM)

Assume we can decide the halting problem.  Then there exists some total 
function Halt such that

1 if x(y) is defined

Halt(x,y) =

0 if x(y) is not defined

Now we can view Halt as a mapping from N into N by treating its input as a 
single number representing the pairing of two numbers via the one-one onto 
function pair discussed earlier.

pair(x,y) = <x,y> = 2x (2y + 1) – 1

with inverses

<z>1 = exp(z+1,1)

<z>2 = ((( z + 1 ) // 2 <z>1 ) – 1 ) // 2
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The Contradiction

Now if Halt exist, then so does Disagree, where
0 if Halt(x,x) = 0, i.e, if x(x) is not defined

Disagree(x) =

my (y == y+1) if Halt(x,x) = 1, i.e, if x(x) is defined

Since Disagree is a program from N into N , Disagree can be 
reasoned about by Halt.  Let d be such that Disagree = [d], then

Disagree(d) is defined  Halt(d,d) = 0 
 d(d) is undefined 

 Disagree(d) is undefined

But this means that Disagree contradicts its own existence.  Since 
every step we took was constructive, except for the original 
assumption, we must presume that the original assumption was in 
error.  Thus, the Halting Problem (ATM) is not solvable.



Halting (ATM) is recognizable

While the Halting Problem is not solvable, it is re, recognizable or 
semi-decidable. 

To see this, consider the following semi-decision procedure. Let P
be an arbitrary procedure and let x be an arbitrary natural number.  
Run the procedure P on input x until it stops. If it stops, say “yes.” If 
P does not stop, we will provide no answer. This semi-decides the 
Halting Problem. Here is a procedural description.

Semi_Decide_Halting() {

Read P, x;

P(x);

Print “yes”;

}
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Additional Notations

Includes comment on our notation 

versus that of others
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Universal Machine

• Others consider functions of n arguments, whereas we 

had just one. However, our input to the FRS was actually 

an encoding of n arguments. 

• The fact that we can focus on just a single number that is 

the encoding of n arguments is easy to justify based on 

the pairing function.

• Some presentations order arguments differently, starting 

with the n arguments and then the Gödel number of the 

function, but closure under argument permutation follows 

from closure under substitution.
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Universal Machine Mapping

• (n)(f, x1,…,xn) = Univ (f,          )

• We will sometimes adopt the above and 

also its common shorthand

f
(n)(x1,…,xn) = (n)(f, x1,…,xn) 

and the even shorter version

f(x1,…,xn) = (n)(f, x1,…,xn) 

 =

n

i

x

i
p

i

1
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SNAP and TERM

• Our CONFIG is essentially a snapshot 
function as seen in other presentations of 
a universal function

SNAP(f, x, t) = CONFIG(f, x, t)

• Termination in our notation occurs when 
we reach a fixed point, so

TERM(f, x) = (NEXT(f, x) == x)

• Again, we used a single argument but that can 
be extended as we have already shown.
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STP Predicate

• STP(f, x1,…,xn, t ) is a predicate defined 

to be true iff f (x1,…,xn) converges in at 

most t steps.

• STP is primitive recursive since it can be 

defined by

STP(f, x, t ) = TERM(f, CONFIG(f, x, t) )

Extending to many arguments is easily done as 

before.
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VALUE PRF

• VALUE(f, x1,…,xn, t ) is a primitive 

recursive function (algorithm) that returns 

f (x1,…,xn) so long as 

STP(f, x1,…,xn, t ) is true.

• VALUE(f, x1,…,xn, t) =

exp (CONFIG ( F, x, t), 0)

• VALUE(f, x1,…,xn, t ) returns a value if 

STP(f, x1,…,xn, t ) is false, but the 

returned value is meaningless.
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Definition of re

• Some texts define re in the same way as I have defined 
semi-decidable. 

S   is semi-decidable iff there exists a partially 
computable function g where

S = { x   | g(x) }

• I prefer the definition of re that says 
S   is re iff S =  or there exists a totally computable 
function f where 

S = { y | x f(x) == y }

• We will prove these equivalent. Actually, f can be a 
primitive recursive function.
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Semi-Decidable Implies re

Theorem: Let S be semi-decided by GS. Assume 
GS is the gS–th function in our enumeration of 
effective procedures.  If S = Ø then S is re by 
definition, so we will assume wlog that there is 
some a  S. Define the enumerating algorithm 
FS by

FS(<x,t>) = x * STP(gs, x, t ) 

+ a * (1-STP(gs, x, t ))

Note: FS is primitive recursive and it enumerates 
every value in S infinitely often. 
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re Implies Semi-Decidable

Theorem: By definition, S is re iff S == Ø or there 
exists an algorithm FS, over the natural numbers 
, whose range is exactly S. Define 

my [y == y+1] if S == Ø 

S(x) =

∃y[FS(y)==x], otherwise

This achieves our result as the domain of S is 
the range of FS, or empty if S == Ø. Note that 
this is an existence proof in that we cannot test if 
S == Ø
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Domain of a Procedure

Corollary: S is re/semi-decidable iff S is the 
domain / range of a partial recursive predicate 
FS.

Proof: The predicate S we defined earlier to semi-
decide S, given its enumerating function, can be 
easily adapted to have this property.

my [y == y+1] if S == Ø 

S(x) =

x * ∃y[FS(y)==x], otherwise
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Recursive Implies re 

Theorem: Recursive implies re.

Proof: S is recursive implies there is a total 

recursive function fS such that

S = { x   | fs(x) == 1 }

Define gs(x) = my (fs(x) == 1)

Clearly 

dom(gs) = {x   | gs(x)} 

= { x   | fs(x) == 1 } 

= S
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Related Results

Theorem: S is re iff S is semi-decidable.

Proof: That’s what we proved.

Theorem: S and ~S are both re (semi-decidable)
iff S (equivalently ~S) is recursive (decidable).

Proof: Let fS semi-decide S and fS’ semi-decide ~S. We can 
decide S by gS

gS(x) = STP(fS, x, mt (STP(fS, x, t) || STP(fS’ ,x, t))

~S is decided by gS’(x) = ~gS(x) = 1- gS(x).

The other direction is immediate since, if S is decidable 
then ~S is decidable (just complement gS) and hence 
they are both re (semi-decidable).
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Enumeration Theorem

• Define 
Wn = { x   | (n,x) }

• Theorem: A set B is re iff there exists an n
such that B = Wn.
Proof: Follows from definition of (n,x).

• This gives us a way to enumerate the 
recursively enumerable sets.

• Note: We will later show (again) that we 
cannot enumerate the recursive sets.
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The Set K

• K = { n   | n  Wn }

• Note that 

n  Wn  (n,n)  HALT(n,n)

• Thus, K is the set consisting of the indices 

of each program that halts when given its 

own index

• K can be semi-decided by the HALT

predicate above, so it is re.
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K is not Recursive

• Theorem: We can prove this by showing 

~K is not re.

• If ~K is re then ~K = Wi, for some i.

• However, this is a contradiction since

i  K  i  Wi  i  ~K  i  K
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re Characterizations

Theorem: If S   then the following are equivalent:

1. S is re

2. S is the range of a primitive rec. function

3. S is the range of a recursive function

4. S is the range of a partial rec. function

5. S is the domain of a partial rec. function

6. S is the range/domain of a partial rec. function whose domain 

is the same as its range and which acts as an identity when it 

converges. Below, assume fS enumerates S.

gS(x) = x*STP(fS, x, mt (STP(fS, x, t)) or

gS(x) = x* ∃t STP(fS, x, t)
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Parameter (S-m-n) Theorem

• Theorem: For each n,m>0, there is a prf
Sm

n(y, u1,…,un) such that

(m+n)(y, x1,…,xm, u1,…,un) 
= (m)(Sm

n(y,u1,…,un), x1,…, xm)

• The proof of this is highly dependent on 
the system in which you proved 
universality and the encoding you chose. 
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S-m-n for FRS

• We would need to create a new FRS, from an existing one F, that 
fixes the value of ui as the exponent of the prime pm+i. 

• Sketch of proof:
Assume we normally start with p1

x1 … pm
xm p1

u1 … pm+n
un 

Here the first m are variable; the next n are fixed;  denotes prime 
factors used to trigger first phase of computation.
Assume that we use fixed point as convergence.
We start with just p1

x1 … pm
xm, with q the first unused prime. 

q a x → q b x replaces a x→ b x in F, for each rule in F
q x → q x ensures we loop at end
x → q pm+1

u1 … pm+n
un  x
adds fixed input, start state and q
this is selected once and never again

Note: q = prime(max(n+m, lastFactor(Product[i=1 to r] ai bi ))+1)
where r is the number of rules in F.
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Details of S-m-n for FRS

• The number of F (called F, also) is 2r3a15b1…p2r-1
arp2r

br

• Sm,n(F, u1,…un) = 2r+23qa15qb1…p2r-1
qarp2r

qbr 

p2r+1
qp2r+2

q p2r+3p2r+4 
q pm+1

u1 … pm+n
un 

• This represents the rules we just talked about. The first 
added rule pair means that if the algorithm does not use 
fixed point, we force it to do so. The last rule pair is the 
only one initially enabled and it adds the prime q, the 
fixed arguments u1,…un, the enabling prime q, and the 
needed to kick start computation. Note that  could be a 
1, if no kick start is required.

