UNIVERSE OF SETS

NR (non-recursive) = (NRNC \cup \text{Co-RE}) - \text{REC}
Some Quantification Examples

• \(<f,x> \in \text{Halt} \iff \exists t \ [\text{STP}(f,x,t)]\) RE

• \(f \in \text{Total} \iff \forall x \exists t \ [\text{STP}(f,x,t)]\) NRNC

• \(f \in \text{NotTotal} \iff \exists x \forall t \ [\neg \text{STP}(f,x,t)]\) NRNC

• \(f \in \text{RangeAll} \iff \forall x \exists y \forall t \ [\text{STP}(f,y,t) \& \text{VALUE}(f,y,t)=x]\) NRNC

• \(f \in \text{RangeNotAll} \iff \exists x \forall y \forall t \ [\text{STP}(f,y,t) \Rightarrow \neg \text{VALUE}(f,y,t) \neq x]\) NRNC

• \(f \in \text{HasZero} \iff \exists x \forall t \ [\text{STP}(f,x,t) \& \text{VALUE}(f,x,t)=0]\) RE

• \(f \in \text{IsZero} \iff \forall x \exists t \ [\text{STP}(f,x,t) \& \text{VALUE}(f,x,t)=0]\) NRNC

• \(f \in \text{Empty} \iff \forall x \exists t \ [\neg \text{STP}(f,x,t)]\) Co-RE

• \(f \in \text{NotEmpty} \iff \exists x \forall t \ [\text{STP}(f,x,t)]\) RE
More Quantification Examples

• \(f \in \text{Identity} \iff \forall x \exists t \left[\text{STP}(f,x,t) \land \text{VALUE}(f,x,t)=x \right] \)
 NRNC

• \(f \in \text{NotIdentity} \iff \exists x \forall t \left[\sim\text{STP}(f,x,t) \lor \text{VALUE}(f,x,t) \neq x \right] \lor \exists x \forall t \left[\text{STP}(f,x,t) \Rightarrow \text{VALUE}(f,x,t) \neq x \right] \)
 NRNC

• \(f \in \text{Constant} = \forall <x,y> \exists t \left[\text{STP}(f,x,t) \land \text{STP}(f,y,t) \land \text{NRNC} \land \text{VALUE}(f,x,t)=\text{VALUE}(f,y,t) \right] \)
 NRNC

• \(f \in \text{Infinite} \iff \forall x \exists <y,t> \left[y \geq x \land \text{STP}(f,y,t) \right] \)
 NRNC

• \(f \in \text{Finite} \iff \exists x \forall <y,t> \left[y < x \lor \sim\text{STP}(f,y,t) \right] \lor \exists x \forall <y,t> \left[\text{STP}(f,y,t) \Rightarrow y < x \right] \lor \left[y \geq x \Rightarrow \sim\text{STP}(f,y,t) \right] \)
 NRNC

• \(f \in \text{RangeInfinite} \iff \forall x \exists <y,t> \left[\text{STP}(f,y,t) \land \text{VALUE}(f,y,t) \geq x \right] \)
 NRNC

• \(f \in \text{RangeFinite} \iff \exists x \forall <y,t> \left[\text{STP}(f,y,t) \Rightarrow \text{VALUE}(f,y,t) < x \right] \)
 NRNC

• \(f \in \text{Stutter} \iff \exists <x,y,t> \left[x \neq y \land \text{STP}(f,x,t) \land \text{STP}(f,y,t) \land \text{NRNC} \land \text{VALUE}(f,x,t) = \text{VALUE}(f,y,t) \right] \)
 RE
None of the above can be shown undecidable using Rice’s Theorem

In fact, reduction from known undecidables is also a problem for all but the first one which happens to be decidable.
Some Reductions and Rice Example

• **NotEmpty ≤ Halt**
 Let f be an arbitrary index
 Define $\forall y \ g_f(y) = \exists <x,t> \ \text{STP}(f,x,t)$
 $f \in \text{ENotempty} \iff <g_f,0> \in \text{Halt}$

