
Complexity Theory

Computability
Charles E. Hughes

COT6410 – Spring 2020 Notes

Computability

The study of models of

computation and what can/cannot

be done via purely mechanical

means

2/20/2020 UCF @ CS 3

Goals of Computability

• Provide precise characterizations (computational
models) of the class of effective procedures / algorithms.

• Study the boundaries between complete and incomplete
models of computation.

• Study the properties of classes of solvable and
unsolvable problems.

• Solve or prove unsolvable open problems.

• Determine reducibility and equivalence relations among
unsolvable problems.

• Our added goal is to apply these techniques and results
across multiple areas of Computer Science.

3

2/20/2020 UCF @ CS 4

More Procedure Properties

• Useful Notations

– f(x)↓ means procedure f

converges/halts/produces an output, when

evaluated at x.

– f(x)↑ means procedure f diverges, when

evaluated at x.

– f is an algorithm iff ∀x f(x)↓

4

2/20/2020 UCF @ CS 5

Sets and Decision Problems

• Set -- A collection of atoms from some

universe U. Ø denotes the empty set.

• (Decision) Problem -- A set of questions

about elements of some universe. Each

question has answer “yes” or “no”. The

elements having answer “yes” constitute a

set that is a subset of the corresponding

universe. Those having answer “no”

constitute the complement of the “yes” set.
5

2/20/2020 UCF @ CS 6

Categorizing Problems (Sets)

• Solvable or Decidable -- A problem P is said to be

solvable (decidable) if there exists an algorithm F

which, when applied to a question q in P, produces

the correct answer (“yes” or “no”). This is an

inherent property of P.

• Solved -- A problem P is said to solved if P is

solvable and we have produced its solution. This is

a temporal property in that P may have been

unsolved for many years before being solved.

• Unsolved, Unsolvable (Undecidable) --

Complements of above
6

2/20/2020 UCF @ CS 7

Categorizing Problems (Sets) # 2

• Recursively enumerable -- A set S is recursively
enumerable (re) if S is empty (S = Ø) or there exists an
algorithm F, over the natural numbers N, whose range is
exactly S. A problem is said to be re if the set
associated with it is re.

• Semi-Decidable -- A problem is said to be semi-
decidable if there is an effective procedure F which,
when applied to a question q in P, produces the answer
“yes” if and only if q has answer “yes”. F need not halt
if q has answer “no”.

• Semi-decidable is the same as the notion of
recognizable used in the text.

7

2/20/2020 UCF @ CS 8

Immediate Implications

• P solved implies P solvable implies P

semi-decidable (re, recognizable).

• P non-re implies P unsolvable implies P

unsolved.

• P finite implies P solvable.

8

Slightly Harder Implications

• P enumerable iff P semi-decidable.

• P solvable iff both SP and (U - SP) are re

(semi-decidable).

• We will prove these later.

2/20/2020 UCF @ CS 9

2/20/2020 UCF @ CS 10

Existence of Undecidables

• A counting argument
– The number of mappings from N to N is at least as

great as the number of subsets of N. But the number
of subsets of N is uncountably infinite (1). However,
the number of programs in any model of computation
is countably infinite (0). This latter statement is a
consequence of the fact that the descriptions must be
finite and they must be written in a language with a
finite alphabet. In fact, not only is the number of
programs countable, it is also effectively enumerable;
moreover, its membership is decidable.

• A diagonalization argument
– Will be shown later in class

10

Hilbert’s Tenth

Diophantine Equations are

Unsolvable

One Variable Diophantine

Equations are Solvable

2/20/2020 UCF @ CS 12

Hilbert’s 10th

• In 1900 declared there were 23 really important
problems in mathematics.

• Belief was that the solutions to these would help
address math’s complexity.

• Hilbert’s Tenth asks for an algorithm to find the
integral roots of polynomials with integral
coefficients. For example
6x3yz2 + 3xy2 – x3 – 10 = 0 has roots
x = 5; y = 3; z = 0

• This is now known to be impossible to solve (In
1970, Matiyacevič showed this undecidable).

12

2/20/2020 UCF @ CS 13

Hilbert’s 10th is Semi-Decidable

• Consider over one variable: P(x) = 0

• Can semi-decide by plugging in

0, 1, -1, 2, -2, 3, -3, …

• This terminates and says “yes” if P(x)

evaluates to 0, eventually. Unfortunately, it

never terminates if there is no x such that

P(x) =0.

• Can easily extend to P(x1,x2,..,xk) = 0.

13

2/20/2020 14

P(x) = 0 is Decidable

• cn xn + cn-1 xn-1 +… + c1 x + c0 = 0

• xn = -(cn-1 xn-1 + … + c1 x + c0)/cn

• |xn|  cmax(|x
n-1| + … + |x| + 1|)/|cn|

• |xn|  cmax(n |xn-1|)/|cn|, since |x|1

• |x|  ncmax/|cn|

14© UCF CS

2/20/2020 15

P(x) = 0 is Decidable

• Can bound the search to values of x in range [±
n * (cmax / cn)], where
n = highest order exponent in polynomial
cmax = largest absolute value coefficient
cn = coefficient of highest order term

• Once we have a search bound and we are
dealing with a countable set, we have an
algorithm to decide if there is an x.

• Cannot find bound when more than one
variable, so cannot extend to P(x1,x2,..,xk) = 0.

15© UCF CS

Undecidability

We Can’t Do It All

Classic Unsolvable Problem

Given an arbitrary program P, in some language L, and

an input x to P, will P eventually stop when run with input

x?

The above problem is called the “Halting Problem.” It is

clearly an important and practical one – wouldn't it be

nice to not be embarrassed by having your program run

“forever” when you try to do a demo?

Unfortunately, there’s a fly in the ointment as one can

prove that no algorithm can be written in L that solves

the halting problem for L.

2/20/2020 17© UCF CS

Some terminology

We will say that a procedure, f, converges on input x if it eventually

halts when it receives x as input. We denote this as f(x).

We will say that a procedure, f, diverges on input x if it never halts

when it receives x as input. We denote this as f(x).

Of course, if f(x) then f defines a value for x. In fact we also say

that f(x) is defined if f(x) and undefined if f(x).

Finally, we define the domain of f as {x | f(x)}.

The range of f is {y | f(x) and f(x) = y }.

2/20/2020 18© UCF CS

2/20/2020 © UCF CS 19

Halting Problem

Assume we can decide the halting problem. Then there exists some total
function Halt such that

1 if x (y) 

Halt(x,y) =

0 if x (y) 

Here, we have numbered all programs and x refers to the x-th program in
this ordering. Now we can view Halt as a mapping from  into  by
treating its input as a single number representing the pairing of two numbers
via the one-one onto function

pair(x,y) = <x,y> = 2x (2y + 1) – 1

with inverses

<z>1 = log2(z+1)

<z>2 = (((z + 1) // 2 <z>1) – 1) // 2

2/20/2020 © UCF CS 20

The Contradiction

Now if Halt exist, then so does Disagree, where
0 if Halt(x,x) = 0, i.e, if x (x) 

Disagree(x) =

my (y == y+1) if Halt(x,x) = 1, i.e, if x (x) 

Since Disagree is a program from  into  , Disagree can be
reasoned about by Halt. Let d be such that Disagree = d, then

Disagree(d) is defined  Halt(d,d) = 0
 d (d) 

 Disagree(d) is undefined

But this means that Disagree contradicts its own existence. Since
every step we took was constructive, except for the original
assumption, we must presume that the original assumption was in
error. Thus, the Halting Problem is not solvable.

Halting is recognizable

While the Halting Problem is not solvable, it is re, recognizable or
semi-decidable.

To see this, consider the following semi-decision procedure. Let P
be an arbitrary procedure and let x be an arbitrary natural number.
Run the procedure P on input x until it stops. If it stops, say “yes.” If
P does not stop, we will provide no answer. This semi-decides the
Halting Problem. Here is a procedural description.

Semi_Decide_Halting() {

Read P, x;

P(x);

Print “yes”;

}

2/20/2020 21© UCF CS

Why not just algorithms?

A question that might come to mind is why we could not just have a
model of computation that involves only programs that halt for all
input. Assume you have such a model – our claim is that this model
must be incomplete!

Here’s the logic. Any programming language needs to have an
associated grammar that can be used to generate all legitimate
programs. By ordering the rules of the grammar in a way that
generates programs in some lexical or syntactic order, we have a
means to recursively enumerate the set of all programs. Thus, the
set of procedures (programs) is re. using this fact, we will employ
the notation that x is the x-th procedure and x(y) is the x-th
procedure with input y. We also refer to x as the procedure’s index.

2/20/2020 22© UCF CS

The universal machine

First, we can all agree that any complete model of
computation must be able to simulate programs in its
own language. We refer to such a simulator (interpreter)
as the Universal machine, denote Univ. This program
gets two inputs. The first is a description of the program
to be simulated and the second of the input to that
program. Since the set of programs in a model is re, we
will assume both arguments are natural numbers; the
first being the index of the program. Thus,

Univ(x,y) = x(y)

2/20/2020 23© UCF CS

2/20/2020 © UCF CS 24

Non-re Problems

• There are even “practical” problems that are worse than
unsolvable -- they’re not even semi-decidable.

• The classic non-re problem is the Uniform Halting
Problem, that is, the problem to decide of an arbitrary
effective procedure P, whether or not P is an algorithm.

• Assume that the algorithms can be enumerated, and that
F accomplishes this. Then

F(x) = Fx

where F0, F1, F2, … is a list of indexes of all and only the
algorithms

2/20/2020 © UCF CS 25

The Contradiction

• Define G(x) = Univ (F(x) , x) + 1 = F(x)(x) = Fx(x) + 1

• But then G is itself an algorithm. Assume it is the g-th one

F(g) = Fg = G

Then, G(g) = Fg(g) + 1 = G(g) + 1

• But then G contradicts its own existence since G would need to be
an algorithm.

• This cannot be used to show that the effective procedures are non-
enumerable, since the above is not a contradiction when G(g) is
undefined. In fact, we already have shown how to enumerate the
(partial) recursive functions.

Consequences

• To capture all the algorithms, any model of computation
must include some procedures that are not algorithms.

• Since the potential for non-termination is required, every
complete model must have some for form of iteration
that is potentially unbounded.

• This means that simple, well-behaved for-loops (the kind
where you can predict the number of iterations on entry
to the loop) are not sufficient. While type loops are
needed, even if implicit rather than explicit.

2/20/2020 26© UCF CS

Insights

Non-re nature of algorithms

• No generative system (e.g., grammar) can produce

descriptions of all and only algorithms

• No parsing system (even one that rejects by

divergence) can accept all and only algorithms

• Of course, if you buy Church’s Theorem, the set of all

procedures can be generated. In fact, we can build an

algorithmic acceptor of such programs.

2/20/2020 28© UCF CS

Many unbounded ways

• How do you achieve divergence, i.e., what are the

various means of unbounded computation in each of

our models?

• GOTO: Turing Machines and Register Machines

• Minimization: Recursive Functions

– Why not just simple finite iteration or recursion?

• Fixed Point: Ordered Petri Nets,

(Ordered) Factor Replacement Systems

2/20/2020 29© UCF CS

Non-determinism

• It sometimes doesn’t matter

– Turing Machines, Finite State Automata,

Linear Bounded Automata

• It sometimes helps

– Push Down Automata

• It sometimes hinders

– Factor Replacement Systems, Petri Nets

2/20/2020 30© UCF CS

Models of Computation

Turing Machines

Register Machines
Factor Replacement Systems

Recursive Functions

Turing Machines

1st Model

A Linear Memory Machine

Typical Textbook Description

• A Turing machine is a 7-tuple

(Q, Σ, Γ, δ, q0, qaccept, qreject)

• Q is finite set of states

• Σ, is a finite input alphabet not containing the

blank symbol ⊔

• Γ is finite set of tape symbols that includes Σ and

⊔ commonly Γ = Σ ∪ {⊔}

• δ: Q×Γ➝ Q×Γ×{R,L}

• q0 starts, qaccept accepts, qreject rejects

2/20/2020 33© UCF CS

Turing versus Post

• The Turing description just given requires you to write a new symbol

and move off the current tape square

• Post had a variant where

δ: Q×Γ➝ Q×(Γ∪{R,L})

• Here, you either write or move, not both

• Also, Post did not have an accept or reject state – acceptance is

giving an answer of 1; rejection is 0; this treats decision procedures

as predicates (functions that map input into {0,1})

• The way we stop our machines from running is to omit actions for

some discriminants making the transition function partial

• I tend to use Post’s notation and to create macros so machines are

easy to create

• I am not a fan of having you build Turing tables

2/20/2020 34© UCF CS

Basic Description

• We will use a simplified form that is a variant of Post’s models.

• Here, each machine is represented by a finite set of states Q,
the simple alphabet {0,1}, where 0 is the blank symbol, and
each state transition is defined by a 4-tuple of form

q a X s

where q a is the discriminant based on current state q,
scanned symbol a; X can be one of {R, L, 0, 1}, signifying
move right, move left, print 0, or 1; and s is the new state.

• Limiting the alphabet to {0,1} is not really a limitation. We can
represent a k-letter alphabet by encoding the j-th letter via j
1’s in succession. A 0 ends each letter, and two 0’s ends a
word.

• We rarely write quads. Rather, we typically will build
machines from simple forms.

2/20/2020 35© UCF CS

Base Machines

• R -- move right over any scanned symbol

• L -- move left over any scanned symbol

• 0 -- write a 0 in current scanned square

• 1 -- write a 1 in current scanned square

• We can then string these machines together with
optionally labeled arc.

• A labeled arc signifies a transition from one part of the
composite machine to another, if the scanned square’s
content matches the label. Unlabeled arcs are
unconditional. We will put machines together without
arcs, when the arcs are unlabeled.

2/20/2020 36© UCF CS

Useful Composite Machines

R
1

2/20/2020 37

R -- move right to next 0 (not including current square)

…?11…10…  …?11…10…

L -- move left to next 0 (not including current square)

…011…1?…  …011…1?…
L

1

© UCF CS

Commentary on Machines

• These machines can be used to move
over encodings of letters or encodings of
unary based natural numbers.

• In fact, any effective computation can
easily be viewed as being over natural
numbers. We can get the negative
integers by pairing two natural numbers.
The first is the sign (0 for +, 1 for -). The
second is the magnitude.

2/20/2020 38© UCF CS

Computing with TMs

A reasonably standard definition of a Turing

computation of some n-ary function F is to

assume that the machine starts with a tape

containing the n inputs, x1, … , xn in the form

…01x101x20…01xn0…

and ends with

…01x101x20…01xn01y0…

where y = F(x1, … , xn).

2/20/2020 39© UCF CS

Addition by TM

Need the copy family of useful

submachines, where Ck copies k-th

preceding value.

The add machine is then

C2 C2 L 1 R L 0

2/20/2020 40

1

0

R L
k R

0 R

k
k+1

1 L
k+1

1

© UCF CS

Turing Machine Variations

• Two tracks

• N tracks

• Non-deterministic *********

• Two-dimensional

• K dimensional

• Two stack machines

• Two counter machines

2/20/2020 41© UCF CS

Register Machines

2nd Model

Feels Like Assembly Language

Register Machine Concepts

• A register machine consists of a finite length program,
each of whose instructions is chosen from a small
repertoire of simple commands.

• The instructions are labeled from 1 to m, where there are
m instructions. Termination occurs as a result of an
attempt to execute the m+1-st instruction.

• The storage medium of a register machine is a finite set
of registers, each capable of storing an arbitrary natural
number.

• Any given register machine has a finite, predetermined
number of registers, independent of its input.

2/20/2020 43© UCF CS

44

Computing by Register Machines

• A register machine partially computing some n-
ary function F typically starts with its argument
values in registers 1 to n and ends with the
result in the 0-th register.

• We extend this slightly to allow the computation
to start with values in its k+1-st through k+n-th
register, with the result appearing in the k-th
register, for any k, such that there are at least
k+n+1 registers.

2/20/2020 © UCF CS

45

Register Instructions

• Each instruction of a register machine is of
one of two forms:

INCr[i] –
increment r and jump to i.

DECr[p, z] –

if register r > 0, decrement r and jump to p

else jump to z

• Note, we do not use subscripts if obvious.

2/20/2020 © UCF CS

46

Addition by RM

Addition (r0  r1 + r2)

1. DEC0[1,2] : Zero result (r0) and work (r3) registers

2. DEC3[2,3]

3. DEC1[4,6] : Add r1 to r0, saving original r1 in r3

4. INC0[5]

5. INC3[3]

6. DEC3[7,8] : Restore r1

7. INC1[6]

8. DEC2[9,11] : Add r2 to r0, saving original r2 in r3

9. INC0[10]

10. INC3[8]

11.DEC3[12,13] : Restore r2

12. INC2[11]

13. : Halt by branching here

In many cases we just assume registers, other those with input, are zero
at start. That would remove the need for instructions 1 and 2.