• Sm,n= Sm
n is clearly primitive recursive. I’ll leave the 

precise proof of that as a challenge to you.
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Quantification#1

• S is decidable iff there exists an algorithm S (called S’s 
characteristic function) such that
x  S  S(x)
This is just the definition of decidable.

• S is re iff there exists an algorithm AS where 
x  S  t AS(x,t)

This is clear since, if gS is the index of the procedure S
that semi-decides S then
x  S  t STP(gS, x, t)

So, AS(x,t) = STPgS( x, t ), where STPgS is the STP
function with its first argument fixed. 

• Creating new functions by setting some one or more 
arguments to constants is an application of Sm

n.
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Quantification#2

• S is re iff there exists an algorithm AS such that
x  S  t AS(x,t)

This is clear since, if gS is the index of the procedure S
that semi-decides S, then
x  S  ~t STP(gS, x, t)  t ~STP(gS, x, t)

So, AS(x,t) = ~STPgS( x, t ), where STPgS is the STP
function with its first argument fixed. 

• Note that this works even if S is recursive (decidable). 
The important thing there is that if S is recursive then it 
may be viewed in two normal forms, one with existential 
quantification and the other with universal quantification.

• The complement of an re set is co-re. A set is recursive 
(decidable) iff it is both re and co-re.
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Diagonalization and 

Reducibility
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Non-re Problems

• There are even “practical” problems that are worse than 
unsolvable -- they’re not even semi-decidable.  

• The classic non-re problem is the Uniform Halting 
Problem, that is, the problem to decide of an arbitrary 
effective procedure P, whether or not P is an algorithm.  

• Assume that the algorithms can be enumerated, and that 
F accomplishes this.  Then

F(x) = Fx

where F0, F1, F2, … is a list of all the algorithms
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The Contradiction

• Define G( x ) = Univ ( F(x) , x ) + 1 = (F(x), x)+1 = Fx(x) + 1

• But then G is itself an algorithm.  Assume it is the g-th one

F(g) = Fg = G

Then, G(g) = Fg(g) + 1 = G(g) + 1

• But then G contradicts its own existence since G would need to be 
an algorithm.

• This cannot be used to show that the effective procedures are non-
enumerable, since the above is not a contradiction when G(g) is 
undefined.  In fact, we already have shown how to enumerate the 
(partial) recursive functions.
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The Set TOT

• The listing of all algorithms can be viewed 

as

TOT = { f   | x (f, x) }

• We can also note that

TOT = { f   | Wf = }

• Theorem: TOT is not re.
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Consequences

• To capture all the algorithms, any model of computation 
must include some procedures that are not algorithms.

• Since the potential for non-termination is required, every 
complete model must have some form of iteration that is 
potentially unbounded.

• This means that simple, well-behaved for-loops (the kind 
where you can predict the number of iterations on entry 
to the loop) are not sufficient. While type loops are 
needed, even if implicit rather than explicit.
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Insights



Non-re nature of algorithms

• No generative system (e.g., grammar) can produce 

descriptions of all and only algorithms

• No parsing system (even one that rejects by 

divergence) can accept all and only algorithms

• Of course, if you buy Church’s Theorem, the set of all 

procedures can be generated. In fact, we can build an 

algorithmic acceptor of such programs. 
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Many unbounded ways

• How do you achieve divergence, i.e., what are the 

various means of unbounded computation in each of 

our models?

• GOTO: Turing Machines and Register Machines

• Minimization: Recursive Functions

– Why not primitive recursion/iteration?

• Fixed Point: (Ordered) Factor Replacement Systems
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Non-determinism

• It sometimes doesn’t matter

– Turing Machines, Finite-State Automata, 

Linear Bounded Automata

• It sometimes helps

– Push Down Automata

• It sometimes hinders

– Factor Replacement Systems, Petri Nets
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Reducibility
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Reduction Concepts

• Proofs by contradiction are tedious after you’ve 

seen a few.  We really would like proofs that 

build on known unsolvable problems to show 

other, open problems are unsolvable.  The 

technique commonly used is called reduction.  It 

starts with some known unsolvable problem and 

then shows that this problem is no harder than 

some open problem in which we are interested.



Diagonalization is a Bummer

• The issues with diagonalization are that it is tedious and is 
applicable as a proof of undecidability or non-re-ness for only 
a small subset of the problems that interest us.

• Thus, we will now seek to use reduction wherever possible.

• To show a set, S, is undecidable, we can show it is as least 
as hard as the set K0. That is, K0 ≤ S. Here the mapping used 
in the reduction does not need to run in polynomial time, it just 
needs to be an algorithm.

• To show a set is co-re, non-recursive, we can show it is the 
complement of an re, non-recursive set. 

• To show a set, S, is not re and not even co-re, we can show it 
is as least as hard as the set TOTAL (the set of algorithms). 
That is, TOTAL ≤ S. We can also do this by showing it is the 
complement of a non-re, non-co-re set.
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Reduction Example#1

• We can show that the set K0 (Halting) is no harder than 
the set TOTAL (Uniform Halting).  Since we already 
know that K0 is unsolvable, we would now know that 
TOTAL is also unsolvable.  We cannot reduce in the 
other direction since TOTAL is in fact harder than K0.

• Let F be some arbitrary effective procedure and let x be 
some arbitrary natural number.

• Define Fx(y) = F(x), for all  y  

• Then Fx is an algorithm if and only if F halts on x. 

• Thus, K0 ≤ TOTAL, and so a solution to membership in 
TOTAL would provide a solution to K0, which we know is 
not possible.
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Reduction Examples #2 & #3

In all cases below we are assuming our variables are over .

HALT = { <f,x> | f (x) } is unsolvable (undecidable, non-recursive)

TOTAL = { f | x f (x) } = { f | Wf =N } is not even recursively 
enumerable (re, semidecidable)

• Show ZERO = { f | x f (x) = 0 } is unsolvable.
<f,x>  HALT iff g(y) = f (x) - f (x) is zero for all y.
Thus, <f,x>  HALT iff g  ZERO (really the index of g).
A solution to ZERO implies one for HALT, so ZERO is unsolvable.

• Show ZERO = { f | x f (x) = 0 } is non-re.
f  TOTAL iff h(x) = f (x) - f (x) is zero for all x.
Thus, f  TOTAL iff h  ZERO (really the index of h).
A semi-decision procedure for ZERO implies one for TOTAL, so 
ZERO is non-re.
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Classic Undecidable Sets

• The universal language
K0 = Lu = { <f, x> | f (x) is defined }

• Membership problem for Lu is the Halting Problem. 

• The sets Lne and Le, where

NON-EMPTY = Lne = { f |  x f (x)  }

EMPTY = Le = { f |  x f (x)  }

are the next ones we will study.
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Lne is re

• Lne is enumerated by 

F( <f, x, t> ) = f * STP( f, x, t )

• This assumes that 0 is in Lne since 0 probably 
encodes some trivial machine.  If this isn’t so, 
we’ll just slightly vary our enumeration of the 
recursive functions so it is true.  

• Thus, the range of this total function F is exactly 
the indices of functions that converge for some 
input, and that’s Lne.
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Lne is Non-Recursive

• Note in the previous enumeration that F is a function of 
just one argument, as we are using an extended pairing 
function <x,y,z> = <x,<y,z>>.

• Now Lne cannot be recursive, for if it were then Lu (K0) is 
recursive by the reduction we showed before.  

• In particular, from any index x and input y, we created a 
new function which accepts all input just in case the x-th
function accepts y. Recall Fx(y) = F(x), for all  y  .

• Hence, this new function’s index is in Lne just in case 
<x, y> is in Lu (K0). 

• Thus, a decision procedure for Lne (equivalently for Le) 
implies one for Lu (K0).
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Lne is re by Quantification

• Can do by observing that

f  Lne   <x,t> STP( f, x, t)

• By our earlier results, any set whose 

membership can be described by an existentially 

quantified recursive predicate is re (semi-

decidable). 
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Le is not re

• If Le were re, then Lne would be recursive 
since it and its complement would be re.

• Can also observe that Le is the 
complement of an re set since

f  Le   <x,t> ~STP( f, x, t) 
 ~ <x,t> STP( f, x, t)

 f  Lne
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m-1, 1-1, Turing Degrees
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Many-One Reduction

• Let A and B be two sets. 

• We say A many-one reduces to B, 
A m B, if there exists a total recursive function f
such that
x  A  f(x)  B

• We say that A is many-one equivalent to B, 
A m B, if A m B and B m A

• Sets that are many-one equivalent are in some 
sense equally hard or easy.
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Many-One Degrees

• The relationship A m B is an equivalence 

relationship (why?)

• If A m B, we say A and B are of the same 
many-one degree (of unsolvability).

• Decidable problems occupy three m-1 degrees: 
, , all others.

• The hierarchy of undecidable m-1 degrees is an 
infinite lattice (I’ll discuss in class)
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One-One Reduction

• Let A and B be two sets. 

• We say A one-one reduces to B, A 1 B, 
if there exists a total recursive 1-1 function f
such that
x  A  f(x)  B

• We say that A is one-one equivalent to B, 
A 1 B, if A 1 B and B 1 A

• Sets that are one-one equivalent are in a strong 
sense equally hard or easy.
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One-One Degrees

• The relationship A 1 B is an equivalence 
relationship (why?)