• **Halt ≤ NotEmpty**
 Let f,x be an arbitrary index and input value
 Define $\forall y \ g_{f,x}(y) = f(x)$
 $<f,x> \in \text{Halt} \iff g_{f,x} \in \text{Empty}$

• **Note:** NotEmpty is RE-Complete

• **Rice:** NotEmpty is non-trivial $\text{Zero} \in \text{NotEmpty}; \uparrow \notin \text{NotEmpty}$
 Let f,g be arbitrary indices such that $\text{Dom}(f)=\text{Dom}(g)$
 $f \in \text{NotEmpty} \iff \text{Dom}(f) \neq \emptyset$ \hspace{1cm} By Definition
 $\iff \text{Dom}(g) \neq \emptyset$ \hspace{1cm} $\text{Dom}(g)=\text{Dom}(f)$
 $\iff g \in \text{NotEmpty}$
 Thus, Rice’s Theorem states that NotEmpty is undecidable.
More Reductions and Rice Example

- **Identity \(\leq \) Total**
 - Let \(f \) be an arbitrary index
 - Define \(g_f(x) = \mu y \ [f(x) = y \] \)
 - \(f \in \text{Identity} \iff g_f \in \text{Total} \)

- **Total \(\leq \) Identity**
 - Let \(f \) be an arbitrary index
 - Define \(g_f(x) = f(x) - f(x) + x \)
 - \(f \in \text{Total} \iff g_{f,x} \in \text{Identity} \)

- **Rice: Identity is non-trivial**
 - \(I(x) = x \in \text{Identity}; \text{Zero} \notin \text{Identity} \)
 - Let \(f,g \) be arbitrary indices such that \(\forall x \ f(x) = g(x) \)
 - \(f \in \text{Identity} \iff \forall x \ f(x) = x \) By Definition
 - \(\iff \forall x \ g(x) = x \)
 - \(\iff \forall x \ g(x) = f(x) \)
 - \(\iff g \in \text{Identity} \)
 - Thus, Rice’s Theorem states that Identity is undecidable
Even More Reductions and Rice Example

• Stutter ≤ Halt
 Let f be an arbitrary index
 Define ∀y g_f(y) = ∃<x,y,t> [x≠y & STP(f,x,t) & STP(f,y,t) &
 VALUE(f,x,t) = VALUE(f,y,t)]
 f ∈ Stutter ⇔ <g_f,0> ∈ Halt

• Halt ≤ Stutter
 Let f,x be an arbitrary index and input value
 Define ∀y g_{f,x}(y) = f(x)
 <f,x> ∈ Halt ⇔ g_{f,x} ∈ Stutter

• Note: Stutter is RE-Complete

• Rice: Stutter is non-trivial Zero∈Stutter; I(x)=x /∈ Stutter
 Let f,g be arbitrary indices such that ∀x f(x) = g(x)
 f ∈Stutter ⇔ ∃<x,y> [x≠y & f(x)=f(y)]
 ⇔ ∃<x,y> [x≠y & g(x)=g(y)]
 By Definition
 ∀x g(x) = f(x)
 ⇒ g ∈ Stutter
Thus, Rice’s Theorem states that Identity is undecidable
Yet More Reductions and Rice Example

• Constant ≤ Total
 Let f be an arbitrary index
 Define \(g_f(0) = f(0) \)
 \(g_f(y+1) = \mu y \ [f(y+1) = f(y)] \)
 \(f \in \text{Constant} \iff g_f \in \text{Total} \)

• Total ≤ Identity
 Let f be an arbitrary index
 Define \(g_f(x) = f(x) - f(x) \)
 \(f \in \text{Total} \iff g_f \in \text{Constant} \)

• Rice: Constant is non-trivial
 Zero \(\in \text{Constant}; I(x) = x \notin \text{Constant} \)
 Let \(f, g \) be arbitrary indices such that \(\forall x \ f(x) = g(x) \)
 \(f \in \text{Constant} \iff \exists C \forall x f(x) = C \) By Definition
 \(\iff \exists C \forall x g(x) = C \) \(\forall x g(x) = f(x) \)
 \(\iff g \in \text{Constant} \)
 Thus, Rice’s Theorem states that Identity is undecidable
Last Reductions and Rice Example

