Sample Question#1. Part a

1. Prove that the following are equivalent

 a) S is an infinite recursive (decidable) set.

 b) S is the range of a monotonically increasing total recursive function.

 Note: f is monotonically increasing means that $\forall x \ f(x+1) > f(x)$.

 a) Implies b)

 Let $x \in S \iff \chi_S(x)$

 Define $f_R(0) = \mu x \ \chi_S(x); f_R(y+1) = \mu x \ [\chi_S(x) \&\& (x > f_R(y))]$

 Clearly, since S is non-empty, it has a least one value and so there exist a smallest value such that $\chi_S(x)$; we will enumerate this as $f_R(0) = \mu x \ \chi_S(x)$.

 Assume we have enumerated the y-th value in S as $f_R(y)$. Since S is infinite, there will be values in S greater than $f_R(y)$ and our search $\mu x \ [\chi_S(x) \&\& (x > f_R(y))]$ will find the next largest value for which $\chi_S(x)$. Thus, inductively, we will enumerate the elements of S in increasing order, as desired.
1. Prove that the following are equivalent

a) S is an infinite recursive (decidable) set.

b) S is the range of a monotonically increasing total recursive function.

 Note: f is monotonically increasing means that $\forall x \ f(x+1) > f(x)$.

b) Implies a)

Let S be enumerated by the monotonically increasing algorithm f_S. Define χ_S by

\[
\chi_S(x) = (f_S ((\mu z \ [f_S (z) \geq x]) == x)
\]

Clearly, if x is enumerated, it must appear before any values greater than it are enumerated and consequently this is a bounded search to find the first element listed that is at least as large as x. If this element is x, then x is in S, else it is not. The fact that f_S is monotonically increasing makes S infinite. The fact that it has a characteristic function makes it decidable.
Sample Question#2

2. Let A and B be re sets. For each of the following, either prove that the set is re, or give a counterexample that results in some known non-re set.

Let A be semi decided by f_A and B by f_B

a) $A \cup B$: must be re as it is semi-decided by

 $f_{A \cup B}(x) = \exists t \left[\text{stp}(f_A, x, t) \lor \text{stp}(f_B, x, t) \right]

 b) $A \cap B$: must be re as it is semi-decided by

 $f_{A \cap B}(x) = \exists t \left[\text{stp}(f_A, x, t) \land \text{stp}(f_B, x, t) \right]

 c) ~A: can be non-re. If ~A is always re, then all re are recursive as any set that is re and whose complement is re is decidable. However, $A = K$ is a non-rec, re set and so ~A is not re.
Sample Question#3

3. Present a demonstration that the \textit{even} function is primitive recursive.

\texttt{even(x) = 1 if x is even} \\
\texttt{even(x) = 0 if x is odd}

You may assume only that the base functions are \texttt{prf} and that \texttt{prf}'s are closed under a finite number of applications of composition and primitive recursion.

\textbf{DONE in class.}
Sample Question#4

4. Given that the predicate **STP** and the function **VALUE** are prf’s, show that we can semi-decide

\{ f \mid \varphi_f \text{ evaluates to 0 for some input} \}

This can be shown re by the predicate

\{ f \mid \exists x, t \ [\text{stp}(f, x, t) \land \text{value}(f, x, t) = 0] \}
Sample Question#5

5. Let \(S \) be an re (recursively enumerable), non-recursive set, and \(T \) be re, non-empty, possibly recursive set. Let \(E = \{ z \mid z = x + y, \text{where } x \in S \text{ and } y \in T \} \).

(a) Can \(E \) be non re? \textbf{No} as we can let \(S \) and \(T \) be semi-decided by \(f_S \) and \(f_T \), resp., \(E \) is then semi-dec. by \(f_E(z) = \exists <x,y,t> [\text{stp}(f_S, x, t) \&\& \text{stp}(f_T, y, t) \&\& (z = \text{value}(f_S, x, t) + \text{value}(f_T, y, t))] \)

(b) Can \(E \) be re non-recursive? \textbf{Yes}, just let \(T = \{0\} \), then \(E = S \) which is known to be re, non-rec.

(c) Can \(E \) be recursive? \textbf{Yes}, let \(T = \emptyset \), then \(E = \{ x \mid x \geq \min (S) \} \) which is a co-finite set and hence rec.
Sample Question#6

6. Assuming **TOTAL** is undecidable, use reduction to show the undecidability of
Incr = \{ f \mid \forall x \; \varphi_f(x+1) > \varphi_f(x) \}
Let f be arb.
Define \(G_f(x) = \varphi_f(x) - \varphi_f(x) + x \)
f \(\in \) TOTAL iff \(\forall x \varphi_f(x) \downarrow \) iff \(\forall x \; G_f(x) \downarrow \) iff
\(\forall x \; \varphi_f(x) - \varphi_f(x) + x = x \) iff \(G_f \in \text{Incr} \)
7. Let $\text{Incr} = \{ f \mid \forall x, \varphi_f(x+1) > \varphi_f(x) \}$. Let $\text{TOT} = \{ f \mid \forall x, \varphi_f(x) \downarrow \}$. Prove that $\text{Incr} \equiv_m \text{TOT}$. Note Q#6 starts this one.

Let f be arb.

Define $G_f(x) = \exists t[\text{stp}(f,x,t) \&\& \text{stp}(f,x+1,t) \&\& (\text{value}(f,x+1,t) > \text{value}(f,x,t))]$

$f \in \text{Incr}$ iff $\forall x \varphi_f(x+1) > \varphi_f(x)$ iff

$\forall x G_f(x) \downarrow$ iff $G_f \in \text{TOT}$
8. Let $\text{Incr} = \{ f \mid \forall x \varphi_f(x+1) > \varphi_f(x) \}$. Use Rice’s theorem to show Incr is not recursive.

Non-Trivial as

$C_0(x) = 0 \notin \text{Incr}; \quad S(x) = x + 1 \in \text{Incr}$

Let f, g be arb. Such that $\forall x \varphi_f(x) = \varphi_g(x)$

$f \in \text{Incr}$ iff $\forall x \varphi_f(x+1) > \varphi_f(x)$ iff

$\forall x \varphi_g(x+1) > \varphi_g(x)$ iff $g \in \text{Incr}$
Sample Question#9

9. Let S be a recursive (decidable set), what can we say about the complexity (recursive, re non-recursive, non-re) of T, where $T \subset S$?

Nothing. Just let $S = \emptyset$, then T could be any subset of \emptyset. There are an uncountable number of such subsets and some are clearly in each of the categories above.
Sample Question#10

10. Define the pairing function \(<x, y> \) and its two inverses \(<z>_1 \) and \(<z>_2 \), where if \(z = <x, y> \), then \(x = <z>_1 \) and \(y = <z>_2 \).

Right out of Notes.
11. Assume $A \leq_m B$ and $B \leq_m C$.
Prove $A \leq_m C$.

Done in class
12. Let $P = \{ f \mid \exists x [\text{STP}(f, x, x)] \}$. Why does Rice’s theorem not tell us anything about the undecidability of P?

This is not an I/O property as we can have implementations of C_0 that are efficient and satisfy P and others that do not.