• If A 1 B, we say A and B are of the same one-
one degree (of unsolvability).

• Decidable problems occupy infinitely many 1-1 
degrees: each cardinality defines another 1-1 
degree (think about it).

• The hierarchy of undecidable 1-1 degrees is an 
infinite lattice.
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Turing (Oracle) Reduction

• Let A and B be two sets. 

• We say A Turing reduces to B, A t B, if the 
existence of an oracle for B would provide us 
with a decision procedure for A.

• We say that A is Turing equivalent to B, 
A t B, if A t B and B t A

• Sets that are Turing equivalent are in a very 
loose sense equally hard or easy.
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Turing Degrees

• The relationship A t B is an equivalence 
relationship (why?)

• If A t B, we say A and B are of the same Turing 
degree (of unsolvability).

• Decidable problems occupy one Turing degree. 
We really don’t even need the oracle.

• The hierarchy of undecidable Turing degrees is 
an infinite lattice.
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Complete re Sets

• A set C is re 1-1 (m-1, Turing) complete if, for 

any re set A, A 1 (m , t ) C.

• The set HALT is an re complete set (in regard to 
1-1, m-1 and Turing reducibility).

• The re complete degree (in each sense of 
degree) sits at the top of the lattice of re 
degrees.
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The Set Halt = K0 = Lu

• Halt = K0 = Lu = { <f, x> | f (x) }

• Let A be an arbitrary re set. By definition, there exists an 

effective procedure a, such that dom(a) = A. Put 
equivalently, there exists an index, a, such that A = Wa.

• x  A iff x  dom(a) iff a(x) iff <a,x>  K0

• The above provides a 1-1 function that reduces A to K0

(A 1 K0) 

• Thus the universal set, Halt = K0 = Lu, is an re 
(1-1, m-1, Turing) complete set.
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The Set K

• K = { f | f(f) is defined }

• Define fx(y) = f(x), for all y. The index for fx can be 
computed from f and x using S1,1, where we add a 

dummy argument, y, to f. Let that index be fx. (Yeah, 
that’s overloading.)

• <f,x>  K0 iff x  dom(f) iff y[fx
(y)] iff fx  K.

• The above provides a 1-1 function that reduces K0 to K. 

• Since K0 is an re (1-1, m-1, Turing) complete set and K
is re, then K is also re (1-1, m-1, Turing) complete.
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Overall Picture
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Quantification#3

• The Uniform Halting Problem was already 

shown to be non-re. It turns out its complement 

is also not re. We’ll cover that later. In fact, we 

will show that TOT requires an alternation of 

quantifiers. Specifically,

f  TOT xt ( STP( f, x, t ) )

and this is the minimum quantification we can 

use, given that the quantified predicate is total 

recursive (actually primitive recursive here).
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Reduction and Rice’s
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Either Trivial or Undecidable

• Let P be some set of re languages, e.g. P = { L | L is infinite re }.  

• We call P a property of re languages since it divides the class of all 
re languages into two subsets, those having property P and those 
not having property P.  

• P is said to be trivial if it is empty (this is not the same as saying P
contains the empty set) or contains all re languages.  

• Trivial properties are not very discriminating in the way they divide 
up the re languages (all or nothing).
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Rice’s Theorem

Rice’s Theorem: Let P be some non-trivial 
property of the re languages. Then

LP = { x | dom [x] is in P (has property P) }

is undecidable.  Note that membership in LP is 
based purely on the domain of a function, not on 
any aspect of its implementation.
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Rice’s Proof-1

Proof:  We will assume, wlog, that P does not 
contain Ø.  If it does we switch our attention to 
the complement of P.  Now, since P is non-
trivial, there exists some language L with 
property P.  Let [r] be a recursive function 
whose domain is L (r is the index of a semi-
decision procedure for L).  Suppose P were 
decidable.  We will use this decision procedure 
and the existence of r to decide K0.  
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Rice’s Proof-2

First we define a function Fr,x,y for r and each 
function x and input y as follows.

Fr,x,y( z ) = ( x , y ) + ( r , z )

The domain of this function is L if x (y) 
converges, otherwise it’s Ø.  Now if we can 
determine membership in LP , we can use this 
algorithm to decide K0 merely by applying it to 
Fr,x,y.  An answer as to whether or not Fr,x,y has 
property P is also the correct answer as to 
whether or not x (y) converges.
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Rice’s Proof-3

Thus, there can be no decision procedure for P.  
And consequently, there can be no decision 
procedure for any non-trivial property of re 
languages.

Note: This does not apply if P is trivial, nor does 
it apply if P can differentiate indices that 
converge for precisely the same values.



I/O Property

• An I/O property, P, of indices of recursive function is one 
that cannot differentiate indices of functions that produce 
precisely the same value for each input. 

• This means that if two indices, f and g, are such that f
and  g converge on the same inputs and, when they 
converge, produce precisely the same result, then both f
and g must have property P, or neither one has this 
property.

• Note that any I/O property of recursive function indices 
also defines a property of re languages, since the 
domains of functions with the same I/O behavior are 
equal. However, not all properties of re languages are 
I/O properties.
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Strong Rice’s Theorem

Rice’s Theorem: Let P be some non-trivial 

I/O property of the indices of recursive 
functions. Then

SP = { x | x has property P) }

is undecidable.  Note that membership in 
SP is based purely on the input/output 
behavior of a function, not on any aspect 
of its implementation.
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Strong Rice’s Proof

• Given x, y, r, where r is in the set 

SP.= {f | f has property P}, 

define the function 

fx,y,r(z) = x(y) - x(y) + r(z). 

• fx,y,r(z) = r(z) if x(y) ; =  if x(y) . 

Thus, x(y) iff fx,y,r has property P, and so 

K0  SP.
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Picture Proof
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Black is for standard Rice’s Theorem;

Black and Red are needed for Strong Version

Blue is just another version based on range
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Weak Rice’s Theorems

Weak Rice’s Theorem1: Let P be some non-trivial I/O 
property of the indices of recursive functions. Then

SP = { x | dom(x) has property P) }

is undecidable. 

dom(fx,y,r) = dom(r) if x(y) ; =  if x(y)

Weak Rice’s Theorem2: Let P be some non-trivial I/O 
property of the indices of recursive functions. Then

SP = { x | range(x) has property P) }

is undecidable.  

range(fx,y,r) = range(r) if x(y) ; =  if x(y)
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Corollaries to Rice’s

Corollary:  The following properties of re 

sets are undecidable

a) L = Ø

b) L is finite

c) L is a regular set

d) L is a context-free set
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Practice

Known Results:

HALT = { <f,x> | f(x) } is re (semi-decidable) but undecidable

TOTAL = { f | x f(x) } is non-re (not even semi-decidable)

1. Use reduction from HALT to show that one cannot decide NonTrivial, where

NonTrivial = { f | for some x, y, x ≠ y, f(x) and f(y) and f(x) ≠ f(y) }

2. Show that Non-Trivial reduces to HALT. (1 plus 2 show they are equally hard)

3. Use Reduction from TOTAL to show that NoRepeats is not even re, where

NoRepeats = { f | for all x, y, f(x) and f(y), and x ≠ y ⇒ f(x) ≠ f(y) }

4. Show NoRepeats reduces to TOTAL. (3 plus 4 show they are equally hard)

5. Use Rice’s Theorem to show that NonTrivial is undecidable 

6. Use Rice’s Theorem to show that NoRepeats is undecidable 
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Practice Classifications

1. Use quantification of an algorithmic predicate to estimate the 

complexity (decidable, re, co-re, non-re) of each of the following, (a)-

(d):

a) NonTrivial = { f | for some x, y, x ≠ y, f(x) and f(y) and f(x) ≠ f(y) }

b) NoRepeats = { f | for all x, y, f(x) and f(y), and x ≠ y ⇒ f(x) ≠ f(y) }

c) FIN = { f | domain(f) is finite }

2. Let set A be non-empty recursive, and let B be re non-recursive.

Consider C = { z | z = x * y, where x  A and y  B }. . For (a)-(c), 

either show sets A and B with the specified property or demonstrate 

that this property cannot hold. 

a) Can C be recursive? 

b) Can C be re non-recursive (undecidable)? 

c) Can C be non-re? 
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Sample Question#1

1. Given that the predicate STP and the 

function VALUE are algorithms, show 

that we can semi-decide 

HZ = { f | f evaluates to 0 for some input}

Note: STP( f, x, s ) is true iff f(x) 

converges in s or fewer steps and, if so, 

VALUE(f, x, s) = f(x).  
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Sample Questions#2,3

2. Use Rice’s Theorem to show that HZ is 

undecidable, where HZ is

HZ = { f | f evaluates to 0 for some input}

3. Redo using Reduction from HALT.
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Sample Question#4

4. Let P = { f |  x [ STP(f, x, x) ] }. Why 

does Rice’s theorem not tell us anything 

about the undecidability of P?

2/20/2020 © UCF CS



220

Sample Question#5

5. Let S be an re (recursively enumerable), non-
recursive set, and T be an re, possibly 
recursive non-empty set. Let 

E = { z | z = x + y, where x  S and y  T }. 