2/20/2020 © UCF CS

UCF @ CS 47

Limited Subtraction by RM

Subtraction (r0  r1 - r2, if r1≥r2; 0, otherwise)

1. DEC0[1,2] : Zero result (r0) and work (r3) registers

2. DEC3[2,3]

3. DEC1[4,6] : Add r1 to r0, saving original r1 in r3

4. INC0[5]

5. INC3[3]

6. DEC3[7,8] : Restore r1

7. INC1[6]

8. DEC2[9,11] : Subtract r2 from r0, saving original r2 in r3

9. DEC0[10,10] : Note that decrementing 0 does nothing

10. INC3[8]

11.DEC3[12,13] : Restore r2

12. INC2[11]

13. : Halt by branching here

2/20/2020

Factor Replacement

Systems

3rd Model

Deceptively Simple

© UCF CS 49

Factor Replacement Concepts

• A factor replacement system (FRS) consists of a finite
(ordered) sequence of fractions, and some starting
natural number x.

• A fraction a/b is applicable to some natural number x,
just in case x is divisible by b. We always chose the first
applicable fraction (a/b), multiplying it times x to produce
a new natural number x*a/b. The process is then
applied to this new number.

• Termination occurs when no fraction is applicable.

• A factor replacement system partially computing n-ary
function F typically starts with its argument encoded as
powers of the first n odd primes. Thus, arguments
x1,x2,…,xn are encoded as 3x15x2…pn

xn. The result
then appears as the power of the prime 2.

2/20/2020

© UCF CS 50

Addition by FRS

Addition is 3x15x2 becomes 2x1+x2

or, in more details, 203x15x2 becomes 2x1+x2 3050

2 / 3

2 / 5

Note that these systems are sometimes presented as
rewriting rules of the form

bx → ax

meaning that a number that has can be factored as bx
can have the factor b replaced by an a.
The previous rules would then be written

3x → 2x

5x → 2x

2/20/2020

© UCF CS 51

Limited Subtraction by FRS

Subtraction is 3x15x2 becomes 2max(0,x1-x2)

35x → x

3x → 2x

5x → x

2/20/2020

© UCF CS 52

Ordering of Rules

• The ordering of rules are immaterial for the
addition example but are critical to the workings
of limited subtraction.

• In fact, if we ignore the order and just allow any
applicable rule to be used, we get a form of non-
determinism that makes these systems
equivalent to Petri nets.

• The ordered kind are deterministic and are
equivalent to a Petri net in which the transitions
are prioritized.

2/20/2020

© UCF CS 53

Why Deterministic?

To see why determinism makes a difference, consider

35x → x

3x → 2x

5x → x

Starting with 135 = 3351, deterministically we get

135  9  6  4 = 22

Non-deterministically we get a larger, less selective set.

135  9  6  4 = 22

135  90  60  40  8 = 23

135  45  3  2 = 21

135  45  15  1 = 20

135  45  15  5  1 = 20

135  45  15  3  2 = 21

135  45  9  6  4 = 22

135  90  60  40  8 = 23

…

This computes 2z where 0 ≤ z≤x1. Think about it.
2/20/2020

© UCF CS 54

More on Determinism

In general, we might get an infinite set

using non-determinism, whereas

determinism might produce a finite set. To

see this consider a system

2x → x

2x → 4x

starting with the number 2.

2/20/2020

Sample RM and FRS

Present a Register Machine that computes IsOdd. Assume R1=x at

starts; at termination, set R0=1 if x is odd; 0 otherwise. We

assume R0=0 at start. We also are not concerned about destroying

input.

1. DEC1[2, 4]

2. DEC1[1, 3]

3. INC0[4]

4.

Present a Factor Replacement System that computes IsOdd.

Assume starting number is 3^x; at termination, result is 2=2^1 if x

is odd; 1= 2^0 otherwise.

3*3 x → x

3 x → 2 x

2/20/2020 © UCF CS 55

Sample FRS

Present a Factor Replacement System that computes IsPowerOf2.

Assume starting number is 3x 5; at termination, result is 2=21 if x is

a power of 2; 1= 20 otherwise

32*5 x → 5*7 x

3*5*7 x → x

3*5 x → 2 x

5*7 x → 7*11 x

7*11 x → 3*11 x

11 x → 5 x

5 x → x

7 x → x

2/20/2020 © UCF CS 56

© UCF CS 57

Systems Related to FRS

• Petri Nets:
– Unordered

– Ordered

– Negated Arcs

• Vector Addition Systems:
– Unordered

– Ordered

• Factors with Residues:
– a x + c → b x + d

• Finitely Presented Abelian Semi-Groups

2/20/2020

© UCF CS 58

Petri Net Operation

• Finite number of places, each of which can hold zero of more

markers.

• Finite number of transitions, each of which has a finite number of

input and output arcs, starting and ending, respectively, at places.

• A transition is enabled if all the nodes on its input arcs have at least

as many markers as arcs leading from them to this transition.

• Progress is made whenever at least one transition is enabled.

Among all enabled, one is chosen randomly to fire.

• Firing a transition removes one marker per arc from the incoming

nodes and adds one marker per arc to the outgoing nodes.

2/20/2020

© UCF CS 59

Petri Net Computation

• A Petri Net starts with some finite number of markers distributed

throughout its n nodes.

• The state of the net is a vector of n natural numbers, with the i-th

component’s number indicating the contents of the i-th node. E.g.,

<0,1,4,0,6> could be the state of a Petri Net with 5 places, the 2nd,

3rd and 5th, having 1, 4, and 6 markers, resp., and the 1st and 4th

being empty.

• Computation progresses by selecting and firing enabled transitions.

Non-determinism is typical as many transitions can be

simultaneously enabled.

• Petri nets are often used to model coordination algorithms,

especially for computer networks.

2/20/2020

© UCF CS 60

Variants of Petri Nets

• A Petri Net is not computationally complete. In fact, its halting and
word problems are decidable. However, its containment problem
(are the markings of one net contained in those of another?) is not
decidable.

• A Petri net with prioritized transitions, such that the highest priority
transitions is fired when multiple are enabled is equivalent to an
FRS. (Think about it).

• A Petri Net with negated input arcs is one where any arc with a
slash through it contributes to enabling its associated transition only
if the node is empty. These are computationally complete. They can
simulate register machines. (Think about this also).

2/20/2020

© UCF CS 61

Petri Net Example

Marker

Place

Transition

Arc

… …

2/20/2020

© UCF CS 62

Vector Addition

• Start with a finite set of vectors in integer n-space.

• Start with a single point with non-negative integral

coefficients.

• Can apply a vector only if the resultant point has non-

negative coefficients.

• Choose randomly among acceptable vectors.

• This generates the set of reachable points.

• Vector addition systems are equivalent to Petri Nets.

• If order vectors, these are equivalent to FRS.

2/20/2020

© UCF CS 63

Vectors as Resource Models

• Each component of a point in n-space
represents the quantity of a particular
resource.

• The vectors represent processes that
consume and produce resources.

• The issues are safety (do we avoid bad
states) and liveness (do we attain a
desired state).

• Issues are deadlock, starvation, etc.

2/20/2020

© UCF CS 64

Factors with Residues

• Rules are of form

– ai x + ci → bi x + di

– There are n such rules

– Can apply if number is such that you get a residue

(remainder) ci when you divide by ai

– Take quotient x and produce a new number

bi x + di

– Can apply any applicable one (no order)

• These systems are equivalent to Register

Machines.

2/20/2020

© UCF CS 65

Abelian Semi-Group

S = (G, •) is a semi-group if

G is a set, • is a binary operator, and

1. Closure: If x,y  G then x • y  G

2. Associativity: x • (y • z) = (x • y) • z

S is a monoid if

3. Identity: e  G x  G [e • x = x • e = x]

S is a group if

4. Inverse: x  G x-1  G [x-1 • x = x • x-1 = e]

S is Abelian if • is commutative

2/20/2020

© UCF CS 66

Finitely Presented

• S = (G, •), a semi-group (monoid, group), is finitely

presented if there is a finite set of symbols, , called the

alphabet or generators, and a finite set of equalities

(ai = bi), the reflexive transitive closure of which

determines equivalence classes over G.

• Note, the set G is the closure of the generators under the

semi-group’s operator •.

• The problem of determining membership in equivalence

classes for finitely presented Abelian semi-groups is

equivalent to that of determining mutual derivability in an

unordered FRS or Vector Addition System with inverses

for each rule.
2/20/2020

Recursive Functions

Primitive and m-Recursive

Primitive Recursive

An Incomplete Model

© UCF CS 69

Basis of PRFs

• The primitive recursive functions are defined by
starting with some base set of functions and
then expanding this set via rules that create new
primitive recursive functions from old ones.

• The base functions are:

Ca(x1,…,xn) = a : constant functions

(x1,…,xn) = xi : identity functions

: aka projection

S(x) = x+1 : an increment function

 i
n

I

2/20/2020

© UCF CS 70

Building New Functions

• Composition:

If G, H1, … , Hk are already known to be primitive
recursive, then so is F, where

F(x1,…,xn) = G(H1(x1,…,xn), … , Hk(x1,…,xn))

• Iteration (aka primitive recursion):

If G, H are already known to be primitive recursive, then
so is F, where

F(0, x1,…,xn) = G(x1,…,xn)

F(y+1, x1,…,xn) = H(y, x1,…,xn, F(y, x1,…,xn))

We also allow definitions like the above, except iterating
on y as the last, rather than first argument.

2/20/2020

© UCF CS 71

Addition & Multiplication

Example: Addition

+(0,y) = (y)

+(x+1,y) = H(x,y,+(x,y))

where H(a,b,c) = S((a,b,c))

Example: Multiplication

*(0,y) = C0(y)

(x+1,y) = H(x,y,(x,y))

where H(a,b,c) = +((a,b,c), (a,b,c))

= b+c = y + *(x,y) = (x+1)*y
 2

3
I

 1
1

I

 3
3

I

 3
3

I

2/20/2020

UCF @ CS 72

Intuitive Composition

• Any time you have already shown some functions to be
primitive recursive, you can show others are by building
them up through composition

• Example#1: If g and h are primitive recursive functions
(prf) then so is f(x) = g(h(x)). As an explicit example
Add2(x) = S(S(x)) = x+2 is a prf

• Example#2: This can also involve multiple functions and
multiple arguments like, if g, h and j are prf’s then so is
f(x,y) = g(h(x), j(y))
The problem with giving an explicit example here is that
interesting compositions tend to also involve induction.

2/20/2020

UCF @ CS 73

Intuitive Inductions

• A function F can be defined inductively using existing
prf’s. Typically, we have one used for the basis and
another for building inductively.

• Example#1: We can build addition from successor (S)
x+0 = x (formally +(x,0) = I(x))
x+y+1 = S(x+y) (more formally +(x,y+1) = S(+(x,y))

• Example#2: We can build multiplication from addition
x*0 = 0 (formally *(x,0) = C0)
x*(y+1) = +(x,x*y)) (more formally *(x,y+1) = +(x,*(x,y)))

2/20/2020

© UCF CS 74

Basic Arithmetic

x + 1:

x + 1 = S(x)

x – 1:

0 - 1 = 0

(x+1) - 1 = x

x + y:

x + 0 = x

x+ (y+1) = (x+y) + 1

x – y: // limited subtraction

x – 0 = x

x – (y+1) = (x–y) – 1

2/20/2020

© UCF CS 75

2nd Grade Arithmetic

x * y:

x * 0 = 0

x * (y+1) = x*y + x

x!:

0! = 1

(x+1)! = (x+1) * x!

2/20/2020

© UCF CS 76

Basic Relations

x == 0:

0 == 0 = 1

(y+1) == 0 = 0

x == y:

x==y = ((x – y) + (y – x)) == 0

x ≤y :

x≤y = (x – y) == 0

x ≥ y:

x≥y = y≤x

x > y :

x>y = ~(x≤y) /* See ~ on next page */

x < y :

x<y = ~(x≥y)

2/20/2020

© UCF CS 77

Basic Boolean Operations

~x:

~x = 1 – x or (x==0)

signum(x): 1 if x>0; 0 if x==0

~(x==0)

x && y:

x&&y = signum(x*y)

x || y:

x||y = ~((x==0) && (y==0))

2/20/2020

© UCF CS 78

Definition by Cases

One case

g(x) if P(x)

f(x) =

h(x) otherwise

f(x) = P(x) * g(x) + (1-P(x)) * h(x)

Can use induction to prove this is true for all k>0, where

g1(x) if P1(x)

g2(x) if P2(x) && ~P1(x)

f(x) = …

gk(x) if Pk(x) && ~(P1(x) || … || ~Pk-1(x))

h(x) otherwise

2/20/2020

© UCF CS 79

Bounded Minimization 1

f(x) = m z (z ≤ x) [P(z)] if  such a z,

= x+1, otherwise

where P(z) is primitive recursive.

Can show f is primitive recursive by
f(0) = 1-P(0)

f(x+1) = f(x) if f(x) ≤ x

= x+2-P(x+1) otherwise

2/20/2020

© UCF CS 80

Bounded Minimization 2

f(x) = m z (z < x) [P(z)] if  such a z,

= x, otherwise

where P(z) is primitive recursive.

Can show f is primitive recursive by
f(0) = 0

f(x+1) = m z (z ≤ x) [P(z)]

2/20/2020

© UCF CS 81

Intermediate Arithmetic

x // y:

x//0 = 0 : silly, but want a value

x//(y+1) = m z (z<x) [(z+1)*(y+1) > x]

x | y: x is a divisor of y

x|y = ((y//x) * x) == y

2/20/2020

© UCF CS 82

Primality

firstFactor(x): first non-zero, non-one factor of x.

firstfactor(x) = m z (2 ≤ z ≤ x) [z|x] ,

0 if none

isPrime(x):

isPrime(x) = firstFactor(x) == x && (x>1)

prime(i) = i-th prime:

prime(0) = 2

prime(x+1) = m z(prime(x)< z ≤prime(x)!+1)[isPrime(z)]

We will abbreviate this as pi for prime(i)

2/20/2020

© UCF CS 83

Exponents

x^y:

x^0 = 1

x^(y+1) = x * x^y

exp(x,i): the exponent of pi in number x.

exp(x,i) = m z (z<x) [~(pi^(z+1) | x)]

2/20/2020

© UCF CS 84

Pairing Functions

• pair(x,y) = <x,y> = 2x (2y + 1) – 1

• with inverses

<z>1 = exp(z+1,0)

<z>2 = (((z + 1) // 2 <z>1) – 1) // 2

• These are very useful and can be extended to

encode n-tuples

<x,y,z> = <x, <y,z> > (note: stack analogy)

2/20/2020

Pairing Function is 1-1 Onto

Prove that the pairing function <x,y> = 2^x (2y + 1) - 1

is 1-1 onto the natural numbers.

Approach 1:

We will look at two cases, where we use the following

modification of the pairing function, <x,y>+1, which implies

the problem of mapping the pairing function to Z+.

2/20/2020 © UCF CS 85

Case 1 (x=0)

Case 1:

For x = 0, <0,y>+1 = 20(2y+1) = 2y+1. But every odd

number is by definition one of the form 2y+1, where y≥0;

moreover, a particular value of y is uniquely associated

with each such odd number and no odd number is

produced when x=0. Thus, <0,y>+1 is 1-1 onto the odd

natural numbers.

2/20/2020 © UCF CS 86

Case 2 (x > 0)

Case 2:

For x > 0, <x,y>+1 = 2x(2y+1), where 2y+1 ranges over all odd number

and is uniquely associated with one based on the value of y (we saw

that in case 1). 2x must be even, since it has a factor of 2 and hence

2x(2y+1) is also even. Moreover, from elementary number theory, we

know that every even number except zero is of the form 2xz, where

x>0, z is an odd number and this pair x,y is unique. Thus, <x,y>+1 is 1-

1 onto the even natural numbers, when x>0.

The above shows that <x,y>+1 is 1-1 onto Z+, but then <x,y> is 1-1 onto

, as was desired.

2/20/2020 © UCF CS 87

Pairing Function is 1-1 Onto

Approach 2:

Another approach to show a function f over S is

1-1 onto T is to show that

f -1(f(x)) = x, for arbitrary xS and that

f (f-1 (z)) = z, for arbitrary zT.

Thus, we need to show that

(<x,y>1,<x,y>2) = (x,y) for arbitrary (x,y) and

<<z>1,<z>2> = z for arbitrary z.

2/20/2020 © UCF CS 88

Alternate Proof

Let x,y be arbitrary natural number, then <x,y> = 2x(2y+1)-1.

Moreover, <2x(2y+1)-1>1 = Factor(2x(2y+1),0) = x, since 2y+1 must be

odd, and

<2x(2y+1)-1>2 = ((2x(2y+1)/2^Factor(2x(2y+1),0))-1)/2 = 2y/2 = y.

Thus, (<x,y>1,<x,y>2) = (x,y), as was desired.

