Sample Question#1. Part a

- 1. Prove that the following are equivalent
- a) S is an infinite recursive (decidable) set.
- b) S is the range of a monotonically increasing total recursive function. Note: f is monotonically increasing means that $\forall x \ f(x+1) > f(x)$.
- a) Implies b)

Let $x \in S \Leftrightarrow \chi_S(x)$

Define $f_R(0) = \mu \times \chi_S(x)$; $f_R(y+1) = \mu \times [\chi_S(x) \&\& (x > f_R(y))]$

Clearly, since S is non-empty, it has a least one value and so there exist a smallest value such that $\chi_s(x)$; we will enumerate this as $f_R(0) = \mu \times \chi_s(x)$.

Assume we have enumerated the y-th value in S as f_R (y). Since S is infinite, there will be values in S greater than f_R (y) and our search μ x [χ_S (x) && (x > f_R (y)) will find the next largest value for which χ_S (x). Thus, inductively, we will enumerate the elements of S in increasing order, as desired.

Sample Question#1 Part b

- 1. Prove that the following are equivalent
- a) S is an infinite recursive (decidable) set.
- b) S is the range of a monotonically increasing total recursive function.

Note: f is monotonically increasing means that $\forall x \ f(x+1) > f(x)$.

b) Implies a)

Let S be enumerated by the monotonically increasing algorithm f_S . Define χ_S by

$$\chi_S(x) = (f_S((\mu z [f_S(z) \ge x]) == x)$$

Clearly, if x is enumerated, it must appear before any values greater than it are enumerated and consequently this is a bounded search to find the first element listed that is at least as large as x. If this element is x, then x is in S, else it is not. The fact that f_S is monotonically increasing makes S infinite. The fact that it has a characteristic function makes it decidable.

 Let A and B be re sets. For each of the following, either prove that the set is re, or give a counterexample that results in some known non-re set.

Let A be semi decided by f_A and B by f_B

- a) $A \cup B$: must be re as it is semi-decided by $f_{A \cup B}(x) = \exists t [stp(f_A, x, t) | | stp(f_B, x, t)]$
- b) A \cap B: must be re as it is semi-decided by $f_{A \cap B}(x) = \exists t [stp(f_A, x, t) \&\& stp(f_B, x, t)]$
- c) ~A: can be non-re. If ~A is always re, then all re are recursive as any set that is re and whose complement is re is decidable. However, A = K is a non-rec, re set and so ~A is not re.

3. Present a demonstration that the *even* function is primitive recursive.

even(x) = 1 if x is even

even(x) = 0 if x is odd

You may assume only that the base functions are prf and that prf's are closed under a finite number of applications of composition and primitive recursion.

DONE in class.

4. Given that the predicate **STP** and the function **VALUE** are prf's, show that we can semi-decide

```
{ f | \phi_f evaluates to 0 for some input}
This can be shown re by the predicate
{f | \exists < x,t > [stp(f,x,t) && value(f,x,t) = 0] }
```

- 5. Let S be an re (recursively enumerable), non-recursive set, and T be re, non-empty, possibly recursive set. Let $E = \{z \mid z = x + y, where x \in S \text{ and } y \in T \}$.
 - (a) Can E be non re? No as we can let S and T be semi-decided by f_S and f_T , resp., E is then semi-dec. by $f_E(z) = \exists \langle x,y,t \rangle [stp(f_S, x, t) \&\& stp(f_T, y, t) \&\& (z = value(f_S, x, t) + value(f_T, y, t))]$
 - (b) Can E be re non-recursive? Yes, just let T = {0}, then E = S which is known to be re, non-rec.
 - (c) Can E be recursive? Yes, let $T = \aleph$, then $E = \{ x \mid x \ge min (S) \}$ which is a co-finite set and hence rec.

6. Assuming TOTAL is undecidable, use reduction to show the undecidability of Incr = { f | ∀x φ_f (x+1) > φ_f (x) } Let f be arb.
Define G_f (x) = φ_f (x) - φ_f (x) + x f ∈ TOTAL iff ∀xφ_f (x)↓ iff ∀x G_f(x)↓ iff ∀x φ_f (x) - φ_f (x) + x = x iff G_f ∈ Incr

```
7. Let Incr = { f | \forall x, \phi_f(x+1) > \phi_f(x) }.
      Let TOT = { \mathbf{f} \mid \forall \mathbf{x}, \varphi_f(\mathbf{x}) \downarrow }.
      Prove that Incr \equiv_m TOT. Note Q#6 starts this
      one.
      Let f be arb.
      Define G_f(x) = \exists t[stp(f,x,t) \&\& stp(f,x+1,t)]
      && (value(f,x+1,t) > value(f,x,t))]
     f \in Incr iff \forall x \varphi_f(x+1) > \varphi_f(x) iff
      \forall x G_f(x) \downarrow iff G_f \in TOT
```

8. Let Incr = { f | ∀x φ_f(x+1)>φ_f(x) }. Use Rice's theorem to show Incr is not recursive.
 Non-Trivial as C₀(x)=0 ∉ Incr; S(x)=x+1 ∈ Incr

Let f,g be arb. Such that $\forall x \varphi_f(x) = \varphi_g(x)$

 $f \in Incr iff \forall x \phi_f(x+1) > \phi_f(x) iff$

 $\forall x \varphi_g(x+1) > \varphi_g(x) \text{ iff } g \in Incr$

9. Let S be a recursive (decidable set), what can we say about the complexity (recursive, re non-recursive, non-re) of T, where T ⊂ S?

Nothing. Just let $S = \frac{1}{5}$, then T could be any subset of $\frac{1}{5}$. There are an uncountable number of such subsets and some are clearly in each of the categories above.

10. Define the pairing function $\langle x,y \rangle$ and its two inverses $\langle z \rangle_1$ and $\langle z \rangle_2$, where if $z = \langle x,y \rangle$, then $x = \langle z \rangle_1$ and $y = \langle z \rangle_2$.

Right out of Notes.

11. Assume $\mathbf{A} \leq_{\mathsf{m}} \mathbf{B}$ and $\mathbf{B} \leq_{\mathsf{m}} \mathbf{C}$. Prove $\mathbf{A} \leq_{\mathsf{m}} \mathbf{C}$.

Done in class

12. Let $P = \{ f \mid \exists x [STP(f, x, x)] \}$. Why does Rice's theorem not tell us anything about the undecidability of P?

This is not an I/O property as we can have implementations of C_0 that are efficient and satisfy P and others that do not.