
RE Co-RE

R
E
C

UNIVERSE OF SETS

NRNC

NR (non-recursive)
= (NRNC ∪ Co-RE) - REC

RE-

Complete

Some Quantification Examples

• <f,x> ∈ Halt ⇔∃t [STP(f,x,t)] RE

• f ∈ Total ⇔∀x∃t [STP(f,x,t)] NRNC

• f ∈ NotTotal ⇔∃x∀t [~STP(f,x,t)] NRNC

• f ∈ RangeAll ⇔∀x∃<y,t> [STP(f,y,t) &VALUE(f,y,t)=x] NRNC

• f ∈ RangeNotAll ⇔∃x∀<y,t> [STP(f,y,t) ⇒ VALUE(f,y,t)≠x] NRNC

• f ∈ HasZero ⇔∃<x,t> [STP(f,x,t) & VALUE(f,x,t)=0] RE

• f ∈ IsZero ⇔∀x∃t [STP(f,x,t) & VALUE(f,x,t)=0] NRNC

• f ∈ Empty ⇔∀<x,t> [~STP(f,x,t)] Co-RE

• f ∈ NotEmpty⇔∃ <x,t> [STP(f,x,t)] RE

More Quantification Examples

• f ∈ Identity ⇔∀x∃t [STP(f,x,t) & VALUE(f,x,t)=x] NRNC
• f ∈ NotIdentity⇔∃x∀t [~STP(f,x,t) | VALUE(f,x,t)≠x] or NRNC

∃x∀t [STP(f,x,t) ⇒ VALUE(f,x,t)≠x]
• f ∈ Constant = ∀<x,y>∃t [STP(f,x,t) & STP(f,y,t) & NRNC

VALUE(f,x,t)=VALUE(f,y,t)]
• f ∈ Infinite ⇔∀x∃<y,t> [y≥x & STP(f,y,t)] NRNC
• f ∈ Finite⇔∃x∀<y,t> [y<x | ~STP(f,y,t)] or NRNC

∃x∀<y,t> [STP(f,y,t) ⇒ y<x] or [y≥x⇒ ~STP(f,y,t)]
• f ∈ RangeInfinite ⇔∀x∃<y,t> [STP(f,y,t) & VALUE(f,y,t)≥x] NRNC
• f ∈ RangeFinite ⇔∃x∀<y,t> [STP(f,y,t) ⇒ VALUE(f,y,t)<x] NRNC
• f ∈ Stutter ⇔∃<x,y,t> [x≠y & STP(f,x,t) & STP(f,y,t) & RE

VALUE(f,x,t) = VALUE(f,y,t)]

Even More Quantification Examples

• <f,x> ∈ Fast20 ⇔ [STP(f,x,20)] REC

• f ∈ FastOne20 ⇔∃x [STP(f,x,20)] RE

• f ∈ FastAll20 ⇔∀x [STP(f,x,20)] Co-RE

• <f,x,K,C> ∈ LinearKC⇔ [STP(f,x,K*x+C)] REC

• <f,K,C>∈ LinearKCOne ⇔∃x [STP(f,x,K*x+C)] RE

• <f,K,C> ∈ LinearKCAll⇔∀x [STP(f,x,K*x+C)] Co-RE

• None of the above can be shown undecidable using Rice’s Theorem

• In fact, reduction from known undecidables is also a problem for all but
the first one which happens to be decidable.

Some Reductions and Rice Example

• NotEmpty ≤ Halt
Let f be an arbitrary index
Define ∀y gf(y) = ∃<x,t> STP(f,x,t)
f ∈ ENotmpty⇔ <gf,0> ∈ Halt

• Halt ≤ NotEmpty
Let f,x be an arbitrary index and input value
Define ∀y gf,x(y) = f(x)
<f,x> ∈ Halt⇔ gf,x ∈ Empty

• Note: NotEmpty is RE-Complete

• Rice: NotEmpty is non-trivial Zero∈NotEmpty; ↑∉NotEmpty
Let f,g be arbitrary indices such that Dom(f)=Dom(g)
f ∈NotEmpty⇔ Dom(f) ≠ ∅ By Definition

⇔ Dom(g) ≠ ∅ Dom(g)=Dom(f)
⇔ g ∈NotEmpty
Thus, Rice’s Theorem states that NotEmpty is undecidable.