Answer with proofs, algorithms or 
counterexamples, as appropriate, each of the 
following questions:

(a) Can E be non re?

(b) Can E be re non-recursive?

(c) Can E be recursive? 
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Constant time: 

Not amenable to Rice’s



Constant Time

• CTime = { M | K [ M halts in at most K steps 

independent of its starting configuration ] }

• RT cannot be shown undecidable by Rice’s Theorem as 

it breaks property 2

– Choose M1 and M2 to each Standard Turing Compute (STC) 

ZERO

– M1 is R (move right to end on a zero)

– M2 is L R R (time is dependent on argument)

– M1 is in CTime; M2 is not , but they have same I/O behavior, so 

CTime does not adhere to property 2

2/20/2020 © UCF CS 222



Quantifier Analysis

• CTime = { M | K C [ STP(M, C, K) ] }

• This would appear to imply that CTime is not 

even re. However, a TM that only runs for K 

steps can only scan at most K distinct tape 

symbols. Thus, if we use unary notation, CTime

can be expressed

• CTime = { M | K C|C|≤K [ STP(M, C, K) ] }

• We can dovetail over the set of all TMs, M, and 

all K, listing those M that halt in constant time.
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Complexity of CTime

• Can show it is equivalent to the Halting 

Problem for TM’s with Infinite Tapes (not 

unbounded but truly infinite)

• This was shown in 1966 to be 

undecidable.

• It was also shown to be re, just as we 

have done so for CTime.

• Details Later
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List Minus Some Tedious Stuff

• A question with multiple parts that uses quantification (STP/VALUE)

• Various re and recursive equivalent definitions 

• Proofs of equivalence of definitions

• Consequences of recursiveness or re-ness of a problem

• Closure of recursive/re sets

• Gödel numbering (pairing functions and inverses)

• Models of computation/equivalences (not details but understanding)

• Primitive recursion and its limitation; bounded versus unbounded μ

• Notion of universal machine

• A proof by diagonalization (there are just two possibilities)

• A question about K and/or K0

• Many-one reduction(s)

• Rice’s Theorem (its proof and its variants)

• Applications of Rice’s Theorem and when it cannot be applied
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Sample Question#1

1. Prove that the following are equivalent

a) S is an infinite recursive (decidable) set.

b) S is the range of a monotonically 

increasing total recursive function. 

Note: f is monotonically increasing 

means that x f(x+1) > f(x).
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Sample Question#2

2. Let A and B be re sets. For each of the 

following, either prove that the set is re, 

or give a counterexample that results in 

some known non-re set.

a) A  B

b) A  B

c) ~A
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Sample Question#3

3. Present a demonstration that the even

function is primitive recursive.

even(x) = 1 if x is even

even(x) = 0 if x is odd

You may assume only that the base 

functions are prf and that prf’s are closed 

under a finite number of applications of 

composition and primitive recursion.
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Sample Question#4

4. Given that the predicate STP and the 

function VALUE are prf’s, show that we 

can semi-decide 

{ f | f evaluates to 0 for some input}

Note: STP( f, x, s ) is true iff f(x) 

converges in s or fewer steps and, if so, 

VALUE(f, x, s) = f(x).  
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Sample Question#5

5. Let S be an re (recursively enumerable), non-
recursive set, and T be an re, possibly 
recursive set. Let 

E = { z | z = x + y, where x  S and y  T }. 

Answer with proofs, algorithms or 
counterexamples, as appropriate, each of the 
following questions:

(a) Can E be non re?

(b) Can E be re non-recursive?

(c) Can E be recursive? 
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Sample Question#6

6. Assuming that the Uniform Halting 

Problem (TOTAL) is undecidable (it’s 

actually not even re), use reduction to 

show the undecidability of

{ f | x f (x+1) > f (x) }
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Sample Question#7

7. Let Incr = { f | x, f(x+1)>f(x) }. 

Let TOT = { f | x, f(x) }.

Prove that Incr m TOT. Note Q#6 starts 

this one.
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Sample Question#8

8. Let Incr = { f | x f(x+1)>f(x) }. Use 

Rice’s theorem to show Incr is not 

recursive.
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Sample Question#9

9. Let S be a recursive (decidable set), 

what can we say about the complexity 

(recursive, re non-recursive, non-re) of T, 

where T  S?
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Sample Question#10

10.Define the pairing function <x,y> and its 

two inverses <z>1 and <z>2, where if 

z = <x,y>, then x = <z>1 and y = <z>2.
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Sample Question#11

11.Assume A m B and B m C. 

Prove A m C.

2/20/2020 © UCF CS
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Sample Question#12

12.Let P = { f |  x [ STP(f, x, x) ] }. Why 

does Rice’s theorem not tell us anything 

about the undecidability of P?
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Thue Systems

• Devised by Axel Thue

• Just a string rewriting view of finitely 
presented monoids

• T = (, R), where  is a finite alphabet and 
R is a finite set of bi-directional rules of 
form ai  bi , ai, bi*

• We define * as the reflexive, transitive 
closure of , where w  x iff w=yaz and 
x=ybz, where a  b
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Semi-Thue Systems

• Devised by Emil Post

• A one-directional version of Thue systems

• S = (, R), where  is a finite alphabet and 
R is a finite set of rules of form 
ai → bi , ai, bi*

• We define * as the reflexive, transitive 
closure of , where w  x iff w=yaz and 
x=ybz, where a → b

2/20/2020 © UCF CS
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Word Problems

• Let S = (, R) be some Thue (Semi-Thue) 
system, then the word problem for S is the 
problem to determine of arbitrary words w and x 
over S, whether or not w * x (w * x )

• The Thue system word problem is the problem 
of determining membership in equivalence 
classes. This is not true for Semi-Thue systems.

• We can always consider just the relation * 
since the symmetric property of * comes 
directly from the rules of Thue systems.

2/20/2020 © UCF CS
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Post Canonical Systems

• These are a generalization of Semi-Thue systems.

• P = (, V, R), where  is a finite alphabet, V is a finite set of 
“variables”, and R is a finite set of rules.

• Here the premise part (left side) of a rule can have many premise 
forms, e.g, a rule appears as
a1,0 P1,1a1,1 P1,2… a1,n1

P1,n1
a1,n1+1 ,

a2,0 P2,1a2,1 P2,2… a2,n2
P2,n2

a2,n2+1 ,
…

ak,0 Pk,1ak,1 Pk,2… ak,nk
Pk,nk

ak,nk+1 ,
→ b0 Q1b1 Q2… bnk+1

Qnk+1
bnk+1+1

• In the above, the P’s and Q’s are variables, the a’s and b’s are 
strings over , and each Q must appear in at least one premise.

• We can extend the notion of * to these systems considering sets 
of words that derive conclusions. Think of the original set as axioms, 
the rules as inferences and the final word as a theorem to be 
proved.
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Examples of Canonical Forms

• Propositional rules
P, P  Q  → Q
~P, P  Q → Q
P  Q → P oh, oh a  (b  c)  a  (b 
P  Q → Q
(P  Q)  R  P  (Q  R) 
(P  Q)  R  P  (Q  R) 
~(~P)  P

P  Q → Q  P 
P  Q → Q  P 

• Some proofs over {a,b,(,),~,,,}
{a  c, b  ~c, b}  {a  c, b  ~c, b, ~c} 
{a  c, b  ~c, b, ~c, c  a} 
{a  c, b  ~c, b, ~c, c  a, a} which proves “a”
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Simplified Canonical Forms

• Each rule of a Semi-Thue system is a canonical rule of 
the form
PaQ → PbQ

• Each rule of a Thue system is a canonical rule of the 
form
PaQ  PbQ

• Each rule of a Post Normal system is a canonical rule of 
the form
aP → Pb

• Tag systems are just Normal systems where all 
premises are of the same length (the deletion number), 
and at most one can begin with any given letter in . 
That makes Tag systems deterministic.
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Examples of Post Systems

• Alphabet  = {a,b,#}. Semi-Thue rules:
aba → b
#b# → l
For above, #anbam#  * l iff n=m

• Alphabet  = {0,1,c,#}. Normal rules:
0c → 1
1c → c0
#c → #1 
0 → 0
1 → 1
# → # 
For above, binaryc#  * binary+1# where binary is some 
binary number.

2/20/2020 © UCF CS
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Simulating Turing Machines

• Basically, we need at least one rule for each 4-
tuple in the Turing machine’s description.

• The rules lead from one instantaneous 
description to another.

• The Turing ID aqab is represented by the string 
haqabh, a being the scanned symbol.

• The tuple q a b s leads to 
qa → sb

• Moving right and left can be harder due to 
blanks. 
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Details of Halt(TM)  Word(ST)

• Let M = (Q, {0,1}, T), T is Turing table.