Let z be an arbitrary natural number, then the inverse of the pairing is

(<z>1,<z>2)

Moreover, <<z>1,<z>2> = 2^<z>1 *(2<z>2+1)-1

= 2^Factor(z+1,0)*(2*((z+1)/ 2^Factor(z+1,0))/2-1+1)-1

= 2^Factor(z+1,0)*((z+1)/ 2^Factor(z+1,0))-1

= (z+1) – 1

= z, as was desired.

2/20/2020 © UCF CS 89

Application of Pairing

Show that prfs are closed under Fibonacci induction. Fibonacci

induction means that each induction step after calculating the

base is computed using the previous two values, where the

previous values for f(1) are f(0) and 0; and for x>1, f(x) is based on

f(x-1) and f(x-2).

The formal hypothesis is:

Assume g and h are already known to be prf, then so is f, where

f(0,x) = g(x);

f(1,x) = h(f(0,x), 0); and

f(y+2,x) = h(f(y+1,x), f(y,x))

Proof is by construction

2/20/2020 © UCF CS 90

Fibonacci Recursion

Let K be the following primitive recursive function, defined by induction

on the primitive recursive functions, g, h, and the pairing function.

K(0,x) = B(x)

B(x) = < g(x), C0(x) > // this is just <g(x), 0>

K(y+1, x) = J(y, x, K(y,x))

J(y,x,z) = < h(<z>1, <z>2), <z>1 >

// this is < f(y+1,x), f(y,x)>, even though f is not yet shown to be prf!!

This shows K is prf.

f is then defined from K as follows:

f(y,x) = <K(y,x)>1 // extract first value from pair encoded in K(y,x)

This shows it is also a prf, as was desired.

2/20/2020 © UCF CS 91

m Recursive

4th Model

A Simple Extension to Primitive

Recursive

© UCF CS 93

m Recursive Concepts

• All primitive recursive functions are algorithms

since the only iterator is bounded. That’s a clear

limitation.

• There are algorithms like Ackerman’s function

that cannot be represented by the class of

primitive recursive functions.

• The class of recursive functions adds one more

iterator, the minimization operator (m), read “the

least value such that.”

2/20/2020

© UCF CS 94

Ackermann’s Function

• A(1, j)=2j for j ≥ 1

• A(i, 1)=A(i-1, 2) for i ≥ 2

• A(i, j)=A(i-1, A(i, j-1)) for i, j ≥ 2

• Wilhelm Ackermann observed in 1928 that this is not a
primitive recursive function.

• Ackermann’s function grows too fast to have a for-loop
implementation.

• The inverse of Ackermann’s function is important to analyze
Union/Find algorithm. Note: A(4,4) is a super exponential
number involving six levels of exponentiation. A(5,5) exceeds
the number of atoms in known universe

 a(n) = A-1(n,n) grows so slowly that it is less than 5 for any
value of n that can be written.

2/20/2020

© UCF CS 95

Union/Find

• Start with a collection S of unrelated elements –

singleton equivalence classes

• Union(x,y), x and y are in S, merges the class

containing x ([x]) with that containing y ([y])

• Find(x) returns the canonical element of [x]

• Can see if xy, by seeing if Find(x)==Find(y)

• How do we represent the classes?

2/20/2020

© UCF CS 96

The m Operator

• Minimization:

If G is already known to be recursive, then

so is F, where

F(x1,…,xn) = my (G(y,x1,…,xn) == 1)

• We also allow other predicates besides

testing for one. In fact any predicate that

is recursive can be used as the stopping

condition.

2/20/2020

Equivalence of Models

Equivalency of computation by
Turing machines,

register machines,
factor replacement systems,

recursive functions

© UCF CS 98

Proving Equivalence

• Constructions do not, by themselves,
prove equivalence.

• To do so, we need to develop a notion of
an “instantaneous description” (id) of each
model of computation (well, almost as
recursive functions are a bit different).

• We then show a mapping of id’s between
the models.

2/20/2020

© UCF CS 99

Instantaneous Descriptions

• An instantaneous description (id) is a finite description of
a state achievable by a computational machine, M.

• Each machine starts in some initial id, id0.

• The semantics of the instructions of M define a relation
M such that, idi M idi+1, i0, if the execution of a
single instruction of M would alter M’s state from idi to
idi+1 or if M halts in state idi and idi+1=idi.

• +
M is the transitive closure of M

• *M is the reflexive transitive closure of M

2/20/2020

© UCF CS 100

id Definitions

• For a register machine, M, an id is an s+1 tuple of the form

(i, r1,…,rs)M specifying the number of the next instruction to be

executed and the values of all registers prior to its execution.

• For a factor replacement system, an id is just a natural number.

• For a Turing machine, M, an id is some finite representation of the

tape, the position of the read/write head and the current state. This

is usually represented as a string aqxb, where a (b) is the shortest

string representing all non-blank squares to the left (right) of the

scanned square, x is the symbol at the scanned square and q is the

current state.

• Recursive functions do not have id’s, so we will handle their

simulation by an inductive argument, using the primitive functions as

the basis and composition, induction and minimization in the

inductive step.

2/20/2020

© UCF CS 101

Equivalence Steps

• Assume we have a machine M in one model of computation and a

mapping of M into a machine M’ in a second model.

• Assume the initial configuration of M is id0 and that of M’ is id’0

• Define a mapping, h, from id’s of M into those of M’, such that,

RM = { h(d) | d is an instance of an id of M }, and

– id’0*M’ h(id0), and h(id0) is the only member of RM in the

configurations encountered in this derivation.

– h(idi)
+
M’ h(idi+1), i0, and h(idi+1) is the only member of RM in

this derivation.

• The above, in effect, provides an inductive proof that

– id0*M id implies id’0*M’ h(id), and

– If id’0*M’ id’ then either id0*M id, where id’ = h(id), or

id’  RM

2/20/2020

All Models are Equivalent

Equivalency of computation by
Turing machines, register machines,

factor replacement systems,
recursive functions

© UCF CS 103

Our Plan of Attack

• We will now show

TURING ≤ REGISTER ≤ FACTOR ≤

RECURSIVE ≤ TURING

where, by A ≤ B, we mean that every

instance of A can be replaced by an

equivalent instance of B.

• The transitive closure will then get us the

desired result.

2/20/2020

TURING ≤ REGISTER

© UCF CS 105

Encoding a TM’s State

• Assume that we have an n state Turing machine. Let
the states be numbered 0,…, n-1.

• Assume our machine is in state 7, with its tape
containing
… 0 0 1 0 1 0 0 1 1 q7 0 0 0 …

• The underscore indicates the square being read. We
denote this by the finite id
1 0 1 0 0 1 1 q7 0

• In this notation, we always write down the scanned
square, even if it and all symbols to its right are blank.

2/20/2020

© UCF CS 106

More on Encoding of TM

• An id can be represented by a triple of natural numbers,
(R,L,i), where R is the number denoted by the reversal
of the binary sequence to the right of the qi, L is the
number denoted by the binary sequence to the left, and i
is the state index.

• So,
… 0 0 1 0 1 0 0 1 1 q7 0 0 0 …
is just (0, 83, 7).
… 0 0 1 0 q5 1 0 1 1 0 0 …
is represented as (13, 2, 5).

• We can store the R part in register 1, the L part in
register 2, and the state index in register 3.

2/20/2020

© UCF CS 107

Simulation by RM

1. DEC3[2,q0] : Go to simulate actions in state 0

2. DEC3[3,q1] : Go to simulate actions in state 1

…

n. DEC3[ERR,qn-1] : Go to simulate actions in state n-1

…

qj. IF_r1_ODD[qj+2] : Jump if scanning a 1

qj+1. JUMP[set_k] : If (qj 0 0 qk) is rule in TM

qj+1. INC1[set_k] : If (qj 0 1 qk) is rule in TM

qj+1. DIV_r1_BY_2 : If (qj 0 R qk) is rule in TM

MUL_r2__BY_2

JUMP[set_k]

qj+1. MUL_r1_BY_2 : If (qj 0 L qk) is rule in TM

IF_r2_ODD then INC1

DIV_r2__BY_2[set_k]

…

set_n-1. INC3[set_n-2] : Set r3 to index n-1 for simulating state n-1

set_n-2. INC3[set_n-3] : Set r3 to index n-2 for simulating state n-2

…

set_0. JUMP[1] : Set r3 to index 0 for simulating state 0

2/20/2020

© UCF CS 108

Fixups

• Need epilog so action for missing quad
(halting) jumps beyond end of simulation
to clean things up, placing result in r0.

• Can also have a prolog that starts with
arguments in registers r1 to rn and stores
values in r1, r2 and r3 to represent Turing
machines starting configuration.

2/20/2020

© UCF CS 109

Prolog

Example assuming n arguments (fix as needed)

1. MUL_rn+1_BY_2[2] : Set rn+1 = 11…102, where, #1's = r1

2. DEC1[3,4] : r1 will be set to 0

3. INCn+1[1] :

4. MUL_rn+1_BY_2[5] : Set rn+1 = 11…1011…102, where, #1's = r1, then r2

5. DEC2[6,7] : r2 will be set to 0

6. INCn+1[4] :

…

3n-2. DECn[3n-1,3n+1] : Set rn+1 = 11…1011…1011…12, where, #1's = r1, r2,…

3n-1. MUL_rn+1_BY_2[3n] : rn will be set to 0

3n. INCn+1[3n-2] :

3n+1 DECn+1[3n+2,3n+3] : Copy rn+1 to r2, rn+1 is set to 0

3n+2. INC2[3n+1] :

3n+3. : r2 = left tape, r1 = 0 (right), r3 = 0 (initial state)

2/20/2020

© UCF CS 110

Epilog

1. DEC3[1,2] : Set r3 to 0 (just cleaning up)

2. IF_r1_ODD[3,5] : Are we done with answer?

3. INC0[4] : putting answer in r0

4. DIV_r1_BY_2[2] : strip a 1 from r1

5. : Answer is now in r0

2/20/2020

REGISTER  FACTOR

© UCF CS 112

Encoding a RM’s State

• This is a really easy one based on the fact that every member of Z+

(the positive integers) has a unique prime factorization. Thus all
such numbers can be uniquely written in the form

where the pi's are distinct primes and the ki's are non-zero values,
except that the number 1 would be represented by 20.

• Let R be an arbitrary n+1-register machine, having m instructions.

Encode the contents of registers r0,…,rn by the powers of p0,…pn .

Encode rule number's 1,…,m by primes pn+1 ,…, pn+m

Use pn+m+1 as prime factor that indicates simulation is done.

• This is, in essence, a Gödel number of the RM’s state.

1i
1kp

2i
2kp 

ji
jkp

2/20/2020

© UCF CS 113

Simulation by FRS

• Now, the j-th instruction (1≤j≤m) of R has
associated factor replacement rules as follows:

j. INCr[i]
pn+jx → pn+iprx

j. DECr[s, f]
pn+jprx → pn+sx

pn+jx → pn+fx

• We also add the halting rule associated with
m+1 of

pn+m+1x → x

2/20/2020

© UCF CS 114

Importance of Order

• The relative order of the two rules to
simulate a DEC are critical.

• To test if register r has a zero in it, we, in
effect, make sure that we cannot execute
the rule that is enabled when the r-th
prime is a factor.

• If the rules were placed in the wrong order,
or if they weren't prioritized, we would be
non-deterministic.

2/20/2020

Sample RM and FRS (repeat)

Present a Register Machine that computes IsOdd. Assume R1=x at

starts; at termination, set R0=1 if x is odd; 0 otherwise. We

assume R0=0 at start. We also are not concerned about destroying

input.

1. DEC1[2, 4]

2. DEC1[1, 3]

3. INC0[4]

4.

Present a Factor Replacement System that computes IsOdd.

Assume starting number is 3^x; at termination, result is 2=2^1 if x

is odd; 1= 2^0 otherwise.

3*3 x → x

3 x → 2 x

2/20/2020 © UCF CS 115

© UCF CS 116

Example of Order

Consider the simple machine to compute

r0:=r1 – r2 (limited)

1. DEC2[2,3]

2. DEC1[1,1]

3. DEC1[4,5]

4. INC0[3]

5.

2/20/2020

© UCF CS 117

Subtraction Encoding

Start with 3x5y7

7 • 5 x → 11 x

7 x → 13 x

11 • 3 x → 7 x

11 x → 7 x

13 • 3 x → 17 x

13 x → 19 x

17 x → 13 • 2 x

19 x → x

2/20/2020

© UCF CS 118

Analysis of Problem

• If we don't obey the ordering here, we could take
an input like 35527 and immediately apply the
second rule (the one that mimics a failed
decrement).

• We then have 355213, signifying that we will
mimic instruction number 3, never having
subtracted the 2 from 5.

• Now, we mimic copying r1 to r0 and get 255219 .

• We then remove the 19 and have the wrong
answer.

2/20/2020

FACTOR  RECURSIVE

© UCF CS 120

Universal Machine

• In the process of doing this reduction, we will

build a Universal Machine.

• This is a single recursive function with two

arguments. The first specifies the factor system

(encoded) and the second the argument to this

factor system.

• The Universal Machine will then simulate the

given machine on the selected input.

2/20/2020

© UCF CS 121

Encoding FRS

• Let (n, ((a1,b1), (a2,b2), … ,(an,bn)) be

some factor replacement system, where

(ai,bi) means that the i-th rule is

aix → bix

• Encode this machine by the number F,

pppp
nnnn

n bababa nn

2212212117532 2211

++−


2/20/2020

© UCF CS 122

Simulation by Recursive # 1

• We can determine the rule of F that applies to x by

RULE(F, x) = m z (1 ≤ z ≤ exp(F, 0)+1) [exp(F, 2*z-1) | x]

• Note: exp(F,2*i-1) = ai where ai is the exponent of the prime factor
p2i-1 of F.

• If x is divisible by ai, and i is the least integer, 1≤i≤n, for which this is
true, then RULE(F,x) = i.

If x is not divisible by any ai, 1≤i≤n, then x is divisible by 1, and
RULE(F,x) returns n+1. That’s why we added p2n+1 p2n+2.

• Given the function RULE(F,x), we can determine NEXT(F,x), the
number that follows x, when using F, by

NEXT(F, x) = (x // exp(F, 2*RULE(F, x)-1)) * exp(F, 2*RULE(F, x))

2/20/2020

© UCF CS 123

Simulation by Recursive # 2

• The configurations listed by F, when started on x, are

CONFIG(F, x, 0) = x

CONFIG(F, x, y+1) = NEXT(F, CONFIG(F, x, y))

• The number of the configuration on which F halts is

HALT(F, x) = m y [CONFIG(F, x, y) == CONFIG(F, x, y+1)]

This assumes we converge to a fixed point as our

means of halting. Of course, no applicable rule meets

this definition as the n+1-st rule divides and then

multiplies the latest value by 1.

2/20/2020

© UCF CS 124

Simulation by Recursive # 3

• A Universal Machine that simulates an arbitrary Factor
System, Turing Machine, Register Machine, Recursive
Function can then be defined by

Univ(F, x) = exp (CONFIG (F, x, HALT (F, x)), 0)

• This assumes that the answer will be returned as the
exponent of the only even prime, 2. We can fix F for any
given Factor System that we wish to simulate. It is that
ability that makes this function universal.

2/20/2020

© UCF CS 125

FRS Subtraction
• 203a5b  2a-b

3*5x → x or 1/15
5x → x or 1/5
3x → 2x or 2/3

• Encode F = 23 315 51 75 111 133 172 191 231

• Consider a=4, b=2

• RULE(F, x) = m z (1 ≤ z ≤ 4) [exp(F, 2*z-1) | x]
RULE (F,34 52) = 1, as 15 divides 34 52

• NEXT(F, x) = (x // exp(F, 2*RULE(F, x)-1)) * exp(F, 2*RULE(F, x))
NEXT(F,34 52) = (34 52 // 15 * 1) = 3351

NEXT(F,33 51) = (33 51 // 15 * 1) = 32

NEXT(F,32) = (32 // 3 * 2) = 2131

NEXT(F, 2131) = (2131 // 3 * 2) = 22

NEXT(F, 22) = (22 // 1 * 1) = 22

2/20/2020

© UCF CS 126

Rest of simulation

• CONFIG(F, x, 0) = x

CONFIG(F, x, y+1) = NEXT(F, CONFIG(F, x, y))

• CONFIG(F,34 52,0) = 34 52

CONFIG(F,34 52,1) = 3351

CONFIG(F,34 52,2) = 32

CONFIG(F,34 52,3) = 2131

CONFIG(F,34 52,4) = 22

CONFIG(F,34 52,5) = 22

• HALT(F, x)=my[CONFIG(F,x,y)==CONFIG(F,x,y+1)] = 4

• Univ(F, x) = exp (CONFIG (F, x, HALT (F, x)), 0)

= exp(22,0) = 2

2/20/2020

© UCF CS 127

Simplicity of Universal

• A side result is that every computable

(recursive) function can be expressed in

the form

F(x) = G(m y H(x, y))

where G and H are primitive recursive.

2/20/2020

RECURSIVE  TURING

© UCF CS 129

Standard Turing Computation

• Our notion of standard Turing computability of
some n-ary function F assumes that the
machine starts with a tape containing the n
inputs, x1, … , xn in the form

…01x101x20…01xn0…

and ends with

…01x101x20…01xn01y0…

where y = F(x1, … , xn).