- **RangeAll ≤ Total**
 - Let \(f \) be an arbitrary index
 - Define \(g_f(x) = \exists y \ [f(y) = x \] \)
 - \(f \in \text{RangeAll} \iff g_f \in \text{Total} \)

- **Total ≤ RangeAll**
 - Let \(f \) be an arbitrary index
 - Define \(g_f(x) = f(x) - f(x) + x \)
 - \(f \in \text{Total} \iff g_f \in \text{RangeAll} \)

- **Rice:** RangeAll is non-trivial \(I(x)=x \in \text{RangeAll}; \ Zero \notin \text{RangeAll} \)
 - Let \(f, g \) be arbitrary indices such that \(\text{Range}(f) = \text{Range}(g) \)
 - \(f \in \text{RangeAll} \iff \text{Range}(f) = \mathbb{N} \) By Definition
 - \(\iff \text{Range}(f) = \mathbb{N} \) \(\text{Range}(g) = \text{Range}(f) \)
 - \(\iff g \in \text{RangeAll} \)
 - Thus, Rice’s Theorem states that Identity is undecidable
UNIVERSE OF SETS

NP

P

Co-NP

NP-Complete
Complexity Sample#1

<table>
<thead>
<tr>
<th>#</th>
<th>Concept</th>
<th>Description</th>
<th>Concept #</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Problem A is in NP</td>
<td>The classic NP-Complete problem</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>Problem A is in co-NP</td>
<td>A is the problem TOTAL (set of Algorithms)</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>Problem A is in P</td>
<td>A is decidable in deterministic polynomial time</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>Problem A is non-RE/non-Co-RE</td>
<td>If B is in NP then $B \leq_p A$</td>
<td>9</td>
</tr>
<tr>
<td>5</td>
<td>Problem A is NP-Complete</td>
<td>A is in RE and, if B is in RE, then $B \leq_m A$</td>
<td>8</td>
</tr>
<tr>
<td>6</td>
<td>Problem A is RE</td>
<td>A is verifiable in deterministic polynomial time</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>Problem A is Co-RE</td>
<td>A is in NP and if B is in NP then $B \leq_p A$</td>
<td>5</td>
</tr>
<tr>
<td>8</td>
<td>Problem A is RE-Complete</td>
<td>A is semi-decidable</td>
<td>6</td>
</tr>
<tr>
<td>9</td>
<td>Problem A is NP-Hard</td>
<td>A is the complement of B and B is RE</td>
<td>7</td>
</tr>
<tr>
<td>10</td>
<td>Satisfiability</td>
<td>A’s complement is in NP</td>
<td>2</td>
</tr>
</tbody>
</table>
Sample#2: 3SAT to SubsetSum

\[(\neg a + b + \neg c) \ (\neg a + \neg b + c)\]

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>(\neg a + b + \neg c)</th>
<th>(\neg a + \neg b + c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(\neg a)</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>b</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>(\neg b)</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>c</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>(\neg c)</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>C1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>C1’</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>C2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>C2’</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>
Sample#3: Scheduling

List Schedule: (T1,4), (T2,5), (T3,2), (T4,7), (T5,1), (T6,4), (T7,8)

<table>
<thead>
<tr>
<th>T1</th>
<th>T1</th>
<th>T1</th>
<th>T3</th>
<th>T3</th>
<th>T5</th>
<th>T6</th>
<th>T6</th>
<th>T6</th>
<th>T6</th>
<th>T7</th>
<th>T7</th>
<th>T7</th>
<th>T7</th>
<th>T7</th>
</tr>
</thead>
<tbody>
<tr>
<td>T2</td>
<td>T2</td>
<td>T2</td>
<td>T2</td>
<td>T4</td>
<td>T4</td>
<td>T4</td>
<td>T4</td>
<td>T4</td>
<td>T4</td>
<td>T4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sorted List Schedule: (T7,8), (T4,7), (T2,5), (T1,4), (T6,4), (T3,2), (T5,1)