• If qabs  T, add rule qa → sb // simple rewrite of scan

• If qaRs  T, add rules 
– q1b → 1sb a=1, b{0,1} // left non-blank; scan not blank

– q1h → 1s0h a=1 // right blank; scan not blank

– cq0b → c0sb a=0, b,c{0,1} // left and right non-blank; scan blank

– hq0b → hsb a=0, b{0,1} // left blank; right not blank; scan blank

– cq0h → c0s0h a=0, c{0,1} // left not blank; right blank; scan blank

– hq0h → hs0h a=0 // blank tape to blank tape

• If qaLs  T, add rules 
– bqac → sbac a,b,c{0,1} // left and right had non-blanks

– hqac → hs0ac a,c{0,1} // left blank; right not blank

– bq1h → sb1h a=1, b{0,1} // left not blank; right blank; scan not blank

– hq1h → hs01h a=1 // left blank; right blank; scan not blank

– bq0h → sbh a=0, b{0,1} // left not blank; right blank; scan blank

– hq0h → hs0h a=0 // blank tape to blank tape
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Clean-Up

• Assume q1 is start state and only one accepting state exists q0

• We will start in h1xq10h, seeking to accept x (enter q0) or reject (run 
forever).

• Add rules 
– q0a → q0 a{0,1}

– bq0 → q0 b{0,1}

• The added rule allows us to “erase” the tape if we accept x.

• This means that acceptance can be changed to generating hq0h.

• The next slide shows the consequences.
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Semi-Thue Word Problem

• Construction from TM, M, gets:

• h1xq10h (M)* hq0h iff xL(M).

• hq0h (M)* h1xq10h iff xL(M).

• hq0h  (M)* h1xq10h iff xL(M).

• Can recast both Semi-Thue and Thue

Systems to ones over alphabet {a,b} or 

{0,1}. That is, a binary alphabet is 

sufficient for undecidability.
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Grammars and re Sets

• Every grammar lists an re set.

• Some grammars (regular, CFL and CSG) 

produce recursive sets.

• Type 0 grammars are as powerful at 

generating (producing) re sets as Turing 

machines are at enumerating them 

(Proof later).



Formal Language

Undecidability Continued

PCP and Traces
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Post Correspondence Problem

• Many problems related to grammars can be shown to be 
no more complex than the Post Correspondence 
Problem (PCP).  

• Each instance of PCP is denoted: Given n>0,  a finite 
alphabet, and two n-tuples of words  
( x1, … , xn ), ( y1, … , yn ) over , 
does there exist a sequence i1, … , ik , k>0, 1 ≤ ij ≤ n, 
such that
xi1

… xik
= yi1

… yik
?  

• Example of PCP: 
n = 3,  = { a , b }, ( a b a , b b , a ),  ( b a b , b , b a a ).
Solution 2 , 3, 1 , 2    
b b   a   a b a   b b   =   b   b a a   b a b   b
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Post Correspondence Problem

• Many problems related to grammars can be shown to be 
no more complex than the Post Correspondence 
Problem (PCP).  

• Each instance of PCP is denoted: Given n>0, S a finite 
alphabet, and two n-tuples of words  
( x1, … , xn ), ( y1, … , yn ) over S, 
does there exist a sequence i1, … , ik , k>0, 1 ≤ ij ≤ n, 
such that
xi1

… xik
= yi1

… yik
?  

• Example of PCP: 
n = 3, S = { a , b }, ( a b a , b b , a ),  ( b a b , b , b a a ).
Solution 2 , 3, 1 , 2    
b b   a   a b a   b b   =   b   b a a   b a b   b
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PCP Example#2

• Start with Semi-Thue System

– aba → ab; a → aa; b → a

– Instance of word problem: bbbb *? aa

• Convert to PCP

– [bbbb* ab ab aa aa a a ]

[ aba aba a a b b *aa]

– And * * a a b b

* * a a b b
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How PCP Construction Works?

• Using underscored letters avoids solutions that 
don’t relate to word problem instance. E.g.,

ab aa

aba a
leads to solution no matter the question 

• Top row insures start with [W0*

• Bottom row insures end with *Wf]

• Bottom row matches Wi, while top matches Wi+1

(one is underscored)

• Get Solution for PCP iff W0 * Wf
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Ambiguity of CFG

• Problem to determine if an arbitrary CFG 
is ambiguous 

S → A  |  B

A→ xi A [i]  |   xi [i] 1 ≤ i ≤ n

B→ yi B [i]  |   yi [i] 1 ≤ i ≤ n

A * xi1
… xik

[ik] … [i1] k > 0

B * yi1
… yik

[ik] … [i1] k > 0

• Ambiguous if and only if there is a solution 
to this PCP instance. 
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Intersection of CFLs

• Problem to determine if arbitrary CFG’s 
define overlapping languages

• Just take the grammar consisting of all the 
A-rules from previous, and a second 
grammar consisting of all the B-rules.  Call 
the languages generated by these 
grammars, LA and LB. 
LA  LB ≠  Ø, if and only there is a solution 
to this PCP instance.
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CSG Produces Something

S → xi S yi
R | xi T yi

R 1 ≤ i ≤ n

a T a → * T *

* a → a *

a * → * a

T → *

• Our only terminal is *.  We get strings of 
form *

2j+1, for some j’s if and only if there is 
a solution to this PCP instance.
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CSG Produces Something

• Our only terminal in previous grammar is *.  
We get strings of form *

2j+1, for some j’s if 
and only if there is a solution to this PCP 
instance. Get Ø otherwise.

• Thus, P has a solution iff

– L(G) ≠ Ø

– L(G) is infinite

2/20/2020 UCF @ CS
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Traces

• A valid trace

– # C1 # C2 # C3 # C4 … # Ck-1 # Ck #, 
where k  1 and Ci M Ci+1, for 1  i < k. 
Here, M means derive in M, and C is a valid 
ID (Instantaneous Description)

• An invalid trace

– # C1 # C2 # C3 # C4 … # Ck-1 # Ck #, 
where k  1 and for some i, it is false that 
Ci M Ci+1. 
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Traces (Valid Computations)

• A terminating trace of a machine M, is a word of the form
# C0 # C1 # C2 # C3 # … # Ck-1 # Ck #

where Ci  Ci+1 0 ≤ i < k, C0 is a starting configuration and Ck is a 
terminating configuration.  

• We allow some laxness, where the configurations might be encoded 
in a manner appropriate to the machine model.  Now, a context free 
grammar can be devised which approximates traces by either 
getting the even-odd pairs right, or the odd-even pairs right.  The 
goal is to then intersect the two languages, so the result is a trace.  
This then allows us to create CFLs L1 and L2, where L1  L2 ≠ Ø , 
just in case the machine has an element in its domain.  Since this is 
undecidable, the non-emptiness of the intersection problem is also 
undecidable. This is an alternate proof to one we already showed 
based on PCP.

• Additionally, if L1  L2 = Ø, the complement (bad traces + non-
traces) is Σ*. As this can be shown to be a CFL, determining if a 
CFG generates Σ* is undecidable as well. 

2/20/2020 © UCF CS



2/20/2020 © UCF CS 266

What’s Undecidable?

• We cannot decide if the set of valid 

terminating traces of an arbitrary machine 

M is non-empty.

• We cannot decide if the complement of the 

set of valid terminating traces of an 

arbitrary machine M is everything. In fact, 

this is not even semi-decidable.
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What’s a CSL or CFL?

• Given some machine M (I’ll talk about specific 
models later)
– The set of valid traces of M is Context Sensitive

(can prove by fact that intersection of two CFLs is a 
CSG or by direct construction)

– The complement of the valid traces of M is Context 
Free; that is, the set of invalid traces of M is Context 
Free (just one mistake required)

– The set of valid terminating traces of M is Context 
Sensitive (same as above)

– The complement of the valid terminating traces of M 
is Context Free; again, this requires just one mistake
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L = *?

• If L is regular, then L = *? is decidable

– Easy – Reduce to minimal deterministic FSA, 

AL accepting L. L = * iff AL is a one-state 

machine, whose only state is accepting

• If L is context free, then L = *? is 

undecidable

– Just produce the complement of a machine’s 

valid terminating traces; if it’s * then the 

original machine accepted nothing

2/20/2020 © UCF CS
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Traces are NOT CFLs

• In the previous, we assumed that a trace is NOT a CFL, 

but we never proved that.

• To show  the trace language for a TM, M, 

{ # C1 # C2 # C3 # C4 … # Ck-1 # Ck # | 

k  1 and Ci M Ci+1, for 1  i < k } is not a CFL, we can 

focus on a simple machine that has just one non-blank 

{1} and one state {q} and the rules

q 0 0 q

q 1 1 q

• This machine has traces of the form

{ # C # C # C # C  … # C # C # } as it never changes the 

tape contents or its state.
2/20/2020 © UCF CS
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Using Pumping Lemma

• From previous slide, assume that the language of traces, 

L = { # C # C # C # C  … # C # C # }, 

involving no changes in the ID is Context Free

• Pumping Lemma gives me an N>0

• I choose the valid trace in L that is # q 1N #  q 1N # q 1N #

• PL breaks this up into uvwxy, |vwx| ≤ N, |vx|>0 and

∀i≥0 uviwxiy ∈ L

• Case 1: vx contains some 1’s. Due to fact that |vwx| ≤ N, the 1’s can come 

from at most two consecutive sequences of 1’s. If i=0, then we reduce 1’s in 

at most two subsequences, but not in the third, leading to an imbalance, 

and so the result is not in L.

• Case 2:  vx contains no 1’s, then it must be either ‘q’, ‘#’, or ‘#q’. In any 

case, if i=0 then we remove a state or a divider or both and the result is not 

a sequence of fixed configurations, so is not in L.