2/20/2020

© UCF CS 130

More Helpers

• To build our simulation we need to construct some useful
submachines, in addition to the R, L, R, L, and Ck machines already

defined.

• T -- translate moves a value left one tape square

…?01x0…  …?1x00…

• Shift -- shift a rightmost value left, destroying value to its left

…01x101x20…  …01x20…

• Rotk -- Rotate a k value sequence one slot to the left

…01x101x20…01xk0…

 …01x20…01xk01x10…

 R1 L0 R

R

1

L T

R

0

k L k

k+1
1 L k

L 0 T
k L k+1

L

1
T

L 0 T

0

2/20/2020

© UCF CS 131

Basic Functions

All Basis Recursive Functions are Turing

computable:

• Ca
n(x1,…,xn) = a

(R1)aR

• (x1,…,xn) = xi

Cn-i+1

• S(x) = x+1

C11R

 i
n

I

2/20/2020

© UCF CS 132

Closure Under Composition

If G, H1, … , Hk are already known to be Turing computable, then so
is F, where

F(x1,…,xn) = G(H1(x1,…,xn), … , Hk(x1,…,xn))

To see this, we must first show that if E(x1,…,xn) is Turing
computable then so is

E<m>(x1,…,xn, y1,…,ym) = E(x1,…,xn)

This can be computed by the machine

Ln+m (Rotn+m)n Rn+m E Ln+m+1 (Rotn+m)m Rn+m+1

Can now define F by

H1 H2<1> H3<2> … Hk<k-1> G Shiftk

2/20/2020

Closure Under Induction

To prove that Turing Machines are closed under induction (primitive

recursion), we must simulate some arbitrary primitive recursive function

F(y,x1,x2, …, xn) on a Turing Machine, where

F(0, x1,x2, …, xn) = G(x1,x2, …, xn)

F(y+1, x1,x2, …, xn) = H(y, x1,x2, …, xn, F(y,x1,x2, …, xn))

Where, G and H are Standard Turing Computable. We define the

function F for the Turing Machine as follows:

Since our Turing Machine simulator can produce the same value for

any arbitrary PRF, F, we show that Turing Machines are closed under

induction (primitive recursion).

2/20/2020 © UCF CS 133

GLn+1 L

1

0

0Rn+2 H Shift Ln+2 1

Rn+2

© UCF CS 134

Closure Under Minimization

If G is already known to be Turing

computable, then so is F, where

F(x1,…,xn) = my (G(x1,…,xn, y) == 1)

This can be done by

R G L
1

0 L

0

1

2/20/2020

© UCF CS 135

Consequences of Equivalence

• Theorem: The computational power of
Recursive Functions, Turing Machines, Register
Machine, and Factor Replacement Systems are
all equivalent.

• Theorem: Every Recursive Function (Turing
Computable Function, etc.) can be performed
with just one unbounded type of iteration.

• Theorem: Universal machines can be
constructed for each of our formal models of
computation.

2/20/2020

Undecidability

We Can’t Do It All

Computable Languages 1

Let’s go over some important facts to this point:

1. * denotes the set of all strings over some finite alphabet 

2. | * | = |N|, where N is the set of natural numbers = the smallest

infinite cardinal (the countable infinity)

3. A language L over  is a subset of *; that is, L  P(*) = 2*

Here P denotes the power set constructor

4. | L | is countable because L  * (that is, | L | ≤ | * | = |N|)

5. | * | < | P(*) | (uncountable infinity) implies there are an

uncountable number of languages over a given alphabet, .

6. A program, P, in some programming language L, can be

represented as a string over a finite alphabet, P that obeys the

rules of constructing programs defined by L. As P  P*, there are

at most a countably infinite number of programs that can be formed

in the language L.
2/20/2020 UCF @ CS 137

Computable Languages 2

7. Each program, P, in a programming language L, defines a function, FP:
I* → O* where I is the input alphabet and O is the output alphabet.

8. FP defines an input language PI for which FP is defined (halts and
produces an output). This is referred to as its domain in our terminology
(I is its universe of discourse). The range of FP, PO, is the set of outputs.
That is, PO = { y | ∃x in PI and y = FP (x) }

9. Since there are a countable number of programs, P, there can be at most
a countable number of functions FP and consequently, only a countable
number of distinct input languages and output languages associated with
programs in LP. Thus, there are only a countable number of languages
(input or output) that can be defined by any program, P.

10. But, there are an uncountable number of possible languages over any
given alphabet – see 3 and 5.

11. Thus there must be languages over a given alphabet that have no
descriptions – in terms of a program – or in terms of an algorithm. Thus,
there are only a countably infinite number of languages that are
computable among the uncountable number of possible languages.

2/20/2020 UCF @ CS 138

Programming Languages

1. Programming languages that we use as software developers are in a sense
“complete.” By complete we mean that they can be used to implement all
procedures that we think are computable (definable by a computational
model that we can “agree” covers all procedural activities).

2. Challenge: Why did I say “agree” rather than “prove”?
3. We mostly like programs that halt on all input (we call these algorithms), but

we know it’s always possible to do otherwise in every programming
language we think is complete (C, C++, C#, Java, Python, et al.)

4. We can, of course, define programming languages that define only
algorithms.

5. Unfortunately, we cannot define a programming language that produces all
and only algorithms (all and just programs that always halt).

6. The above (#5) is one of the main results shown in this course
7. However, before focusing on #5 we should recall that finite-state, push

down and linear bounded automata are computational models that produce
only algorithms (when we monitor the latter two for loops) – it’s just that
these get us a subset of algorithms.

2/20/2020 UCF @ CS 139

Classic Unsolvable Problem

Given an arbitrary program P, in some language L, and

an input x to P, will P eventually stop when run with input

x?

The above problem is called the “Halting Problem.”
Book denotes the Halting Problem as ATM.

It is clearly an important and practical one – wouldn't it

be nice to not be embarrassed by having your program

run “forever” when you try to do a demo for the boss or

professor? Unfortunately, there’s a fly in the ointment as

one can prove that no algorithm can be written in L that

solves the halting problem for L.

2/20/2020 140UCF @ CS

Some terminology

We will say that a procedure, f, converges on input x if it eventually

halts when it receives x as input. We denote this as f(x).

We will say that a procedure, f, diverges on input x if it never halts

when it receives x as input. We denote this as f(x).

Of course, if f(x) then f defines a value for x. In fact we also say

that f(x) is defined if f(x) and undefined if f(x).

Finally, we define the domain of f as {x | f(x)}.

The range of f is {y | there exists an x, f(x) and f(x) = y }.

2/20/2020 141UCF @ CS

Numbering Procedures

Any programming language needs to have an
associated grammar that can be used to generate all
legitimate programs.

By ordering the rules of the grammar in a way that
generates programs in some lexical or syntactic order,
we have a means to recursively enumerate the set of all
programs. Thus, the set of procedures (programs) is re.

Using this fact, we will employ the notation that x is the
x-th procedure and x(y) is the x-th procedure with input
y. We also refer to x as the procedure’s index.

2/20/2020 142UCF @ CS

The universal machine

First, we can all agree that any complete model of
computation must be able to simulate programs in its
own language. We refer to such a simulator (interpreter)
as the Universal machine, denote Univ. This program
gets two inputs. The first is a description of the program
to be simulated and the second of the input to that
program. Since the set of programs in a model is re, we
will assume both arguments are natural numbers; the
first being the index of the program. Thus,

Univ(x,y) = x(y)

2/20/2020 143UCF @ CS

2/20/2020 UCF @ CS 144

Halting Problem (ATM)

Assume we can decide the halting problem. Then there exists some total
function Halt such that

1 if x(y) is defined

Halt(x,y) =

0 if x(y) is not defined

Now we can view Halt as a mapping from N into N by treating its input as a
single number representing the pairing of two numbers via the one-one onto
function pair discussed earlier.

pair(x,y) = <x,y> = 2x (2y + 1) – 1

with inverses

<z>1 = exp(z+1,1)

<z>2 = (((z + 1) // 2 <z>1) – 1) // 2

2/20/2020 UCF @ CS 145

The Contradiction

Now if Halt exist, then so does Disagree, where
0 if Halt(x,x) = 0, i.e, if x(x) is not defined

Disagree(x) =

my (y == y+1) if Halt(x,x) = 1, i.e, if x(x) is defined

Since Disagree is a program from N into N , Disagree can be
reasoned about by Halt. Let d be such that Disagree = [d], then

Disagree(d) is defined  Halt(d,d) = 0
 d(d) is undefined

 Disagree(d) is undefined

But this means that Disagree contradicts its own existence. Since
every step we took was constructive, except for the original
assumption, we must presume that the original assumption was in
error. Thus, the Halting Problem (ATM) is not solvable.

Halting (ATM) is recognizable

While the Halting Problem is not solvable, it is re, recognizable or
semi-decidable.

To see this, consider the following semi-decision procedure. Let P
be an arbitrary procedure and let x be an arbitrary natural number.
Run the procedure P on input x until it stops. If it stops, say “yes.” If
P does not stop, we will provide no answer. This semi-decides the
Halting Problem. Here is a procedural description.

Semi_Decide_Halting() {

Read P, x;

P(x);

Print “yes”;

}

2/20/2020 146UCF @ CS

Additional Notations

Includes comment on our notation

versus that of others

© UCF CS 148

Universal Machine

• Others consider functions of n arguments, whereas we

had just one. However, our input to the FRS was actually

an encoding of n arguments.

• The fact that we can focus on just a single number that is

the encoding of n arguments is easy to justify based on

the pairing function.

• Some presentations order arguments differently, starting

with the n arguments and then the Gödel number of the

function, but closure under argument permutation follows

from closure under substitution.

2/20/2020

© UCF CS 149

Universal Machine Mapping

• (n)(f, x1,…,xn) = Univ (f,)

• We will sometimes adopt the above and

also its common shorthand

f
(n)(x1,…,xn) = (n)(f, x1,…,xn)

and the even shorter version

f(x1,…,xn) = (n)(f, x1,…,xn)

 =

n

i

x

i
p

i

1

2/20/2020

© UCF CS 150

SNAP and TERM

• Our CONFIG is essentially a snapshot
function as seen in other presentations of
a universal function

SNAP(f, x, t) = CONFIG(f, x, t)

• Termination in our notation occurs when
we reach a fixed point, so

TERM(f, x) = (NEXT(f, x) == x)

• Again, we used a single argument but that can
be extended as we have already shown.

2/20/2020

© UCF CS 151

STP Predicate

• STP(f, x1,…,xn, t) is a predicate defined

to be true iff f (x1,…,xn) converges in at

most t steps.

• STP is primitive recursive since it can be

defined by

STP(f, x, t) = TERM(f, CONFIG(f, x, t))

Extending to many arguments is easily done as

before.

2/20/2020

© UCF CS 152

VALUE PRF

• VALUE(f, x1,…,xn, t) is a primitive

recursive function (algorithm) that returns

f (x1,…,xn) so long as

STP(f, x1,…,xn, t) is true.

• VALUE(f, x1,…,xn, t) =

exp (CONFIG (F, x, t), 0)

• VALUE(f, x1,…,xn, t) returns a value if

STP(f, x1,…,xn, t) is false, but the

returned value is meaningless.
2/20/2020

Recursively Enumerable

Properties of re Sets

© UCF CS 154

Definition of re

• Some texts define re in the same way as I have defined
semi-decidable.

S   is semi-decidable iff there exists a partially
computable function g where

S = { x   | g(x) }

• I prefer the definition of re that says
S   is re iff S =  or there exists a totally computable
function f where

S = { y | x f(x) == y }

• We will prove these equivalent. Actually, f can be a
primitive recursive function.

2/20/2020

© UCF CS 155

Semi-Decidable Implies re

Theorem: Let S be semi-decided by GS. Assume
GS is the gS–th function in our enumeration of
effective procedures. If S = Ø then S is re by
definition, so we will assume wlog that there is
some a  S. Define the enumerating algorithm
FS by

FS(<x,t>) = x * STP(gs, x, t)

+ a * (1-STP(gs, x, t))

Note: FS is primitive recursive and it enumerates
every value in S infinitely often.

2/20/2020

© UCF CS 156

re Implies Semi-Decidable

Theorem: By definition, S is re iff S == Ø or there
exists an algorithm FS, over the natural numbers
, whose range is exactly S. Define

my [y == y+1] if S == Ø

S(x) =

∃y[FS(y)==x], otherwise

This achieves our result as the domain of S is
the range of FS, or empty if S == Ø. Note that
this is an existence proof in that we cannot test if
S == Ø

2/20/2020

© UCF CS 157

Domain of a Procedure

Corollary: S is re/semi-decidable iff S is the
domain / range of a partial recursive predicate
FS.

Proof: The predicate S we defined earlier to semi-
decide S, given its enumerating function, can be
easily adapted to have this property.

my [y == y+1] if S == Ø

S(x) =

x * ∃y[FS(y)==x], otherwise

2/20/2020

© UCF CS 158

Recursive Implies re

Theorem: Recursive implies re.

Proof: S is recursive implies there is a total

recursive function fS such that

S = { x   | fs(x) == 1 }

Define gs(x) = my (fs(x) == 1)

Clearly

dom(gs) = {x   | gs(x)}

= { x   | fs(x) == 1 }

= S

2/20/2020

© UCF CS 159

Related Results

Theorem: S is re iff S is semi-decidable.

Proof: That’s what we proved.

Theorem: S and ~S are both re (semi-decidable)
iff S (equivalently ~S) is recursive (decidable).

Proof: Let fS semi-decide S and fS’ semi-decide ~S. We can
decide S by gS

gS(x) = STP(fS, x, mt (STP(fS, x, t) || STP(fS’ ,x, t))

~S is decided by gS’(x) = ~gS(x) = 1- gS(x).

The other direction is immediate since, if S is decidable
then ~S is decidable (just complement gS) and hence
they are both re (semi-decidable).

2/20/2020

© UCF CS 160

Enumeration Theorem

• Define
Wn = { x   | (n,x) }

• Theorem: A set B is re iff there exists an n
such that B = Wn.
Proof: Follows from definition of (n,x).

• This gives us a way to enumerate the
recursively enumerable sets.

• Note: We will later show (again) that we
cannot enumerate the recursive sets.

2/20/2020

© UCF CS 161

The Set K

• K = { n   | n  Wn }

• Note that

n  Wn  (n,n)  HALT(n,n)

• Thus, K is the set consisting of the indices

of each program that halts when given its

own index

• K can be semi-decided by the HALT

predicate above, so it is re.

2/20/2020

© UCF CS 162

K is not Recursive

• Theorem: We can prove this by showing

~K is not re.

• If ~K is re then ~K = Wi, for some i.

• However, this is a contradiction since

i  K  i  Wi  i  ~K  i  K

2/20/2020

© UCF CS 163

re Characterizations

Theorem: If S   then the following are equivalent:

1. S is re

2. S is the range of a primitive rec. function

3. S is the range of a recursive function

4. S is the range of a partial rec. function

5. S is the domain of a partial rec. function

6. S is the range/domain of a partial rec. function whose domain

is the same as its range and which acts as an identity when it

converges. Below, assume fS enumerates S.

gS(x) = x*STP(fS, x, mt (STP(fS, x, t)) or

gS(x) = x* ∃t STP(fS, x, t)

2/20/2020

S-m-n Theorem

© UCF CS 165

Parameter (S-m-n) Theorem

• Theorem: For each n,m>0, there is a prf
Sm

n(y, u1,…,un) such that

(m+n)(y, x1,…,xm, u1,…,un)
= (m)(Sm

n(y,u1,…,un), x1,…, xm)

• The proof of this is highly dependent on
the system in which you proved
universality and the encoding you chose.

2/20/2020

© UCF CS 166

S-m-n for FRS

• We would need to create a new FRS, from an existing one F, that
fixes the value of ui as the exponent of the prime pm+i.

• Sketch of proof:
Assume we normally start with p1

x1 … pm
xm p1

u1 … pm+n
un 

Here the first m are variable; the next n are fixed;  denotes prime
factors used to trigger first phase of computation.
Assume that we use fixed point as convergence.
We start with just p1

x1 … pm
xm, with q the first unused prime.

q a x → q b x replaces a x→ b x in F, for each rule in F
q x → q x ensures we loop at end
x → q pm+1

u1 … pm+n
un  x
adds fixed input, start state and q
this is selected once and never again

Note: q = prime(max(n+m, lastFactor(Product[i=1 to r] ai bi))+1)
where r is the number of rules in F.

2/20/2020

© UCF CS 167

Details of S-m-n for FRS

• The number of F (called F, also) is 2r3a15b1…p2r-1
arp2r

br

• Sm,n(F, u1,…un) = 2r+23qa15qb1…p2r-1
qarp2r

qbr

p2r+1
qp2r+2

q p2r+3p2r+4
q pm+1

u1 … pm+n
un 

• This represents the rules we just talked about. The first
added rule pair means that if the algorithm does not use
fixed point, we force it to do so. The last rule pair is the
only one initially enabled and it adds the prime q, the
fixed arguments u1,…un, the enabling prime q, and the 
needed to kick start computation. Note that  could be a
1, if no kick start is required.