<table>
<thead>
<tr>
<th>T7</th>
<th>T7</th>
<th>T7</th>
<th>T7</th>
<th>T7</th>
<th>T7</th>
<th>T7</th>
<th>T1</th>
<th>T1</th>
<th>T1</th>
<th>T1</th>
<th>T6</th>
<th>T6</th>
<th>T6</th>
<th>T6</th>
</tr>
</thead>
<tbody>
<tr>
<td>T4</td>
<td>T4</td>
<td>T4</td>
<td>T4</td>
<td>T4</td>
<td>T2</td>
<td>T2</td>
<td>T2</td>
<td>T2</td>
<td>T2</td>
<td>T3</td>
<td>T3</td>
<td>T5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>T2</th>
</tr>
</thead>
<tbody>
<tr>
<td>T3</td>
<td>T3</td>
<td>T5</td>
</tr>
</tbody>
</table>
Independent set (IS) is NP-Complete

• We represent each clause in an instance of 3SAT with a triangle, one node per literal. The key is that all nodes are connected in a triangle of nodes, so the best you can do is to choose one node per clause to participate in an independent set. By adding an edge between every instance of variable v and every instance of variable ~v, we guarantee that we cannot choose nodes labeled v and ~v as part of an independent set. Here, assume we have V Boolean variables.

• When the required independent set must be C, where C is the number of clauses, we must choose one node per clause and we must do this in a way so that no nodes labeled with a variable and its complement are chosen. That can only be done if there is an assignment to variables (true or false) that satisfy the original instance of 3SAT. Thus IS is NP-Hard. But, we can check a proposed independent set in time proportional to the size of the graph (which is actually linear in the size of the 3SAT problem). Thus IS is in P. In conclusion, IS is NP-Complete.
Sample#4: Independent Set

\[(a + \sim b + c) \ (\sim a + b + \sim c) \ (a + b + c) \ (\sim a + b + b) \]

Place an edge between every node labeled V and every node labeled \(\sim V \), where V can be a, b or c.
Vertex Cover (VC) is NP-Complete

• We represent each clause (assume there are C of them) in an instance of 3SAT with a triangle, one node per literal. One key is that two nodes in each clause triangle must be chosen to cover the three internal edges. We represent each assignment to a variable v (assume there are V variables) by a pair of connected nodes labeled v and ~v. The second key is that we must choose precisely one of v or ~v for each variable to cover the edge that connects its pair. Thus, the minimum cover set contains 2C+V nodes.

• We add an edge from each v and to all literals v in clauses, and each ~v to all literals ~v in clauses. To cover all the edges added here for the variable nodes, we must choose nodes in each clause that cover edges from variable nodes that are not chosen in the variable pair. If all clauses have at least one of these incoming edges already covered (we chose an assignment to the variable that matches a literal in this clause), then we will be able to cover all internal edges in each clause and all edges entering the clause from a variable pair, by just choosing two nodes in the clause.

• Choosing 2C+V nodes that cover all edges can only be done if there is an assignment to variables (true or false) that satisfy the original instance of 3SAT. Thus VC is NP-Hard. But, we can check a proposed cover set of vertices in time proportional to the size of the graph (which is actually linear in the size of the 3SAT problem). Thus VC is in P. In conclusion, VC is NP-Complete.
Sample # 5: VC Gadgets

Variable Gadgets

Clause Gadgets
Sample#6: Vertex Cover

(a + \sim b + c) (\sim a + b + \sim c) (a + b + c) (\sim a + b + b)

Variable Nodes/Edges

\begin{align*}
\text{a} & \quad \sim a \\
\text{b} & \quad \sim b \\
\text{c} & \quad \sim c
\end{align*}

Place an edge between every variable node labeled V and every clause node labeled \sim V, where V can be a, b or c.