• By PL, L is not a CFL.
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Language of Traces is a CSL 

• The easiest way to show this for Turing machine traces is to describe an 

LBA that is given a string and wants to check if it is a valid trace.

• The LBA could make a pass over to be sure the string starts with a #, ends 

with a #, has no 0’s immediately following a #, has a leading 0 immediately 

prior to a # only if the character preceding that 0 is a state, and has exactly 

one state between each pair of #’s.

• The LBA could then check each pair by copying the second member of a 

pair under the first (2 tracks) and then marching over the two one character 

at a time until a state is found in one or the other. It can then do checks that 

are based on the Turing machine rules with there being a need to look at 

only 4 characters in each track – state, character to immediate left of state 

and up to two characters to immediate right of state on each track (think 

about it). Of course, all parts of configuration that are not altered must be 

checked to be sure they match on both tracks.
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Non-Traces is a CFL 

• There are two ways that a string might not be a valid trace. 

• First, it might be ill-formed, but we can easily check if a word looks like a 

trace. If not, it is in the complement of valid traces

• Second, we can check pairs of configurations, # Ci # Ci+1 to  see if there is a 

transcription error; that is, we can check to see if it is the case that Ci+1 does 

not follow from Ci in a valid trace. This is a non-deterministic process where 

we “guess” which pair might be in error and then, if the guess is correct, we 

accept the string as a bad one that just looks like a trace.

• How hard is it to check for one bad transcription? Well, as noted above it 

starts with a guess, but then we must check. If it’s a TM trace, we use 

alternating ID reversals, so such a pair is either # Ci # Ci+1
R or # Ci

R # Ci+1. 

Checking an error here is just looking as was described with the LBA single 

step check and can be done with a stack. What the stack cannot do is look 

at sequences longer than single pairs.
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Traces of FRS with Residues

• I have chosen, once again to use the Factor Replacement Systems, 
but this time, Factor Systems with Residues.  
The rules are unordered and each is of the form
a x + b  → c x + d

• These systems need to overcome the lack of ordering when 
simulating Register Machines.  This is done by
j. INCr[i] pn+j x → pn+i pr x 
j. DECr[s, f] pn+j pr x → pn+s x 

pn+j pr x + k pn+j → pn+f pr x + k pn+f , 1 ≤ k <  pr

We also add the halting rule associated with m+1 of

pn+m+1 x → 0 

• Thus, halting is equivalent to producing 0.  We can also add one 
more rule that guarantees we can reach 0 on both odd and even 
numbers of moves

0 → 0

2/20/2020 © UCF CS
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Intersection of CFLs

• Let (n, ((a1,b1,c1,d1) , … ,(ak,bk,ck,dk) ) be some factor replacement 
system with residues.  Define grammars G1 and G2 by using the 4k+2 rules

G : Fi → 1aiFi1
ci |  1ai+bi#1ci+di 1 ≤ i ≤ k

S1 → # Fi S1 |  # Fi # 1 ≤ i ≤ k

S2 → # 1x0S11
z0# Z0 is 0 for us

G1 starts with S1 and G2 with S2

• Thus, using the notation of writing Y in place of 1Y, 

L1 =  L( G1 ) = { #Y0 # Y1 # Y2 # Y3 # … # Y2j # Y2j+1 # }

where Y2i  Y2i+1 , 0 ≤ i ≤ j.  

This checks the even/odd steps of an even length computation.

But, L2 =  L( G2 ) = { #X0 # X1 # X2 # X3 # X4 # … # X2k-1 # X2k# Z0 # }

where X2i-1  X2i , 1 ≤ i ≤ k.  

This checks the odd/even steps of an even length computation.

• Given that the intersection of two CFLs is at worst a CSL, we now have an 
indirect way of showing that the valid terminating traces are a CSL.
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Intersection Continued

Now, X0 is chosen as some selected input value to the 
Factor System with Residues, and Z0 is the unique value 
(0 in our case) on which the machine halts.  But,

L1  L2  = {#X0 # X1 # X2 # X3 # X4 # … # X2k-1 # X2k# Z0 # }

where Xi  Xi+1 , 0 ≤ i < 2k, and X2k  Z0 .  This checks 
all steps of an even length computation.  But our original 
system halts if and only if it produces 0 (Z0) in an even 
(also odd) number of steps.  Thus the intersection is 
non-empty just in case the Factor System with residue 
eventually produces 0 when started on X0, just in case 
the Register Machine halts when started on the register 
contents encoded by X0.
This is an independent proof of the undecidability of the 
non-empty intersection problem for CFGs and the non-
emptiness problem for CSGs.
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What’s a CSL or CFL?

• Given an FRS with Residue
– The set of valid traces is Context Sensitive

(can prove by fact that intersection of two CFLs is a CSG or by 
direct construction or by describing an LBA that accepts this 
language)

– The set of valid traces is not Context Free
(can use Pumping Lemma for this like earlier) 

– The complement of the valid traces is Context Free; that is, the 
set of invalid traces of M is Context Free (just one mistake 
required)

– The set of valid terminating traces is Context Sensitive but not 
Context Free (same as above)

– The complement of the valid terminating traces is Context Free; 
again, this requires just one mistake



Quotients of CFLs (concept)

Let L1 =  L( G1 ) = { $ # Y0 # Y1 # Y2 # Y3 # … # Y2j # Y2j+1 # }

where Y2i  Y2i+1 , 0 ≤ i ≤ j.  

This checks the even/odd steps of an even length computation.

Now, let L2=L( G2 )={X0 $ # X0 # X1 # X2 # X3 # X4 # … # X2k-1 # X2k# Z0 #}

where X2i-1  X2i , 1 ≤ i ≤ k and Z0 is a unique halting configuration.

This checks the odd/steps of an even length computation and includes 
an extra copy of the starting number prior to its $.

Now, consider the quotient of L2 / L1 .  The only way a member of L1 
can match a final substring in L2 is to line up the $ signs.  But then 
they serve to check out the validity and termination of the 
computation.  Moreover, the quotient leaves only the starting point 
(the one on which the machine halts.)  Thus,

L2 / L1  = { X0 | the system being traced halts}. 

Since deciding the members of an re set is in general undecidable, we 
have shown that membership in the quotient of two CFLs is also 
undecidable. 
Note: Intersection of two CFLs is a CSL but quotient of two CFLs is an
re set and, in fact, all re sets can be specified by such quotients.
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Quotients of CFLs (precise)

• Let (n, ((a1,b1,c1,d1) , … ,(ak,bk,ck,dk) ) be some factor replacement system with 
residues.  Define grammars G1 and G2 by using the 4k+4 rules

G : Fi → 1aiFi1
ci |  1ai+bi#1ci+di 1 ≤ i ≤ k

T1 → # Fi T1 |  # Fi # 1 ≤ i ≤ k

A → 1 A 1 | $ #

S1 → $T1

S2 → A T1 # 1z0 # Z0 is 0 for us

G1 starts with S1 and G2 with S2

• Thus, using the notation of writing Y in place of 1Y, 

L1 =  L( G1 ) = { $ #Y0 # Y1 # Y2 # Y3 # … # Y2j # Y2j+1 # }

where Y2i  Y2i+1 , 0 ≤ i ≤ j.  

This checks the even/odd steps of an even length computation.

But, L2 =  L( G2 ) = { X $ #X0 # X1 # X2 # X3 # X4 # … # X2k-1 # X2k# Z0 # }

where X2i-1  X2i , 1 ≤ i ≤ k and X = X0

This checks the odd/steps of an even length computation, and includes 

an extra copy of the starting number prior to its $.  
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Summarizing Quotient

Now, consider the quotient L2 / L1 where L1
and L2 are the CFLs on prior slide.  The only 
way a member of L1 can match a final substring 
in L2 is to line up the $ signs.  But then they 
serve to check out the validity and termination of 
the computation.  Moreover, the quotient leaves 
only the starting number (the one on which the 
machine halts.)  Thus,

L2 / L1  = { X | the system F halts on zero }. 

Since deciding the members of an re set is in 
general undecidable, we have shown that 
membership in the quotient of two CFLs is also 
undecidable.

2/20/2020 © UCF CS



280

Traces and Type 0 

• Here, it is easier to show a simulation of a Turing machine than of an FRS.  

• Assume we are given some machine M, with Turing table T (using Post notation). We 
assume a tape alphabet of  that includes a blank symbol B.

• Consider a starting configuration C0. Our rules will be
S → # C0 # where C0 = αq0aβ is initial ID

q a → s b if q a b s  T

b q a x → b a s x if q a R s  T, a,b,x  

b q a # → b a s B # if q a R s  T, a,b  

# q a x → # a s x if q a R s  T, a,x  , a≠B

# q a # → # a s B # if q a R s  T, a  , a≠B

# q a x → # s x # if q a R s  T, x  , a=B

# q a # → # s B # if q a R s  T, a=B

b q a x → s b a x if q a L s  T, a,b,x  

# q a x → # s B a x if q a L s  T, a,x  

b q a # → s b a # if q a L s  T, a,b  , a≠B

# q a # → # s B a # if q a L s  T, a  , a≠B

b q a # → s b # if q a L s  T, b  , a=B

# q a # → # s B # if q a L s  T, a=B

f → l if f is a final state

# → l just cleaning up the dirty linen 
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CSG and Undecidability

• We can almost do anything with a CSG that can be done with a Type 0 
grammar.  The only thing lacking is the ability to reduce lengths, but we can 
throw in a character that we think of as meaning “deleted”.  Let’s use the 
letter d as a deleted character and use the letter e to mark both ends of a 
word.