• Sm,n= Sm
n is clearly primitive recursive. I’ll leave the

precise proof of that as a challenge to you.

2/20/2020

Quantification 1 &2

© UCF CS 169

Quantification#1

• S is decidable iff there exists an algorithm S (called S’s
characteristic function) such that
x  S  S(x)
This is just the definition of decidable.

• S is re iff there exists an algorithm AS where
x  S  t AS(x,t)

This is clear since, if gS is the index of the procedure S
that semi-decides S then
x  S  t STP(gS, x, t)

So, AS(x,t) = STPgS(x, t), where STPgS is the STP
function with its first argument fixed.

• Creating new functions by setting some one or more
arguments to constants is an application of Sm

n.

2/20/2020

© UCF CS 170

Quantification#2

• S is re iff there exists an algorithm AS such that
x  S  t AS(x,t)

This is clear since, if gS is the index of the procedure S
that semi-decides S, then
x  S  ~t STP(gS, x, t)  t ~STP(gS, x, t)

So, AS(x,t) = ~STPgS(x, t), where STPgS is the STP
function with its first argument fixed.

• Note that this works even if S is recursive (decidable).
The important thing there is that if S is recursive then it
may be viewed in two normal forms, one with existential
quantification and the other with universal quantification.

• The complement of an re set is co-re. A set is recursive
(decidable) iff it is both re and co-re.

2/20/2020

Diagonalization and

Reducibility

© UCF CS 172

Non-re Problems

• There are even “practical” problems that are worse than
unsolvable -- they’re not even semi-decidable.

• The classic non-re problem is the Uniform Halting
Problem, that is, the problem to decide of an arbitrary
effective procedure P, whether or not P is an algorithm.

• Assume that the algorithms can be enumerated, and that
F accomplishes this. Then

F(x) = Fx

where F0, F1, F2, … is a list of all the algorithms

2/20/2020

© UCF CS 173

The Contradiction

• Define G(x) = Univ (F(x) , x) + 1 = (F(x), x)+1 = Fx(x) + 1

• But then G is itself an algorithm. Assume it is the g-th one

F(g) = Fg = G

Then, G(g) = Fg(g) + 1 = G(g) + 1

• But then G contradicts its own existence since G would need to be
an algorithm.

• This cannot be used to show that the effective procedures are non-
enumerable, since the above is not a contradiction when G(g) is
undefined. In fact, we already have shown how to enumerate the
(partial) recursive functions.

2/20/2020

© UCF CS 174

The Set TOT

• The listing of all algorithms can be viewed

as

TOT = { f   | x (f, x) }

• We can also note that

TOT = { f   | Wf = }

• Theorem: TOT is not re.

2/20/2020

Consequences

• To capture all the algorithms, any model of computation
must include some procedures that are not algorithms.

• Since the potential for non-termination is required, every
complete model must have some form of iteration that is
potentially unbounded.

• This means that simple, well-behaved for-loops (the kind
where you can predict the number of iterations on entry
to the loop) are not sufficient. While type loops are
needed, even if implicit rather than explicit.

2/20/2020 175UCF @ CS

Insights

Non-re nature of algorithms

• No generative system (e.g., grammar) can produce

descriptions of all and only algorithms

• No parsing system (even one that rejects by

divergence) can accept all and only algorithms

• Of course, if you buy Church’s Theorem, the set of all

procedures can be generated. In fact, we can build an

algorithmic acceptor of such programs.

2/20/2020 177UCF @ CS

Many unbounded ways

• How do you achieve divergence, i.e., what are the

various means of unbounded computation in each of

our models?

• GOTO: Turing Machines and Register Machines

• Minimization: Recursive Functions

– Why not primitive recursion/iteration?

• Fixed Point: (Ordered) Factor Replacement Systems

2/20/2020 178UCF @ CS

Non-determinism

• It sometimes doesn’t matter

– Turing Machines, Finite-State Automata,

Linear Bounded Automata

• It sometimes helps

– Push Down Automata

• It sometimes hinders

– Factor Replacement Systems, Petri Nets

2/20/2020 179UCF @ CS

Reducibility

2/20/2020 UCF @ CS 181

Reduction Concepts

• Proofs by contradiction are tedious after you’ve

seen a few. We really would like proofs that

build on known unsolvable problems to show

other, open problems are unsolvable. The

technique commonly used is called reduction. It

starts with some known unsolvable problem and

then shows that this problem is no harder than

some open problem in which we are interested.

Diagonalization is a Bummer

• The issues with diagonalization are that it is tedious and is
applicable as a proof of undecidability or non-re-ness for only
a small subset of the problems that interest us.

• Thus, we will now seek to use reduction wherever possible.

• To show a set, S, is undecidable, we can show it is as least
as hard as the set K0. That is, K0 ≤ S. Here the mapping used
in the reduction does not need to run in polynomial time, it just
needs to be an algorithm.

• To show a set is co-re, non-recursive, we can show it is the
complement of an re, non-recursive set.

• To show a set, S, is not re and not even co-re, we can show it
is as least as hard as the set TOTAL (the set of algorithms).
That is, TOTAL ≤ S. We can also do this by showing it is the
complement of a non-re, non-co-re set.

2/20/2020 © UCF CS 182

2/20/2020 UCF @ CS 183

Reduction Example#1

• We can show that the set K0 (Halting) is no harder than
the set TOTAL (Uniform Halting). Since we already
know that K0 is unsolvable, we would now know that
TOTAL is also unsolvable. We cannot reduce in the
other direction since TOTAL is in fact harder than K0.

• Let F be some arbitrary effective procedure and let x be
some arbitrary natural number.

• Define Fx(y) = F(x), for all y  

• Then Fx is an algorithm if and only if F halts on x.

• Thus, K0 ≤ TOTAL, and so a solution to membership in
TOTAL would provide a solution to K0, which we know is
not possible.

2/20/2020 UCF @ CS 184

Reduction Examples #2 & #3

In all cases below we are assuming our variables are over .

HALT = { <f,x> | f (x) } is unsolvable (undecidable, non-recursive)

TOTAL = { f | x f (x) } = { f | Wf =N } is not even recursively
enumerable (re, semidecidable)

• Show ZERO = { f | x f (x) = 0 } is unsolvable.
<f,x>  HALT iff g(y) = f (x) - f (x) is zero for all y.
Thus, <f,x>  HALT iff g  ZERO (really the index of g).
A solution to ZERO implies one for HALT, so ZERO is unsolvable.

• Show ZERO = { f | x f (x) = 0 } is non-re.
f  TOTAL iff h(x) = f (x) - f (x) is zero for all x.
Thus, f  TOTAL iff h  ZERO (really the index of h).
A semi-decision procedure for ZERO implies one for TOTAL, so
ZERO is non-re.

© UCF CS 185

Classic Undecidable Sets

• The universal language
K0 = Lu = { <f, x> | f (x) is defined }

• Membership problem for Lu is the Halting Problem.

• The sets Lne and Le, where

NON-EMPTY = Lne = { f |  x f (x)  }

EMPTY = Le = { f |  x f (x)  }

are the next ones we will study.

2/20/2020

© UCF CS 186

Lne is re

• Lne is enumerated by

F(<f, x, t>) = f * STP(f, x, t)

• This assumes that 0 is in Lne since 0 probably
encodes some trivial machine. If this isn’t so,
we’ll just slightly vary our enumeration of the
recursive functions so it is true.

• Thus, the range of this total function F is exactly
the indices of functions that converge for some
input, and that’s Lne.

2/20/2020

© UCF CS 187

Lne is Non-Recursive

• Note in the previous enumeration that F is a function of
just one argument, as we are using an extended pairing
function <x,y,z> = <x,<y,z>>.

• Now Lne cannot be recursive, for if it were then Lu (K0) is
recursive by the reduction we showed before.

• In particular, from any index x and input y, we created a
new function which accepts all input just in case the x-th
function accepts y. Recall Fx(y) = F(x), for all y  .

• Hence, this new function’s index is in Lne just in case
<x, y> is in Lu (K0).

• Thus, a decision procedure for Lne (equivalently for Le)
implies one for Lu (K0).

2/20/2020

© UCF CS 188

Lne is re by Quantification

• Can do by observing that

f  Lne   <x,t> STP(f, x, t)

• By our earlier results, any set whose

membership can be described by an existentially

quantified recursive predicate is re (semi-

decidable).

2/20/2020

© UCF CS 189

Le is not re

• If Le were re, then Lne would be recursive
since it and its complement would be re.

• Can also observe that Le is the
complement of an re set since

f  Le   <x,t> ~STP(f, x, t)
 ~ <x,t> STP(f, x, t)

 f  Lne

2/20/2020

Reduction and Equivalence

m-1, 1-1, Turing Degrees

© UCF CS 191

Many-One Reduction

• Let A and B be two sets.

• We say A many-one reduces to B,
A m B, if there exists a total recursive function f
such that
x  A  f(x)  B

• We say that A is many-one equivalent to B,
A m B, if A m B and B m A

• Sets that are many-one equivalent are in some
sense equally hard or easy.

2/20/2020

© UCF CS 192

Many-One Degrees

• The relationship A m B is an equivalence

relationship (why?)

• If A m B, we say A and B are of the same
many-one degree (of unsolvability).

• Decidable problems occupy three m-1 degrees:
, , all others.

• The hierarchy of undecidable m-1 degrees is an
infinite lattice (I’ll discuss in class)

2/20/2020

© UCF CS 193

One-One Reduction

• Let A and B be two sets.

• We say A one-one reduces to B, A 1 B,
if there exists a total recursive 1-1 function f
such that
x  A  f(x)  B

• We say that A is one-one equivalent to B,
A 1 B, if A 1 B and B 1 A

• Sets that are one-one equivalent are in a strong
sense equally hard or easy.

2/20/2020

© UCF CS 194

One-One Degrees

• The relationship A 1 B is an equivalence
relationship (why?)

• If A 1 B, we say A and B are of the same one-
one degree (of unsolvability).

• Decidable problems occupy infinitely many 1-1
degrees: each cardinality defines another 1-1
degree (think about it).

• The hierarchy of undecidable 1-1 degrees is an
infinite lattice.

2/20/2020

© UCF CS 195

Turing (Oracle) Reduction

• Let A and B be two sets.

• We say A Turing reduces to B, A t B, if the
existence of an oracle for B would provide us
with a decision procedure for A.

• We say that A is Turing equivalent to B,
A t B, if A t B and B t A

• Sets that are Turing equivalent are in a very
loose sense equally hard or easy.

2/20/2020

© UCF CS 196

Turing Degrees

• The relationship A t B is an equivalence
relationship (why?)

• If A t B, we say A and B are of the same Turing
degree (of unsolvability).

• Decidable problems occupy one Turing degree.
We really don’t even need the oracle.

• The hierarchy of undecidable Turing degrees is
an infinite lattice.

2/20/2020

© UCF CS 197

Complete re Sets

• A set C is re 1-1 (m-1, Turing) complete if, for

any re set A, A 1 (m , t) C.

• The set HALT is an re complete set (in regard to
1-1, m-1 and Turing reducibility).

• The re complete degree (in each sense of
degree) sits at the top of the lattice of re
degrees.

2/20/2020

© UCF CS 198

The Set Halt = K0 = Lu

• Halt = K0 = Lu = { <f, x> | f (x) }

• Let A be an arbitrary re set. By definition, there exists an

effective procedure a, such that dom(a) = A. Put
equivalently, there exists an index, a, such that A = Wa.

• x  A iff x  dom(a) iff a(x) iff <a,x>  K0

• The above provides a 1-1 function that reduces A to K0

(A 1 K0)

• Thus the universal set, Halt = K0 = Lu, is an re
(1-1, m-1, Turing) complete set.

2/20/2020

© UCF CS 199

The Set K

• K = { f | f(f) is defined }

• Define fx(y) = f(x), for all y. The index for fx can be
computed from f and x using S1,1, where we add a

dummy argument, y, to f. Let that index be fx. (Yeah,
that’s overloading.)

• <f,x>  K0 iff x  dom(f) iff y[fx
(y)] iff fx  K.

• The above provides a 1-1 function that reduces K0 to K.

• Since K0 is an re (1-1, m-1, Turing) complete set and K
is re, then K is also re (1-1, m-1, Turing) complete.

2/20/2020

Quantification # 3 and the

Overall Picture

© UCF CS 201

Quantification#3

• The Uniform Halting Problem was already

shown to be non-re. It turns out its complement

is also not re. We’ll cover that later. In fact, we

will show that TOT requires an alternation of

quantifiers. Specifically,

f  TOT xt (STP(f, x, t))

and this is the minimum quantification we can

use, given that the quantified predicate is total

recursive (actually primitive recursive here).

2/20/2020

RE Co-RE

R

E

C

UNIVERSE OF SETS

NRNC

NonRE = (NRNC ∪ Co-RE) - REC

RE-

Complete

Reduction and Rice’s

2/20/2020 © UCF CS 204

Either Trivial or Undecidable

• Let P be some set of re languages, e.g. P = { L | L is infinite re }.

• We call P a property of re languages since it divides the class of all
re languages into two subsets, those having property P and those
not having property P.

• P is said to be trivial if it is empty (this is not the same as saying P
contains the empty set) or contains all re languages.

• Trivial properties are not very discriminating in the way they divide
up the re languages (all or nothing).

2/20/2020 © UCF CS 205

Rice’s Theorem

Rice’s Theorem: Let P be some non-trivial
property of the re languages. Then

LP = { x | dom [x] is in P (has property P) }

is undecidable. Note that membership in LP is
based purely on the domain of a function, not on
any aspect of its implementation.

2/20/2020 © UCF CS 206

Rice’s Proof-1

Proof: We will assume, wlog, that P does not
contain Ø. If it does we switch our attention to
the complement of P. Now, since P is non-
trivial, there exists some language L with
property P. Let [r] be a recursive function
whose domain is L (r is the index of a semi-
decision procedure for L). Suppose P were
decidable. We will use this decision procedure
and the existence of r to decide K0.

2/20/2020 © UCF CS 207

Rice’s Proof-2

First we define a function Fr,x,y for r and each
function x and input y as follows.

Fr,x,y(z) = (x , y) + (r , z)

The domain of this function is L if x (y)
converges, otherwise it’s Ø. Now if we can
determine membership in LP , we can use this
algorithm to decide K0 merely by applying it to
Fr,x,y. An answer as to whether or not Fr,x,y has
property P is also the correct answer as to
whether or not x (y) converges.

2/20/2020 © UCF CS 208

Rice’s Proof-3

Thus, there can be no decision procedure for P.
And consequently, there can be no decision
procedure for any non-trivial property of re
languages.

Note: This does not apply if P is trivial, nor does
it apply if P can differentiate indices that
converge for precisely the same values.

I/O Property

• An I/O property, P, of indices of recursive function is one
that cannot differentiate indices of functions that produce
precisely the same value for each input.

• This means that if two indices, f and g, are such that f
and g converge on the same inputs and, when they
converge, produce precisely the same result, then both f
and g must have property P, or neither one has this
property.

• Note that any I/O property of recursive function indices
also defines a property of re languages, since the
domains of functions with the same I/O behavior are
equal. However, not all properties of re languages are
I/O properties.

2/20/2020 © UCF CS 209

Strong Rice’s Theorem

Rice’s Theorem: Let P be some non-trivial

I/O property of the indices of recursive
functions. Then

SP = { x | x has property P) }

is undecidable. Note that membership in
SP is based purely on the input/output
behavior of a function, not on any aspect
of its implementation.

2/20/2020 © UCF CS 210

Strong Rice’s Proof

• Given x, y, r, where r is in the set

SP.= {f | f has property P},

define the function

fx,y,r(z) = x(y) - x(y) + r(z).

• fx,y,r(z) = r(z) if x(y) ; =  if x(y) .

Thus, x(y) iff fx,y,r has property P, and so

K0  SP.