• Let G = ( V, T, P , S) be an arbitrary Type 0 grammar.

• Define the CSG G’ = (V  {S’, D}, T  {d, e}, S’, P’), where P’ is
S’ → e S e

D x → x D when x  V  T

D e → e d push the delete characters to far right

a → b where a → b  P and |a| ≤ |b|

a → bDk where a → b  P and |a| - |b| = k > 0

• Clearly, L(G’) = { e w e dm | w  L(G) and m≥0 is some integer }

• For each w  L(G), we cannot, in general, determine for which values of m, 
e w e dm  L(G’).  We would need to ask a potentially infinite number of 
questions of the form 
“does e w e dm  L(G’)” for some m≥0 to determine if w  L(G).  
That’s a semi-decision procedure because m can be unbounded above.
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Some Consequences

• CSGs are not closed under Init, Final, Mid, quotient with 

regular sets, substitution and homomorphism (okay for 

l-free homomorphism and non-length reducing 

substitutions)

• We also have that the emptiness problem is undecidable 

from this result.  That gives us two proofs of this one 

result.

• For Type 0, emptiness and even the membership 

problems are undecidable.
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Undecidability

• Is L =, for CSL, L? PCP reduction

• Is L=*, for CFL (CSL), L? Trace Complement

• Is L1=L2 for CFLs (CSLs), L1, L2? L1 = *

• Is L1L2 for CFLs (CSLs ), L1, L2? L1 = *

• Is L1L2= for CFLs (CSLs ), L1, L2? PCP reduction

• Is L regular, for CFL (CSL), L? Think about it

• Is L1L2 a CFL for CFLs, L1, L2? Think about it

• Is ~L CFL, for CFL, L? Think about it
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More Undecidability

• Is CFL, L, ambiguous? PCP

• Is L=L2, L a CFL? Will Do

• Is L1/L2 finite, L1 and L2 CFLs?

Language is any RE set

• Membership in L1/L2, L1 and L2 CFLs?

Language is any RE set
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Decidability

• Everything about regular

• Membership in CFLs and CSLs

– CKY for CFLs

• Emptiness for CFLs
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Undecidability

• Is L =, for CSL, L?

• Is L=*, for CFL (CSL), L?

• Is L1=L2 for CFLs (CSLs), L1, L2?

• Is L1L2 for CFLs (CSLs ), L1, L2?

• Is L1L2= for CFLs (CSLs ), L1, L2?
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More Undecidability

• Is CFL, L, ambiguous?

• Is L=L2, L a CFL?

• Does there exist a finite n, Ln=LN+1?

• Is L1/L2 finite, L1 and L2 CFLs?

• Membership in L1/L2, where L1 and L2 are  

CFLs?
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Word to Grammar Problem

• Recast semi-Thue system making all 
symbols non-terminal, adding S and V to 
non-terminals and terminal set ={a}

G: S → h1xq10h

hq0h → V

V → aV

V → l

• xL(M) iff L(G) ≠ Ø iff L(G) infinite 
iff l  L(G) iff a  L(G) iff L(G) = *
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Consequences for PSG

• Unsolvables
– L(G) = Ø

– L(G) = *

– L(G) infinite

– w  L(G), for arbitrary w

– L(G)  L(G2)

– L(G) = L(G2)

• Latter two results follow when have

– G2: S → aS | l a
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Finite Convergence for 

Concatenation of Context-Free 

Languages

Relation to Real-Time 

(Constant Time) Execution



Powers of CFLs

Let G be a context free grammar.

Consider L(G)n

Question1: Is L(G) = L(G)2?

Question2: Is L(G)n = L(G)n+1, for some 
finite n>0?

These questions are both undecidable.

Think about why question1 is as hard as 
whether or not L(G) is *. 

Question2 requires much more thought.
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L(G) = L(G)2?

• The problem to determine if L = * is Turing 

reducible to the problem to decide if 

L • L  L, so long as L is selected from a 

class of languages C over the alphabet  for 

which we can decide if   {l}  L. 

• Corollary 1: 

The problem “is L • L = L, for L context free 

or context sensitive?” is undecidable 
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L(G) = L(G)2? is undecidable

• Question: Does L • L get us anything new?

– i.e., Is L • L = L?

• Membership in a CFL is decidable.

• Claim is that L = * iff

(1)   {l}  L ; and

(2) L • L = L 

• Clearly, if L = * then (1) and (2) trivially hold.

• Conversely, we have *  L*=  n0 Ln  L

– first inclusion follows from (1); second 
from (2)
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Finite Power Problem

• The problem to determine, for an arbitrary 
context free language L, if there exist a finite 
n such that Ln = Ln+1 is undecidable.

• L1 = { C1# C2
R $ | 

C1, C2 are configurations },

• L2 = { C1#C2
R$C3#C4

R … $C2k-1#C2k
R$ | where 

k  1 and, for some i, 1  i < 2k, Ci M Ci+1 is 

false },

• L = L1  L2  {l}.
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Undecidability of n Ln = Ln+1

• L is context free. 

• Any product of L1 and L2, which contains L2 at least 
once, is L2. For instance, L1 • L2 = L2 • L1 = L2 • L2 = 
L2.  

• This shows that (L1  L2)
n = L1

n  L2. 

• Thus, Ln = {l}  L1  L1
2 …   L1

n  L2. 

• Analyzing L1 and L2 we see that L1
n  L2  L2 just in 

case there is a word C1 # C2
R $ C3 # C4

R … $ C2n-1 # 
C2n

R $ in L1
n that is not also in L2. 

• But then there is some valid trace of length 2n. 

• L has the finite power property iff M executes in 
constant time.
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Missing Step

• We have that CT (Constant-Time) is many-one 

reducible to Finite Power Problem (FPC) for 

CFLs

• This means that if CT is unsolvable, so is FPC

for CFLs.

• However, we still lack a proof that CT is 

unsolvable. I am keeping that open as one of the 

problems that you folks can attack in your 

presentation. It takes two papers to get here. I’ll 

document that.
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Simple Operators

• Concatenation

– A • B = { xy | x  A & y  B }

• Insertion

– A  B = { xyz |  y  A, xz  B, x, y, z  *}

– Clearly, since x can be l, A • B  A  B
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K-insertion 

• A  [ k ] B = { x1y1x2y2 … xkykxk+1 |  

y1y2 … yk  A, 

x1x2 … xkxk+1  B, 

xi, yj  *}

• Clearly, A • B  A  [ k ] B , for all k>0
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Iterated Insertion

• A (1) [ n ] B = A [ n ] B

• A (k+1) [ n ] B = A [ n ] (A (k) [ n ] B)
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Shuffle

• Shuffle (product and bounded product)

– A  B =  j  1 A [ j ] B 

– A [ k ] B =  1jk A [ j ] B = A [ k ] B 

• One is tempted to define shuffle product as 

A  B = A [ k ] B where 

k = m y [ A [ j ] B = A [ j+1] B ]

but such a k may not exist – in fact, we will show 

the undecidability of determining whether or not 

k exists
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More Shuffles

• Iterated shuffle

– A 0 B = A

– A k +1 B = (A [ k ] B)  B 

• Shuffle closure

– A * B =  k  0 (A [ k ] B)
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Crossover

• Unconstrained crossover is defined by 

A u B = { wz, yx | wxA and yzB}

• Constrained crossover is defined by

A c B = { wz, yx | wxA and yzB, 

|w| = |y|, |x| = |z| }
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Who Cares?

• People with no real life (me?)

• Insertion and a related deletion operation are 

used in biomolecular computing and 

dynamical systems

• Shuffle is used in analyzing concurrency as 

the arbitrary interleaving of parallel events

• Crossover is used in genetic algorithms
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Some Known Results

• Regular languages, A and B

– A • B is regular

– A  [ k ] B is regular, for all k>0

– A  B is regular

– A * B is not necessarily regular 

• Deciding whether or not A * B is regular is an 

open problem
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More Known Stuff

• CFLs, A and B

– A • B is a CFL

– A  B is a CFL

– A  [ k ] B is not necessarily a CFL, for k>1

• Consider A=anbn; B = cmdm and k=2

• Trick is to consider (A  [ 2 ] B)  a*c*b*d*

– A  B is not necessarily a CFL

– A * B is not necessarily a CFL 

• Deciding whether or not A * B is a CFL is an open problem
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Immediate Convergence

• L = L2 ?

• L = L L ?

• L = L  L ?

• L = L * L ?

• L = L c L ?

• L = L u L ?
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Finite Convergence

• k>0 Lk = Lk+1

• k0 L (k)  L = L (k+1)  L 

• k0 L [ k ] L = L [ k+1 ] L

• k0 L k  L = L k +1 L

• k0 L (k) c L = L (k+1) c L 

• k0 L (k) u L = L (k+1) u L 

• k0 A (k)  B = A (k+1)  B

• k0 A [ k ] B = A [ k+1 ] B 

• k0 A k  B = A k +1 B

• k0 A (k) c B = A (k+1) c B 

• k0 A (k) u B = A (k+1) u L 
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Finite Power of CFG

• Let G be a context free grammar.