2/20/2020 © UCF CS 211

Picture Proof

2/20/2020 © UCF CS 212

x

y


x
(y)


r
(z)

z

dom(f
x,y,r

)= If 
x
(y)

rng(f
x,y,r

)= If 
x
(y)

z f
x,y,r

(z)≠
r
(z) If 

x
(y)

z f
x,y,r

(z)=
r
(z) If 

x
(y)

rng(f
x,y,r

)=rng(
r
) If 

x
(y)

dom(f
x,y,r

)=dom(
r
) If 

x
(y)

Black is for standard Rice’s Theorem;

Black and Red are needed for Strong Version

Blue is just another version based on range

2/20/2020 UCF @ CS 213

Weak Rice’s Theorems

Weak Rice’s Theorem1: Let P be some non-trivial I/O
property of the indices of recursive functions. Then

SP = { x | dom(x) has property P) }

is undecidable.

dom(fx,y,r) = dom(r) if x(y) ; =  if x(y)

Weak Rice’s Theorem2: Let P be some non-trivial I/O
property of the indices of recursive functions. Then

SP = { x | range(x) has property P) }

is undecidable.

range(fx,y,r) = range(r) if x(y) ; =  if x(y)

2/20/2020 © UCF CS 214

Corollaries to Rice’s

Corollary: The following properties of re

sets are undecidable

a) L = Ø

b) L is finite

c) L is a regular set

d) L is a context-free set

2/20/2020 215

Practice

Known Results:

HALT = { <f,x> | f(x) } is re (semi-decidable) but undecidable

TOTAL = { f | x f(x) } is non-re (not even semi-decidable)

1. Use reduction from HALT to show that one cannot decide NonTrivial, where

NonTrivial = { f | for some x, y, x ≠ y, f(x) and f(y) and f(x) ≠ f(y) }

2. Show that Non-Trivial reduces to HALT. (1 plus 2 show they are equally hard)

3. Use Reduction from TOTAL to show that NoRepeats is not even re, where

NoRepeats = { f | for all x, y, f(x) and f(y), and x ≠ y ⇒ f(x) ≠ f(y) }

4. Show NoRepeats reduces to TOTAL. (3 plus 4 show they are equally hard)

5. Use Rice’s Theorem to show that NonTrivial is undecidable

6. Use Rice’s Theorem to show that NoRepeats is undecidable

© UCF CS

2/20/2020 216

Practice Classifications

1. Use quantification of an algorithmic predicate to estimate the

complexity (decidable, re, co-re, non-re) of each of the following, (a)-

(d):

a) NonTrivial = { f | for some x, y, x ≠ y, f(x) and f(y) and f(x) ≠ f(y) }

b) NoRepeats = { f | for all x, y, f(x) and f(y), and x ≠ y ⇒ f(x) ≠ f(y) }

c) FIN = { f | domain(f) is finite }

2. Let set A be non-empty recursive, and let B be re non-recursive.

Consider C = { z | z = x * y, where x  A and y  B }. . For (a)-(c),

either show sets A and B with the specified property or demonstrate

that this property cannot hold.

a) Can C be recursive?

b) Can C be re non-recursive (undecidable)?

c) Can C be non-re?

© UCF CS

217

Sample Question#1

1. Given that the predicate STP and the

function VALUE are algorithms, show

that we can semi-decide

HZ = { f | f evaluates to 0 for some input}

Note: STP(f, x, s) is true iff f(x)

converges in s or fewer steps and, if so,

VALUE(f, x, s) = f(x).

2/20/2020 © UCF CS

218

Sample Questions#2,3

2. Use Rice’s Theorem to show that HZ is

undecidable, where HZ is

HZ = { f | f evaluates to 0 for some input}

3. Redo using Reduction from HALT.

2/20/2020 © UCF CS

219

Sample Question#4

4. Let P = { f |  x [STP(f, x, x)] }. Why

does Rice’s theorem not tell us anything

about the undecidability of P?

2/20/2020 © UCF CS

220

Sample Question#5

5. Let S be an re (recursively enumerable), non-
recursive set, and T be an re, possibly
recursive non-empty set. Let

E = { z | z = x + y, where x  S and y  T }.

Answer with proofs, algorithms or
counterexamples, as appropriate, each of the
following questions:

(a) Can E be non re?

(b) Can E be re non-recursive?

(c) Can E be recursive?

2/20/2020 © UCF CS

Constant time:

Not amenable to Rice’s

Constant Time

• CTime = { M | K [M halts in at most K steps

independent of its starting configuration] }

• RT cannot be shown undecidable by Rice’s Theorem as

it breaks property 2

– Choose M1 and M2 to each Standard Turing Compute (STC)

ZERO

– M1 is R (move right to end on a zero)

– M2 is L R R (time is dependent on argument)

– M1 is in CTime; M2 is not , but they have same I/O behavior, so

CTime does not adhere to property 2

2/20/2020 © UCF CS 222

Quantifier Analysis

• CTime = { M | K C [STP(M, C, K)] }

• This would appear to imply that CTime is not

even re. However, a TM that only runs for K

steps can only scan at most K distinct tape

symbols. Thus, if we use unary notation, CTime

can be expressed

• CTime = { M | K C|C|≤K [STP(M, C, K)] }

• We can dovetail over the set of all TMs, M, and

all K, listing those M that halt in constant time.

2/20/2020 © UCF CS 223

Complexity of CTime

• Can show it is equivalent to the Halting

Problem for TM’s with Infinite Tapes (not

unbounded but truly infinite)

• This was shown in 1966 to be

undecidable.

• It was also shown to be re, just as we

have done so for CTime.

• Details Later

2/20/2020 © UCF CS 224

What We’ve Done in

Computability

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 226

List Minus Some Tedious Stuff

• A question with multiple parts that uses quantification (STP/VALUE)

• Various re and recursive equivalent definitions

• Proofs of equivalence of definitions

• Consequences of recursiveness or re-ness of a problem

• Closure of recursive/re sets

• Gödel numbering (pairing functions and inverses)

• Models of computation/equivalences (not details but understanding)

• Primitive recursion and its limitation; bounded versus unbounded μ

• Notion of universal machine

• A proof by diagonalization (there are just two possibilities)

• A question about K and/or K0

• Many-one reduction(s)

• Rice’s Theorem (its proof and its variants)

• Applications of Rice’s Theorem and when it cannot be applied

More Practice Problems

228

Sample Question#1

1. Prove that the following are equivalent

a) S is an infinite recursive (decidable) set.

b) S is the range of a monotonically

increasing total recursive function.

Note: f is monotonically increasing

means that x f(x+1) > f(x).

2/20/2020 © UCF CS

229

Sample Question#2

2. Let A and B be re sets. For each of the

following, either prove that the set is re,

or give a counterexample that results in

some known non-re set.

a) A  B

b) A  B

c) ~A

2/20/2020 © UCF CS

230

Sample Question#3

3. Present a demonstration that the even

function is primitive recursive.

even(x) = 1 if x is even

even(x) = 0 if x is odd

You may assume only that the base

functions are prf and that prf’s are closed

under a finite number of applications of

composition and primitive recursion.

2/20/2020 © UCF CS

231

Sample Question#4

4. Given that the predicate STP and the

function VALUE are prf’s, show that we

can semi-decide

{ f | f evaluates to 0 for some input}

Note: STP(f, x, s) is true iff f(x)

converges in s or fewer steps and, if so,

VALUE(f, x, s) = f(x).

2/20/2020 © UCF CS

232

Sample Question#5

5. Let S be an re (recursively enumerable), non-
recursive set, and T be an re, possibly
recursive set. Let

E = { z | z = x + y, where x  S and y  T }.

Answer with proofs, algorithms or
counterexamples, as appropriate, each of the
following questions:

(a) Can E be non re?

(b) Can E be re non-recursive?

(c) Can E be recursive?

2/20/2020 © UCF CS

233

Sample Question#6

6. Assuming that the Uniform Halting

Problem (TOTAL) is undecidable (it’s

actually not even re), use reduction to

show the undecidability of

{ f | x f (x+1) > f (x) }

2/20/2020 © UCF CS

234

Sample Question#7

7. Let Incr = { f | x, f(x+1)>f(x) }.

Let TOT = { f | x, f(x) }.

Prove that Incr m TOT. Note Q#6 starts

this one.

2/20/2020 © UCF CS

235

Sample Question#8

8. Let Incr = { f | x f(x+1)>f(x) }. Use

Rice’s theorem to show Incr is not

recursive.

2/20/2020 © UCF CS

236

Sample Question#9

9. Let S be a recursive (decidable set),

what can we say about the complexity

(recursive, re non-recursive, non-re) of T,

where T  S?

2/20/2020 © UCF CS

237

Sample Question#10

10.Define the pairing function <x,y> and its

two inverses <z>1 and <z>2, where if

z = <x,y>, then x = <z>1 and y = <z>2.

2/20/2020 © UCF CS

238

Sample Question#11

11.Assume A m B and B m C.

Prove A m C.

2/20/2020 © UCF CS

239

Sample Question#12

12.Let P = { f |  x [STP(f, x, x)] }. Why

does Rice’s theorem not tell us anything

about the undecidability of P?

2/20/2020 © UCF CS

Rewriting Systems

Post Systems

242

Thue Systems

• Devised by Axel Thue

• Just a string rewriting view of finitely
presented monoids

• T = (, R), where  is a finite alphabet and
R is a finite set of bi-directional rules of
form ai  bi , ai, bi*

• We define * as the reflexive, transitive
closure of , where w  x iff w=yaz and
x=ybz, where a  b

2/20/2020 © UCF CS

243

Semi-Thue Systems

• Devised by Emil Post

• A one-directional version of Thue systems

• S = (, R), where  is a finite alphabet and
R is a finite set of rules of form
ai → bi , ai, bi*

• We define * as the reflexive, transitive
closure of , where w  x iff w=yaz and
x=ybz, where a → b

2/20/2020 © UCF CS

244

Word Problems

• Let S = (, R) be some Thue (Semi-Thue)
system, then the word problem for S is the
problem to determine of arbitrary words w and x
over S, whether or not w * x (w * x)

• The Thue system word problem is the problem
of determining membership in equivalence
classes. This is not true for Semi-Thue systems.

• We can always consider just the relation *
since the symmetric property of * comes
directly from the rules of Thue systems.

2/20/2020 © UCF CS

245

Post Canonical Systems

• These are a generalization of Semi-Thue systems.

• P = (, V, R), where  is a finite alphabet, V is a finite set of
“variables”, and R is a finite set of rules.

• Here the premise part (left side) of a rule can have many premise
forms, e.g, a rule appears as
a1,0 P1,1a1,1 P1,2… a1,n1

P1,n1
a1,n1+1 ,

a2,0 P2,1a2,1 P2,2… a2,n2
P2,n2

a2,n2+1 ,
…

ak,0 Pk,1ak,1 Pk,2… ak,nk
Pk,nk

ak,nk+1 ,
→ b0 Q1b1 Q2… bnk+1

Qnk+1
bnk+1+1

• In the above, the P’s and Q’s are variables, the a’s and b’s are
strings over , and each Q must appear in at least one premise.

• We can extend the notion of * to these systems considering sets
of words that derive conclusions. Think of the original set as axioms,
the rules as inferences and the final word as a theorem to be
proved.

2/20/2020 © UCF CS

246

Examples of Canonical Forms

• Propositional rules
P, P  Q → Q
~P, P  Q → Q
P  Q → P oh, oh a  (b  c)  a  (b
P  Q → Q
(P  Q)  R  P  (Q  R)
(P  Q)  R  P  (Q  R)
~(~P)  P

P  Q → Q  P
P  Q → Q  P

• Some proofs over {a,b,(,),~,,,}
{a  c, b  ~c, b}  {a  c, b  ~c, b, ~c} 
{a  c, b  ~c, b, ~c, c  a} 
{a  c, b  ~c, b, ~c, c  a, a} which proves “a”

2/20/2020 © UCF CS

247

Simplified Canonical Forms

• Each rule of a Semi-Thue system is a canonical rule of
the form
PaQ → PbQ

• Each rule of a Thue system is a canonical rule of the
form
PaQ  PbQ

• Each rule of a Post Normal system is a canonical rule of
the form
aP → Pb

• Tag systems are just Normal systems where all
premises are of the same length (the deletion number),
and at most one can begin with any given letter in .
That makes Tag systems deterministic.

2/20/2020 © UCF CS

248

Examples of Post Systems

• Alphabet  = {a,b,#}. Semi-Thue rules:
aba → b
#b# → l
For above, #anbam# * l iff n=m

• Alphabet  = {0,1,c,#}. Normal rules:
0c → 1
1c → c0
#c → #1
0 → 0
1 → 1
→ #
For above, binaryc# * binary+1# where binary is some
binary number.

2/20/2020 © UCF CS

249

Simulating Turing Machines

• Basically, we need at least one rule for each 4-
tuple in the Turing machine’s description.

• The rules lead from one instantaneous
description to another.

• The Turing ID aqab is represented by the string
haqabh, a being the scanned symbol.

• The tuple q a b s leads to
qa → sb

• Moving right and left can be harder due to
blanks.

2/20/2020 © UCF CS

250

Details of Halt(TM)  Word(ST)

• Let M = (Q, {0,1}, T), T is Turing table.

• If qabs  T, add rule qa → sb // simple rewrite of scan

• If qaRs  T, add rules
– q1b → 1sb a=1, b{0,1} // left non-blank; scan not blank

– q1h → 1s0h a=1 // right blank; scan not blank

– cq0b → c0sb a=0, b,c{0,1} // left and right non-blank; scan blank

– hq0b → hsb a=0, b{0,1} // left blank; right not blank; scan blank

– cq0h → c0s0h a=0, c{0,1} // left not blank; right blank; scan blank

– hq0h → hs0h a=0 // blank tape to blank tape

• If qaLs  T, add rules
– bqac → sbac a,b,c{0,1} // left and right had non-blanks

– hqac → hs0ac a,c{0,1} // left blank; right not blank

– bq1h → sb1h a=1, b{0,1} // left not blank; right blank; scan not blank

– hq1h → hs01h a=1 // left blank; right blank; scan not blank

– bq0h → sbh a=0, b{0,1} // left not blank; right blank; scan blank

– hq0h → hs0h a=0 // blank tape to blank tape

2/20/2020 © UCF CS

251

Clean-Up

• Assume q1 is start state and only one accepting state exists q0

• We will start in h1xq10h, seeking to accept x (enter q0) or reject (run
forever).

• Add rules
– q0a → q0 a{0,1}

– bq0 → q0 b{0,1}

• The added rule allows us to “erase” the tape if we accept x.

• This means that acceptance can be changed to generating hq0h.

• The next slide shows the consequences.

2/20/2020 © UCF CS

252

Semi-Thue Word Problem

• Construction from TM, M, gets:

• h1xq10h (M)* hq0h iff xL(M).

• hq0h (M)* h1xq10h iff xL(M).

• hq0h  (M)* h1xq10h iff xL(M).

• Can recast both Semi-Thue and Thue

Systems to ones over alphabet {a,b} or

{0,1}. That is, a binary alphabet is

sufficient for undecidability.

2/20/2020 © UCF CS

More on Grammars

2/20/2020 UCF @ CS 254

Grammars and re Sets

• Every grammar lists an re set.

• Some grammars (regular, CFL and CSG)

produce recursive sets.

• Type 0 grammars are as powerful at

generating (producing) re sets as Turing

machines are at enumerating them

(Proof later).

Formal Language

Undecidability Continued

PCP and Traces

256

Post Correspondence Problem

• Many problems related to grammars can be shown to be
no more complex than the Post Correspondence
Problem (PCP).

• Each instance of PCP is denoted: Given n>0,  a finite
alphabet, and two n-tuples of words
(x1, … , xn), (y1, … , yn) over ,
does there exist a sequence i1, … , ik , k>0, 1 ≤ ij ≤ n,
such that
xi1

… xik
= yi1

… yik
?

• Example of PCP:
n = 3,  = { a , b }, (a b a , b b , a), (b a b , b , b a a).
Solution 2 , 3, 1 , 2
b b a a b a b b = b b a a b a b b

2/20/2020 © UCF CS 452

Post Correspondence Problem

• Many problems related to grammars can be shown to be
no more complex than the Post Correspondence
Problem (PCP).

• Each instance of PCP is denoted: Given n>0, S a finite
alphabet, and two n-tuples of words
(x1, … , xn), (y1, … , yn) over S,
does there exist a sequence i1, … , ik , k>0, 1 ≤ ij ≤ n,
such that
xi1

… xik
= yi1

… yik
?

• Example of PCP:
n = 3, S = { a , b }, (a b a , b b , a), (b a b , b , b a a).
Solution 2 , 3, 1 , 2
b b a a b a b b = b b a a b a b b

12/25/19 © UCF EECS

257

PCP Example#2

• Start with Semi-Thue System

– aba → ab; a → aa; b → a

– Instance of word problem: bbbb *? aa

• Convert to PCP

– [bbbb* ab ab aa aa a a]

[aba aba a a b b *aa]

– And * * a a b b

* * a a b b

2/20/2020 © UCF CS

258

How PCP Construction Works?

• Using underscored letters avoids solutions that
don’t relate to word problem instance. E.g.,

ab aa

aba a
leads to solution no matter the question

• Top row insures start with [W0*

• Bottom row insures end with *Wf]

• Bottom row matches Wi, while top matches Wi+1

(one is underscored)

• Get Solution for PCP iff W0 * Wf

2/20/2020 © UCF CS

259

Ambiguity of CFG

• Problem to determine if an arbitrary CFG
is ambiguous

S → A | B

A→ xi A [i] | xi [i] 1 ≤ i ≤ n

B→ yi B [i] | yi [i] 1 ≤ i ≤ n

A * xi1
… xik

[ik] … [i1] k > 0

B * yi1
… yik

[ik] … [i1] k > 0

• Ambiguous if and only if there is a solution
to this PCP instance.

2/20/2020 © UCF CS

260

Intersection of CFLs

• Problem to determine if arbitrary CFG’s
define overlapping languages

• Just take the grammar consisting of all the
A-rules from previous, and a second
grammar consisting of all the B-rules. Call
the languages generated by these
grammars, LA and LB.
LA  LB ≠ Ø, if and only there is a solution
to this PCP instance.

2/20/2020 © UCF CS

261

CSG Produces Something

S → xi S yi
R | xi T yi

R 1 ≤ i ≤ n

a T a → * T *

* a → a *

a * → * a

T → *

• Our only terminal is *. We get strings of
form *

2j+1, for some j’s if and only if there is
a solution to this PCP instance.

2/20/2020 © UCF CS

262

CSG Produces Something

• Our only terminal in previous grammar is *.
We get strings of form *

2j+1, for some j’s if
and only if there is a solution to this PCP
instance. Get Ø otherwise.

• Thus, P has a solution iff

– L(G) ≠ Ø

– L(G) is infinite

2/20/2020 UCF @ CS

Traces and Grammars

2/20/2020 © UCF CS 264

Traces

• A valid trace

– # C1 # C2 # C3 # C4 … # Ck-1 # Ck #,
where k  1 and Ci M Ci+1, for 1  i < k.
Here, M means derive in M, and C is a valid
ID (Instantaneous Description)

• An invalid trace

– # C1 # C2 # C3 # C4 … # Ck-1 # Ck #,
where k  1 and for some i, it is false that
Ci M Ci+1.

265

Traces (Valid Computations)

• A terminating trace of a machine M, is a word of the form
C0 # C1 # C2 # C3 # … # Ck-1 # Ck

where Ci  Ci+1 0 ≤ i < k, C0 is a starting configuration and Ck is a
terminating configuration.

• We allow some laxness, where the configurations might be encoded
in a manner appropriate to the machine model. Now, a context free
grammar can be devised which approximates traces by either
getting the even-odd pairs right, or the odd-even pairs right. The
goal is to then intersect the two languages, so the result is a trace.
This then allows us to create CFLs L1 and L2, where L1  L2 ≠ Ø ,
just in case the machine has an element in its domain. Since this is
undecidable, the non-emptiness of the intersection problem is also
undecidable. This is an alternate proof to one we already showed
based on PCP.

• Additionally, if L1  L2 = Ø, the complement (bad traces + non-
traces) is Σ*. As this can be shown to be a CFL, determining if a
CFG generates Σ* is undecidable as well.

2/20/2020 © UCF CS

2/20/2020 © UCF CS 266

What’s Undecidable?

• We cannot decide if the set of valid

terminating traces of an arbitrary machine

M is non-empty.

• We cannot decide if the complement of the

set of valid terminating traces of an

arbitrary machine M is everything. In fact,

this is not even semi-decidable.

2/20/2020 © UCF CS 267

What’s a CSL or CFL?

• Given some machine M (I’ll talk about specific
models later)
– The set of valid traces of M is Context Sensitive

(can prove by fact that intersection of two CFLs is a
CSG or by direct construction)

– The complement of the valid traces of M is Context
Free; that is, the set of invalid traces of M is Context
Free (just one mistake required)

– The set of valid terminating traces of M is Context
Sensitive (same as above)

– The complement of the valid terminating traces of M
is Context Free; again, this requires just one mistake

268

L = *?

• If L is regular, then L = *? is decidable

– Easy – Reduce to minimal deterministic FSA,

AL accepting L. L = * iff AL is a one-state

machine, whose only state is accepting

• If L is context free, then L = *? is

undecidable

– Just produce the complement of a machine’s

valid terminating traces; if it’s * then the

original machine accepted nothing

2/20/2020 © UCF CS

269

Traces are NOT CFLs

• In the previous, we assumed that a trace is NOT a CFL,

but we never proved that.

• To show the trace language for a TM, M,

{ # C1 # C2 # C3 # C4 … # Ck-1 # Ck # |

k  1 and Ci M Ci+1, for 1  i < k } is not a CFL, we can

focus on a simple machine that has just one non-blank

{1} and one state {q} and the rules

q 0 0 q

q 1 1 q

• This machine has traces of the form

{ # C # C # C # C … # C # C # } as it never changes the

tape contents or its state.
2/20/2020 © UCF CS

270

Using Pumping Lemma

• From previous slide, assume that the language of traces,

L = { # C # C # C # C … # C # C # },

involving no changes in the ID is Context Free

• Pumping Lemma gives me an N>0

• I choose the valid trace in L that is # q 1N # q 1N # q 1N #

• PL breaks this up into uvwxy, |vwx| ≤ N, |vx|>0 and

∀i≥0 uviwxiy ∈ L

• Case 1: vx contains some 1’s. Due to fact that |vwx| ≤ N, the 1’s can come

from at most two consecutive sequences of 1’s. If i=0, then we reduce 1’s in

at most two subsequences, but not in the third, leading to an imbalance,

and so the result is not in L.

• Case 2: vx contains no 1’s, then it must be either ‘q’, ‘#’, or ‘#q’. In any

case, if i=0 then we remove a state or a divider or both and the result is not

a sequence of fixed configurations, so is not in L.

• By PL, L is not a CFL.

2/20/2020 © UCF CS

271

Language of Traces is a CSL

• The easiest way to show this for Turing machine traces is to describe an

LBA that is given a string and wants to check if it is a valid trace.

• The LBA could make a pass over to be sure the string starts with a #, ends

with a #, has no 0’s immediately following a #, has a leading 0 immediately

prior to a # only if the character preceding that 0 is a state, and has exactly

one state between each pair of #’s.

• The LBA could then check each pair by copying the second member of a

pair under the first (2 tracks) and then marching over the two one character

at a time until a state is found in one or the other. It can then do checks that

are based on the Turing machine rules with there being a need to look at

only 4 characters in each track – state, character to immediate left of state

and up to two characters to immediate right of state on each track (think

about it). Of course, all parts of configuration that are not altered must be

checked to be sure they match on both tracks.

2/20/2020 © UCF CS

272

Non-Traces is a CFL

• There are two ways that a string might not be a valid trace.

• First, it might be ill-formed, but we can easily check if a word looks like a

trace. If not, it is in the complement of valid traces

• Second, we can check pairs of configurations, # Ci # Ci+1 to see if there is a

transcription error; that is, we can check to see if it is the case that Ci+1 does

not follow from Ci in a valid trace. This is a non-deterministic process where

we “guess” which pair might be in error and then, if the guess is correct, we

accept the string as a bad one that just looks like a trace.

• How hard is it to check for one bad transcription? Well, as noted above it

starts with a guess, but then we must check. If it’s a TM trace, we use

alternating ID reversals, so such a pair is either # Ci # Ci+1
R or # Ci

R # Ci+1.

Checking an error here is just looking as was described with the LBA single

step check and can be done with a stack. What the stack cannot do is look

at sequences longer than single pairs.

2/20/2020 © UCF CS

273

Traces of FRS with Residues

• I have chosen, once again to use the Factor Replacement Systems,
but this time, Factor Systems with Residues.
The rules are unordered and each is of the form
a x + b → c x + d

• These systems need to overcome the lack of ordering when
simulating Register Machines. This is done by
j. INCr[i] pn+j x → pn+i pr x
j. DECr[s, f] pn+j pr x → pn+s x

pn+j pr x + k pn+j → pn+f pr x + k pn+f , 1 ≤ k < pr

We also add the halting rule associated with m+1 of

pn+m+1 x → 0

• Thus, halting is equivalent to producing 0. We can also add one
more rule that guarantees we can reach 0 on both odd and even
numbers of moves

0 → 0

2/20/2020 © UCF CS

274

Intersection of CFLs

• Let (n, ((a1,b1,c1,d1) , … ,(ak,bk,ck,dk)) be some factor replacement
system with residues. Define grammars G1 and G2 by using the 4k+2 rules

G : Fi → 1aiFi1
ci | 1ai+bi#1ci+di 1 ≤ i ≤ k

S1 → # Fi S1 | # Fi # 1 ≤ i ≤ k

S2 → # 1x0S11
z0# Z0 is 0 for us

G1 starts with S1 and G2 with S2

• Thus, using the notation of writing Y in place of 1Y,

L1 = L(G1) = { #Y0 # Y1 # Y2 # Y3 # … # Y2j # Y2j+1 # }

where Y2i  Y2i+1 , 0 ≤ i ≤ j.

This checks the even/odd steps of an even length computation.

But, L2 = L(G2) = { #X0 # X1 # X2 # X3 # X4 # … # X2k-1 # X2k# Z0 # }

where X2i-1  X2i , 1 ≤ i ≤ k.

This checks the odd/even steps of an even length computation.

• Given that the intersection of two CFLs is at worst a CSL, we now have an
indirect way of showing that the valid terminating traces are a CSL.

2/20/2020 © UCF CS

275

Intersection Continued

Now, X0 is chosen as some selected input value to the
Factor System with Residues, and Z0 is the unique value
(0 in our case) on which the machine halts. But,

L1  L2 = {#X0 # X1 # X2 # X3 # X4 # … # X2k-1 # X2k# Z0 # }

where Xi  Xi+1 , 0 ≤ i < 2k, and X2k  Z0 . This checks
all steps of an even length computation. But our original
system halts if and only if it produces 0 (Z0) in an even
(also odd) number of steps. Thus the intersection is
non-empty just in case the Factor System with residue
eventually produces 0 when started on X0, just in case
the Register Machine halts when started on the register
contents encoded by X0.
This is an independent proof of the undecidability of the
non-empty intersection problem for CFGs and the non-
emptiness problem for CSGs.

2/20/2020 © UCF CS

2/20/2020 © UCF CS 276

What’s a CSL or CFL?

• Given an FRS with Residue
– The set of valid traces is Context Sensitive

(can prove by fact that intersection of two CFLs is a CSG or by
direct construction or by describing an LBA that accepts this
language)

– The set of valid traces is not Context Free
(can use Pumping Lemma for this like earlier)

– The complement of the valid traces is Context Free; that is, the
set of invalid traces of M is Context Free (just one mistake
required)

– The set of valid terminating traces is Context Sensitive but not
Context Free (same as above)

– The complement of the valid terminating traces is Context Free;
again, this requires just one mistake

Quotients of CFLs (concept)

Let L1 = L(G1) = { $ # Y0 # Y1 # Y2 # Y3 # … # Y2j # Y2j+1 # }

where Y2i  Y2i+1 , 0 ≤ i ≤ j.

This checks the even/odd steps of an even length computation.

Now, let L2=L(G2)={X0 $ # X0 # X1 # X2 # X3 # X4 # … # X2k-1 # X2k# Z0 #}

where X2i-1  X2i , 1 ≤ i ≤ k and Z0 is a unique halting configuration.

This checks the odd/steps of an even length computation and includes
an extra copy of the starting number prior to its $.

Now, consider the quotient of L2 / L1 . The only way a member of L1
can match a final substring in L2 is to line up the $ signs. But then
they serve to check out the validity and termination of the
computation. Moreover, the quotient leaves only the starting point
(the one on which the machine halts.) Thus,

L2 / L1 = { X0 | the system being traced halts}.

Since deciding the members of an re set is in general undecidable, we
have shown that membership in the quotient of two CFLs is also
undecidable.
Note: Intersection of two CFLs is a CSL but quotient of two CFLs is an
re set and, in fact, all re sets can be specified by such quotients.

2/20/2020 277© UCF CS

278

Quotients of CFLs (precise)

• Let (n, ((a1,b1,c1,d1) , … ,(ak,bk,ck,dk)) be some factor replacement system with
residues. Define grammars G1 and G2 by using the 4k+4 rules

G : Fi → 1aiFi1
ci | 1ai+bi#1ci+di 1 ≤ i ≤ k

T1 → # Fi T1 | # Fi # 1 ≤ i ≤ k

A → 1 A 1 | $ #

S1 → $T1

S2 → A T1 # 1z0 # Z0 is 0 for us

G1 starts with S1 and G2 with S2

• Thus, using the notation of writing Y in place of 1Y,

L1 = L(G1) = { $ #Y0 # Y1 # Y2 # Y3 # … # Y2j # Y2j+1 # }

where Y2i  Y2i+1 , 0 ≤ i ≤ j.

This checks the even/odd steps of an even length computation.

But, L2 = L(G2) = { X $ #X0 # X1 # X2 # X3 # X4 # … # X2k-1 # X2k# Z0 # }

where X2i-1  X2i , 1 ≤ i ≤ k and X = X0

This checks the odd/steps of an even length computation, and includes

an extra copy of the starting number prior to its $.

2/20/2020 © UCF CS

279

Summarizing Quotient

Now, consider the quotient L2 / L1 where L1
and L2 are the CFLs on prior slide. The only
way a member of L1 can match a final substring
in L2 is to line up the $ signs. But then they
serve to check out the validity and termination of
the computation. Moreover, the quotient leaves
only the starting number (the one on which the
machine halts.) Thus,

L2 / L1 = { X | the system F halts on zero }.

Since deciding the members of an re set is in
general undecidable, we have shown that
membership in the quotient of two CFLs is also
undecidable.

2/20/2020 © UCF CS

280

Traces and Type 0

• Here, it is easier to show a simulation of a Turing machine than of an FRS.

• Assume we are given some machine M, with Turing table T (using Post notation). We
assume a tape alphabet of  that includes a blank symbol B.

• Consider a starting configuration C0. Our rules will be
S → # C0 # where C0 = αq0aβ is initial ID

q a → s b if q a b s  T

b q a x → b a s x if q a R s  T, a,b,x  

b q a # → b a s B # if q a R s  T, a,b  

q a x → # a s x if q a R s  T, a,x  , a≠B

q a # → # a s B # if q a R s  T, a  , a≠B

q a x → # s x # if q a R s  T, x  , a=B

q a # → # s B # if q a R s  T, a=B

b q a x → s b a x if q a L s  T, a,b,x  

q a x → # s B a x if q a L s  T, a,x  

b q a # → s b a # if q a L s  T, a,b  , a≠B

q a # → # s B a # if q a L s  T, a  , a≠B

b q a # → s b # if q a L s  T, b  , a=B

q a # → # s B # if q a L s  T, a=B

f → l if f is a final state

→ l just cleaning up the dirty linen

2/20/2020 © UCF CS

281

CSG and Undecidability

• We can almost do anything with a CSG that can be done with a Type 0
grammar. The only thing lacking is the ability to reduce lengths, but we can
throw in a character that we think of as meaning “deleted”. Let’s use the
letter d as a deleted character and use the letter e to mark both ends of a
word.

• Let G = (V, T, P , S) be an arbitrary Type 0 grammar.

• Define the CSG G’ = (V  {S’, D}, T  {d, e}, S’, P’), where P’ is
S’ → e S e

D x → x D when x  V  T

D e → e d push the delete characters to far right

a → b where a → b  P and |a| ≤ |b|

a → bDk where a → b  P and |a| - |b| = k > 0

• Clearly, L(G’) = { e w e dm | w  L(G) and m≥0 is some integer }

• For each w  L(G), we cannot, in general, determine for which values of m,
e w e dm  L(G’). We would need to ask a potentially infinite number of
questions of the form
“does e w e dm  L(G’)” for some m≥0 to determine if w  L(G).
That’s a semi-decision procedure because m can be unbounded above.

2/20/2020 © UCF CS

282

Some Consequences

• CSGs are not closed under Init, Final, Mid, quotient with

regular sets, substitution and homomorphism (okay for

l-free homomorphism and non-length reducing

substitutions)

• We also have that the emptiness problem is undecidable

from this result. That gives us two proofs of this one

result.

• For Type 0, emptiness and even the membership

problems are undecidable.

2/20/2020 © UCF CS

283

Undecidability

• Is L =, for CSL, L? PCP reduction

• Is L=*, for CFL (CSL), L? Trace Complement

• Is L1=L2 for CFLs (CSLs), L1, L2? L1 = *

• Is L1L2 for CFLs (CSLs), L1, L2? L1 = *

• Is L1L2= for CFLs (CSLs), L1, L2? PCP reduction

• Is L regular, for CFL (CSL), L? Think about it

• Is L1L2 a CFL for CFLs, L1, L2? Think about it

• Is ~L CFL, for CFL, L? Think about it

2/20/2020 UCF @ CS

284

More Undecidability

• Is CFL, L, ambiguous? PCP

• Is L=L2, L a CFL? Will Do

• Is L1/L2 finite, L1 and L2 CFLs?

Language is any RE set

• Membership in L1/L2, L1 and L2 CFLs?

Language is any RE set

2/20/2020 UCF @ CS

Summary of Grammar

Results

286

Decidability

• Everything about regular

• Membership in CFLs and CSLs

– CKY for CFLs

• Emptiness for CFLs

2/20/2020 © UCF CS

287

Undecidability

• Is L =, for CSL, L?

• Is L=*, for CFL (CSL), L?

• Is L1=L2 for CFLs (CSLs), L1, L2?

• Is L1L2 for CFLs (CSLs), L1, L2?