• Consider L(G)n

• Question1: Is L(G) = L(G)2?

• Question2: Is L(G)n = L(G)n+1, for some finite 
n>0?

• These questions are both undecidable.

• Think about why question1 is as hard as 
whether or not L(G) is *. 

• Question2 requires much more thought.
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1981 Results

• Theorem 1:

The problem to determine if L = * is Turing 

reducible to the problem to decide if 

L • L  L, so long as L is selected from a class 

of languages C over the alphabet  for which we 

can decide if   {l}  L. 

• Corollary 1: 

The problem “is L • L = L, for L context free or 

context sensitive?” is undecidable 
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Proof #1

• Question: Does L • L get us anything new?
– i.e., Is L • L = L?

• Membership in a CSL is decidable.

• Claim is that L = * iff  
(1)   {l}  L ; and

(2) L • L = L 

• Clearly, if L = * then (1) and (2) trivially hold.

• Conversely, we have *  L*=  n0 Ln  L
– first inclusion follows from (1); second from (2)  
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Subsuming •

• Let  be any operation that subsumes 

concatenation, that is A • B  A  B. 

• Simple insertion is such an operation, 

since A • B  A  B. 

• Unconstrained crossover also subsumes 

•, 

A c B = { wz, yx | wxA and yzB}
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L = L  L ?

• Theorem 2: 

The problem to determine if L = * is 

Turing reducible to the problem to decide if 

L  L  L, so long as 

L • L  L  L and L is selected from a 

class of languages C over  for which we 

can decide if 

  {l}  L. 
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Proof #2

• Question: Does L  L get us anything new?
– i.e., Is L  L = L?

• Membership in a CSL is decidable.

• Claim is that L = * iff  
(1)   {l}  L ; and

(2) L  L = L 

• Clearly, if L = * then (1) and (2) trivially hold.

• Conversely, we have *  L*=  n0 Ln  L
– first inclusion follows from (1); second from (1), (2) 

and the fact that L • L  L  L 
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Axiomatizable Fragments
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Propositional Calculus

• Mathematical of unquantified logical 

expressions

• Essentially Boolean algebra

• Goal is to reason about propositions

• Often interested in determining

– Is a well-formed formula (wff) a tautology?

– Is a wff refutable (unsatisfiable)?

– Is a wff satisfiable? (classic NP-complete)
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Tautology and Satisfiability

• The classic approaches are:

– Truth Table

– Axiomatic System (axioms and inferences)

• Truth Table

– Clearly exponential in number of variables

• Axiomatic Systems Rules of Inference

– Substitution and Modus Ponens

– Resolution / Unification
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Proving Consequences

• Start with a set of axioms (all tautologies)

• Using substitution and MP 
(P, P Q  Q)
derive consequences of axioms (also 
tautologies, but just a fragment of all)

• Can create complete sets of axioms

• Need 3 variables for associativity, e.g., 
(p1  p2)  p3    p1  (p2  p3)
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Some Undecidables

• Given a set of axioms,

– Is this set complete?

– Given a tautology T, is T a consequent?

• The above are even undecidable with one 

axiom and with only 2 variables. I will 

show this result shortly.
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Refutation

• If we wish to prove that some wff, F, is a 

tautology, we could negate it and try to 

prove that the new formula is refutable 

(cannot be satisfied; contains a logical 

contradiction).

• This is often done using resolution.
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Resolution

• Put formula in Conjunctive Normal Form 
(CNF)

• If have terms of conjunction
(P  Q), (R   ~Q)
then can determine that (P  R)

• If we ever get a null conclusion, we have 
refuted the proposition

• Resolution is not complete for derivation, 
but it is for refutation
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Axioms

• Must be tautologies

• Can be incomplete

• Might have limitations on them and on 

WFFs, e.g.,

– Just implication

– Only n variables

– Single axiom
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Simulating Machines

• Linear representations require 

associativity, unless all operations can be 

performed on prefix only (or suffix only)

• Prefix and suffix-based operations are 

single stacks and limit us to CFLs

• Can simulate Post normal Forms with just 

3 variables.
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Diadic PIPC

• Diadic limits us to two variables

• PIPC means Partial Implicational 

Propositional Calculus, and limits us to 

implication as only connective

• Partial just means we get a fragment

• Problems

– Is fragment complete?

– Can F be derived by substitution and MP?



2/20/2020 © UCF CS 326

Living without Associativity

• Consider a two-stack model of a TM

• Could somehow use one variable for left 

stack and other for right

• Must find a way to encode a sequence as 

a composition of forms – that’s the key to 

this simulation
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Composition Encoding

• Consider (p  p), (p  (p  p) ), 

(p  (p  (p  p) ) ), …

– No form is a substitution instance of any of the 

other, so they can’t be confused

– All are tautologies

• Consider ((X  Y)  Y)

– This is just X  Y
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Encoding

• Use (p  p) as form of bottom of stack

• Use (p  (p  p)) as form for letter 0

• Use (p  (p  (p  p))) as form for 1

• Etc.

• String 01 (reading top to bottom of stack) is

– (   ( (p  p)  ( (p  p)  ( (p  p)  (p  p) ) ) ) 

( ( (p  p)  ( (p  p)  ( (p  p)  (p  p) ) ) ) 

( (p  p)  ( (p  p)  ( (p  p)  (p  p) ) ) ) ) )



Encoding

(p) abbreviates [p  p]

0(p) is [p  (p)] which is [p  [p  p]]

1(p) is [p  0(p)]

1(p) is [p  1(p)]

2(p) is [p  1 (p)]

3(p) is [p  2 (p)]

1(p) is [p  3 (p)]

2(p) is [p  1 (p)]

…

m(p) is [p  m-1 (p)]
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Creating Terminal IDs



2/20/2020 © UCF CS 331

Reversing Print and Left
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Reversing Right 
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Sample Question

Let A and B be re sets. For each of the following, either 
prove that the set is re, or give a counterexample that 
results in some known non-re set.

Let A be semi decided by fA and B by fB

a) A  B: must be re as it is semi-decided by

fA  B (x) = t [stp(fA, x, t) || stp(fB, x, t) ]

b) A  B: must be re as it is semi-decided by

fA  B (x) = t [stp(fA, x, t) && stp(fB, x, t) ]

c) ~A: can be non-re. If ~A is always re, then all re 
are recursive as any set that is re and whose 
complement is re is decidable. However, A = K 
is a non-rec, re set and so ~A is not re.
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Sample Question

Given that the predicate STP and the 

function VALUE are prf’s, show that we can 

semi-decide 

{ f | f evaluates to 0 for some input}

This can be shown re by the predicate

{f | <x,t> [stp(f,x,t) && value(f,x,t) = 0] } 
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Sample Question

Let S be an re (recursively enumerable), non-recursive 
set, and T be re, non-empty, possibly recursive set. 
Let E = { z | z = x + y, where x  S and y  T }. 

(a) Can E be non re? No as we can let S and T 
be semi-decided by fS and fT, resp., E is then 
semi-dec. by
fE (z) = <x,y,t> [stp(fS, x, t) && stp(fT, y, t) && 
(z = value(fS, x, t) + value(fT, y, t)) ]

(b) Can E be re non-recursive? Yes, just let T = 
{0}, then E = S which is known to be re, non-
rec.
(c) Can E be recursive? Yes, let T = , then 
E = { x | x ≥ min (S) } which is a co-finite set 
and hence rec.
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Sample Question

Assuming TOTAL is undecidable, use 

reduction to show the undecidability of 

Incr = { f | x f (x+1) > f (x) }

Let f be arb.

Define Gf (x) = f (x) - f (x) + x

f  TOTAL iff xf (x) iff x Gf(x) iff

x f (x) - f (x) + x = x iff Gf  Incr
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Sample Question

Let Incr = { f | x, f(x+1)>f(x) }. 

Let TOTAL = { f | x, f(x) }.

Prove that Incr ≤m TOTAL. 

Let f be arb.

Define Gf (x) = t[stp(f,x,t) && 

stp(f,x+1,t) && (value(f,x+1,t) > 

value(f,x,t))]

f  Incr iff x f(x+1)>f(x) iff

x Gf (x) iff Gf  TOT
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Sample Question

Let Incr = { f | x f(x+1)>f(x) }. 

Use Rice’s theorem to show Incr is not 

recursive.

Non-Trivial as

C0(x)=0  Incr; S(x)=x+1  Incr

Let f,g be arb. Such that x f(x)=g(x) 

f  Incr iff x f(x+1)>f(x) iff

x g(x+1)>g(x)  iff g  Incr
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Sample Question

Let S be a recursive (decidable set), what 

can we say about the complexity (recursive, 

re non-recursive, non-re) of T, where T  S?

Nothing. Just let S = , then T could be 

any subset of . There are an 

uncountable number of such subsets 

and some are clearly in each of the 

categories above.
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Sample Question

Let P = { f |  x [ STP(f, x, x) ] }. Why does 

Rice’s theorem not tell us anything about the 

undecidability of P?

This is not an I/O property as we can 

have implementations of C0 that are 

efficient and satisfy P and others that 

do not. 
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