• Is L1L2= for CFLs (CSLs), L1, L2?

2/20/2020 © UCF CS

288

More Undecidability

• Is CFL, L, ambiguous?

• Is L=L2, L a CFL?

• Does there exist a finite n, Ln=LN+1?

• Is L1/L2 finite, L1 and L2 CFLs?

• Membership in L1/L2, where L1 and L2 are

CFLs?

2/20/2020 © UCF CS

289

Word to Grammar Problem

• Recast semi-Thue system making all
symbols non-terminal, adding S and V to
non-terminals and terminal set ={a}

G: S → h1xq10h

hq0h → V

V → aV

V → l

• xL(M) iff L(G) ≠ Ø iff L(G) infinite
iff l  L(G) iff a  L(G) iff L(G) = *

2/20/2020 © UCF CS

290

Consequences for PSG

• Unsolvables
– L(G) = Ø

– L(G) = *

– L(G) infinite

– w  L(G), for arbitrary w

– L(G)  L(G2)

– L(G) = L(G2)

• Latter two results follow when have

– G2: S → aS | l a

2/20/2020 © UCF CS

Finite Convergence for

Concatenation of Context-Free

Languages

Relation to Real-Time

(Constant Time) Execution

Powers of CFLs

Let G be a context free grammar.

Consider L(G)n

Question1: Is L(G) = L(G)2?

Question2: Is L(G)n = L(G)n+1, for some
finite n>0?

These questions are both undecidable.

Think about why question1 is as hard as
whether or not L(G) is *.

Question2 requires much more thought.
2/20/2020 © UCF CS 292

L(G) = L(G)2?

• The problem to determine if L = * is Turing

reducible to the problem to decide if

L • L  L, so long as L is selected from a

class of languages C over the alphabet  for

which we can decide if   {l}  L.

• Corollary 1:

The problem “is L • L = L, for L context free

or context sensitive?” is undecidable

2/20/2020 © UCF CS 293

L(G) = L(G)2? is undecidable

• Question: Does L • L get us anything new?

– i.e., Is L • L = L?

• Membership in a CFL is decidable.

• Claim is that L = * iff

(1)   {l}  L ; and

(2) L • L = L

• Clearly, if L = * then (1) and (2) trivially hold.

• Conversely, we have *  L*=  n0 Ln  L

– first inclusion follows from (1); second
from (2)

2/20/2020 © UCF CS 294

Finite Power Problem

• The problem to determine, for an arbitrary
context free language L, if there exist a finite
n such that Ln = Ln+1 is undecidable.

• L1 = { C1# C2
R $ |

C1, C2 are configurations },

• L2 = { C1#C2
R$C3#C4

R … $C2k-1#C2k
R$ | where

k  1 and, for some i, 1  i < 2k, Ci M Ci+1 is

false },

• L = L1  L2  {l}.

2/20/2020 © UCF CS 295

Undecidability of n Ln = Ln+1

• L is context free.

• Any product of L1 and L2, which contains L2 at least
once, is L2. For instance, L1 • L2 = L2 • L1 = L2 • L2 =
L2.

• This shows that (L1  L2)
n = L1

n  L2.

• Thus, Ln = {l}  L1  L1
2 …  L1

n  L2.

• Analyzing L1 and L2 we see that L1
n  L2  L2 just in

case there is a word C1 # C2
R $ C3 # C4

R … $ C2n-1 #
C2n

R $ in L1
n that is not also in L2.

• But then there is some valid trace of length 2n.

• L has the finite power property iff M executes in
constant time.

2/20/2020 © UCF CS 296

Missing Step

• We have that CT (Constant-Time) is many-one

reducible to Finite Power Problem (FPC) for

CFLs

• This means that if CT is unsolvable, so is FPC

for CFLs.

• However, we still lack a proof that CT is

unsolvable. I am keeping that open as one of the

problems that you folks can attack in your

presentation. It takes two papers to get here. I’ll

document that.

2/20/2020 © UCF CS 297

Undecidability of Finite

Convergence for Operators on

Formal Languages

Relation to Real-Time

(Constant Time) Execution

299

Simple Operators

• Concatenation

– A • B = { xy | x  A & y  B }

• Insertion

– A  B = { xyz | y  A, xz  B, x, y, z  *}

– Clearly, since x can be l, A • B  A  B

2/20/2020 © UCF CS

300

K-insertion

• A  [k] B = { x1y1x2y2 … xkykxk+1 |

y1y2 … yk  A,

x1x2 … xkxk+1  B,

xi, yj  *}

• Clearly, A • B  A  [k] B , for all k>0

2/20/2020 © UCF CS

301

Iterated Insertion

• A (1) [n] B = A [n] B

• A (k+1) [n] B = A [n] (A (k) [n] B)

2/20/2020 © UCF CS

302

Shuffle

• Shuffle (product and bounded product)

– A  B =  j  1 A [j] B

– A [k] B =  1jk A [j] B = A [k] B

• One is tempted to define shuffle product as

A  B = A [k] B where

k = m y [A [j] B = A [j+1] B]

but such a k may not exist – in fact, we will show

the undecidability of determining whether or not

k exists

2/20/2020 © UCF CS

303

More Shuffles

• Iterated shuffle

– A 0 B = A

– A k +1 B = (A [k] B)  B

• Shuffle closure

– A * B =  k  0 (A [k] B)

2/20/2020 © UCF CS

304

Crossover

• Unconstrained crossover is defined by

A u B = { wz, yx | wxA and yzB}

• Constrained crossover is defined by

A c B = { wz, yx | wxA and yzB,

|w| = |y|, |x| = |z| }

2/20/2020 © UCF CS

305

Who Cares?

• People with no real life (me?)

• Insertion and a related deletion operation are

used in biomolecular computing and

dynamical systems

• Shuffle is used in analyzing concurrency as

the arbitrary interleaving of parallel events

• Crossover is used in genetic algorithms

2/20/2020 © UCF CS

306

Some Known Results

• Regular languages, A and B

– A • B is regular

– A  [k] B is regular, for all k>0

– A  B is regular

– A * B is not necessarily regular

• Deciding whether or not A * B is regular is an

open problem

2/20/2020 © UCF CS

307

More Known Stuff

• CFLs, A and B

– A • B is a CFL

– A  B is a CFL

– A  [k] B is not necessarily a CFL, for k>1

• Consider A=anbn; B = cmdm and k=2

• Trick is to consider (A  [2] B)  a*c*b*d*

– A  B is not necessarily a CFL

– A * B is not necessarily a CFL

• Deciding whether or not A * B is a CFL is an open problem

2/20/2020 © UCF CS

308

Immediate Convergence

• L = L2 ?

• L = L L ?

• L = L  L ?

• L = L * L ?

• L = L c L ?

• L = L u L ?

2/20/2020 © UCF CS

309

Finite Convergence

• k>0 Lk = Lk+1

• k0 L (k)  L = L (k+1)  L

• k0 L [k] L = L [k+1] L

• k0 L k L = L k +1 L

• k0 L (k) c L = L (k+1) c L

• k0 L (k) u L = L (k+1) u L

• k0 A (k)  B = A (k+1)  B

• k0 A [k] B = A [k+1] B

• k0 A k B = A k +1 B

• k0 A (k) c B = A (k+1) c B

• k0 A (k) u B = A (k+1) u L

2/20/2020 © UCF CS

310

Finite Power of CFG

• Let G be a context free grammar.

• Consider L(G)n

• Question1: Is L(G) = L(G)2?

• Question2: Is L(G)n = L(G)n+1, for some finite
n>0?

• These questions are both undecidable.

• Think about why question1 is as hard as
whether or not L(G) is *.

• Question2 requires much more thought.

2/20/2020 © UCF CS

311

1981 Results

• Theorem 1:

The problem to determine if L = * is Turing

reducible to the problem to decide if

L • L  L, so long as L is selected from a class

of languages C over the alphabet  for which we

can decide if   {l}  L.

• Corollary 1:

The problem “is L • L = L, for L context free or

context sensitive?” is undecidable

2/20/2020 © UCF CS

312

Proof #1

• Question: Does L • L get us anything new?
– i.e., Is L • L = L?

• Membership in a CSL is decidable.

• Claim is that L = * iff
(1)   {l}  L ; and

(2) L • L = L

• Clearly, if L = * then (1) and (2) trivially hold.

• Conversely, we have *  L*=  n0 Ln  L
– first inclusion follows from (1); second from (2)

2/20/2020 © UCF CS

313

Subsuming •

• Let  be any operation that subsumes

concatenation, that is A • B  A  B.

• Simple insertion is such an operation,

since A • B  A  B.

• Unconstrained crossover also subsumes

•,

A c B = { wz, yx | wxA and yzB}

2/20/2020 © UCF CS

314

L = L  L ?

• Theorem 2:

The problem to determine if L = * is

Turing reducible to the problem to decide if

L  L  L, so long as

L • L  L  L and L is selected from a

class of languages C over  for which we

can decide if

  {l}  L.

2/20/2020 © UCF CS

315

Proof #2

• Question: Does L  L get us anything new?
– i.e., Is L  L = L?

• Membership in a CSL is decidable.

• Claim is that L = * iff
(1)   {l}  L ; and

(2) L  L = L

• Clearly, if L = * then (1) and (2) trivially hold.

• Conversely, we have *  L*=  n0 Ln  L
– first inclusion follows from (1); second from (1), (2)

and the fact that L • L  L  L

2/20/2020 © UCF CS

Propositional Calculus

Axiomatizable Fragments

2/20/2020 © UCF CS 317

Propositional Calculus

• Mathematical of unquantified logical

expressions

• Essentially Boolean algebra

• Goal is to reason about propositions

• Often interested in determining

– Is a well-formed formula (wff) a tautology?

– Is a wff refutable (unsatisfiable)?

– Is a wff satisfiable? (classic NP-complete)

2/20/2020 © UCF CS 318

Tautology and Satisfiability

• The classic approaches are:

– Truth Table

– Axiomatic System (axioms and inferences)

• Truth Table

– Clearly exponential in number of variables

• Axiomatic Systems Rules of Inference

– Substitution and Modus Ponens

– Resolution / Unification

2/20/2020 © UCF CS 319

Proving Consequences

• Start with a set of axioms (all tautologies)

• Using substitution and MP
(P, P Q  Q)
derive consequences of axioms (also
tautologies, but just a fragment of all)

• Can create complete sets of axioms

• Need 3 variables for associativity, e.g.,
(p1  p2)  p3  p1  (p2  p3)

2/20/2020 © UCF CS 320

Some Undecidables

• Given a set of axioms,

– Is this set complete?

– Given a tautology T, is T a consequent?

• The above are even undecidable with one

axiom and with only 2 variables. I will

show this result shortly.

2/20/2020 © UCF CS 321

Refutation

• If we wish to prove that some wff, F, is a

tautology, we could negate it and try to

prove that the new formula is refutable

(cannot be satisfied; contains a logical

contradiction).

• This is often done using resolution.

2/20/2020 © UCF CS 322

Resolution

• Put formula in Conjunctive Normal Form
(CNF)

• If have terms of conjunction
(P  Q), (R  ~Q)
then can determine that (P  R)

• If we ever get a null conclusion, we have
refuted the proposition

• Resolution is not complete for derivation,
but it is for refutation

2/20/2020 © UCF CS 323

Axioms

• Must be tautologies

• Can be incomplete

• Might have limitations on them and on

WFFs, e.g.,

– Just implication

– Only n variables

– Single axiom

2/20/2020 © UCF CS 324

Simulating Machines

• Linear representations require

associativity, unless all operations can be

performed on prefix only (or suffix only)

• Prefix and suffix-based operations are

single stacks and limit us to CFLs

• Can simulate Post normal Forms with just

3 variables.

2/20/2020 © UCF CS 325

Diadic PIPC

• Diadic limits us to two variables

• PIPC means Partial Implicational

Propositional Calculus, and limits us to

implication as only connective

• Partial just means we get a fragment

• Problems

– Is fragment complete?

– Can F be derived by substitution and MP?

2/20/2020 © UCF CS 326

Living without Associativity

• Consider a two-stack model of a TM

• Could somehow use one variable for left

stack and other for right

• Must find a way to encode a sequence as

a composition of forms – that’s the key to

this simulation

2/20/2020 © UCF CS 327

Composition Encoding

• Consider (p  p), (p  (p  p)),

(p  (p  (p  p))), …

– No form is a substitution instance of any of the

other, so they can’t be confused

– All are tautologies

• Consider ((X  Y)  Y)

– This is just X  Y

2/20/2020 © UCF CS 328

Encoding

• Use (p  p) as form of bottom of stack

• Use (p  (p  p)) as form for letter 0

• Use (p  (p  (p  p))) as form for 1

• Etc.

• String 01 (reading top to bottom of stack) is

– (((p  p)  ((p  p)  ((p  p)  (p  p)))) 

(((p  p)  ((p  p)  ((p  p)  (p  p)))) 

((p  p)  ((p  p)  ((p  p)  (p  p))))))

Encoding

(p) abbreviates [p  p]

0(p) is [p  (p)] which is [p  [p  p]]

1(p) is [p  0(p)]

1(p) is [p  1(p)]

2(p) is [p  1 (p)]

3(p) is [p  2 (p)]

1(p) is [p  3 (p)]

2(p) is [p  1 (p)]

…

m(p) is [p  m-1 (p)]

2/20/2020 © UCF CS 329

2/20/2020 © UCF CS 330

Creating Terminal IDs

2/20/2020 © UCF CS 331

Reversing Print and Left

2/20/2020 © UCF CS 332

Reversing Right

Exam Prep

334

Sample Question

Let A and B be re sets. For each of the following, either
prove that the set is re, or give a counterexample that
results in some known non-re set.

Let A be semi decided by fA and B by fB

a) A  B: must be re as it is semi-decided by

fA  B (x) = t [stp(fA, x, t) || stp(fB, x, t)]

b) A  B: must be re as it is semi-decided by

fA  B (x) = t [stp(fA, x, t) && stp(fB, x, t)]

c) ~A: can be non-re. If ~A is always re, then all re
are recursive as any set that is re and whose
complement is re is decidable. However, A = K
is a non-rec, re set and so ~A is not re.

2/20/2020 © UCF CS

335

Sample Question

Given that the predicate STP and the

function VALUE are prf’s, show that we can

semi-decide

{ f | f evaluates to 0 for some input}

This can be shown re by the predicate

{f | <x,t> [stp(f,x,t) && value(f,x,t) = 0] }

2/20/2020 © UCF CS

336

Sample Question

Let S be an re (recursively enumerable), non-recursive
set, and T be re, non-empty, possibly recursive set.
Let E = { z | z = x + y, where x  S and y  T }.

(a) Can E be non re? No as we can let S and T
be semi-decided by fS and fT, resp., E is then
semi-dec. by
fE (z) = <x,y,t> [stp(fS, x, t) && stp(fT, y, t) &&
(z = value(fS, x, t) + value(fT, y, t))]

(b) Can E be re non-recursive? Yes, just let T =
{0}, then E = S which is known to be re, non-
rec.
(c) Can E be recursive? Yes, let T = , then
E = { x | x ≥ min (S) } which is a co-finite set
and hence rec.

2/20/2020 © UCF CS

337

Sample Question

Assuming TOTAL is undecidable, use

reduction to show the undecidability of

Incr = { f | x f (x+1) > f (x) }

Let f be arb.

Define Gf (x) = f (x) - f (x) + x

f  TOTAL iff xf (x) iff x Gf(x) iff

x f (x) - f (x) + x = x iff Gf  Incr

2/20/2020 © UCF CS

338

Sample Question

Let Incr = { f | x, f(x+1)>f(x) }.

Let TOTAL = { f | x, f(x) }.

Prove that Incr ≤m TOTAL.

Let f be arb.

Define Gf (x) = t[stp(f,x,t) &&

stp(f,x+1,t) && (value(f,x+1,t) >

value(f,x,t))]

f  Incr iff x f(x+1)>f(x) iff

x Gf (x) iff Gf  TOT
2/20/2020 © UCF CS

339

Sample Question

Let Incr = { f | x f(x+1)>f(x) }.

Use Rice’s theorem to show Incr is not

recursive.

Non-Trivial as

C0(x)=0  Incr; S(x)=x+1  Incr

Let f,g be arb. Such that x f(x)=g(x)

f  Incr iff x f(x+1)>f(x) iff

x g(x+1)>g(x) iff g  Incr

2/20/2020 © UCF CS

340

Sample Question

Let S be a recursive (decidable set), what

can we say about the complexity (recursive,

re non-recursive, non-re) of T, where T  S?

Nothing. Just let S = , then T could be

any subset of . There are an

uncountable number of such subsets

and some are clearly in each of the

categories above.

2/20/2020 © UCF CS

341

Sample Question

Let P = { f |  x [STP(f, x, x)] }. Why does

Rice’s theorem not tell us anything about the

undecidability of P?

This is not an I/O property as we can

have implementations of C0 that are

efficient and satisfy P and others that

do not.

2/20/2020 © UCF CS