More Reductions and Rice Example

• Identity ≤ Total
Let f be an arbitrary index
Define gf(x) = μy [f(x) = x]
f ∈ Identity ⇔ gf ∈ Total

• Total ≤ Identity
Let f be an arbitrary index
Define gf(x) = f(x)-f(x) + x
f ∈ Total ⇔ gf,x ∈ Identity

• Rice: Identity is non-trivial I(x)=x∈Identity; Zero∉Identity
Let f,g be arbitrary indices such that ∀x f(x) = g(x)
f ∈Identity ⇔ ∀x f(x)=x By Definition

⇔ ∀x g(x)=x ∀x g(x) = f(x)
⇔ g ∈Identity
Thus, Rice’s Theorem states that Identity is undecidable

Even More Reductions and Rice Example

• Stutter ≤ Halt
Let f be an arbitrary index
Define ∀y gf(y) = ∃<x,y,t> [x≠y & STP(f,x,t) & STP(f,y,t) &

VALUE(f,x,t) = VALUE(f,y,t)]
f ∈ Stutter ⇔ <gf,0> ∈ Halt

• Halt ≤ Stutter
Let f,x be an arbitrary index and input value
Define ∀y gf,x(y) = f(x)
<f,x> ∈ Halt⇔ gf,x ∈ Stutter

• Note: Stutter is RE-Complete

• Rice: Stutter is non-trivial Zero∈Stutter; I(x)=x ∉ Stutter
Let f,g be arbitrary indices such that ∀x f(x) = g(x)
f ∈Stutter ⇔ ∃<x,y> [x≠y & f(x)=f(y)] By Definition

⇔ ∃<x,y> [x≠y & g(x)=g(y)] ∀x g(x) = f(x)
⇔ g ∈Stutter
Thus, Rice’s Theorem states that Identity is undecidable

Yet More Reductions and Rice Example

• Constant ≤ Total
Let f be an arbitrary index
Define gf(0) = f(0)

gf(y+1) = μy [f(y+1) = f(y)]
f ∈ Constant ⇔ gf ∈ Total

• Total ≤ Identity
Let f be an arbitrary index
Define gf(x) = f(x)-f(x)
f ∈ Total ⇔ gf ∈ Constant

• Rice: Constant is non-trivial Zero∈Constant; I(x)=x ∉ Constant
Let f,g be arbitrary indices such that ∀x f(x) = g(x)
f ∈Constant ⇔ ∃C∀x f(x)=C By Definition

⇔ ∃C∀x g(x)=C ∀x g(x) = f(x)
⇔ g ∈Constant
Thus, Rice’s Theorem states that Identity is undecidable

Last Reductions and Rice Example

• RangeAll ≤ Total
Let f be an arbitrary index
Define gf(x) = ∃y [f(y) = x]
f ∈ RangeAll⇔ gf ∈ Total

• Total ≤ RangeAll
Let f be an arbitrary index
Define gf(x) = f(x)-f(x) + x
f ∈ Total ⇔ gf ∈ RangeAll

• Rice: RangeAll is non-trivial I(x)=x ∈ RangeAll; Zero ∉ RangeAll
Let f,g be arbitrary indices such that Range(f) = Range(g)
f ∈ RangeAll⇔ Range(f) = א By Definition

⇔ Range(f) = א Range(g) = Range(f)
⇔ g ∈ RangeAll
Thus, Rice’s Theorem states that Identity is undecidable

NP Co-NP

UNIVERSE OF SETS

P
NP-

Complete

Complexity Sample#1

Concept Description Concept

1 Problem A is in NP The classic NP-Complete problem 10

2 Problem A is in co-NP A is the problem TOTAL (set of Algorithms) 4

3 Problem A is in P A is decidable in deterministic polynomial time 3

4 Problem A is non-RE/non-Co-RE If B is in NP then B ≤P A 9

5 Problem A is NP-Complete A is in RE and, if B is in RE, then B ≤m A 8

6 Problem A is RE A is verifiable in deterministic polynomial time 1

7 Problem A is Co-RE A is in NP and if B is in NP then B ≤P A 5

8 Problem A is RE-Complete A is semi-decidable 6

9 Problem A is NP-Hard A is the complement of B and B is RE 7

10 Satisfiability A’s complement is in NP 2

Sample#2: 3SAT to SubsetSum

a b c ~a + b + ~c ~a + ~b + c

a 1 0 0 0 0

~a 1 0 0 1 1

b 0 1 0 1 0

~b 0 1 0 0 1

c 0 0 1 0 1

~c 0 0 1 1 0

C1 0 0 0 1 0

C1’ 0 0 0 1 0

C2 0 0 0 0 1

C2’ 0 0 0 0 1

1 1 1 3 3

(~a + b + ~c) (~a + ~b + c)

Sample#3: Scheduling

T1 T1 T1 T1 T3 T3 T5 T6 T6 T6 T6 T7 T7 T7 T7 T7 T7 T7 T7

T2 T2 T2 T2 T2 T4 T4 T4 T4 T4 T4 T4

T7 T7 T7 T7 T7 T7 T7 T7 T1 T1 T1 T1 T6 T6 T6 T6

T4 T4 T4 T4 T4 T4 T4 T2 T2 T2 T2 T2 T3 T3 T5

List Schedule (T1,4), (T2,5), (T3,2), (T4,7), (T5,1), (T6,4), (T7,8)

Sorted List Schedule (T7,8), (T4,7), (T2,5), (T1,4), (T6,4), (T3,2), (T5,1)

Independent set (IS) is NP-Complete

• We represent each clause in an instance of 3SAT with a triangle, one node per
literal. The key is that all nodes are connected in a triangle of nodes, so the best
you can do is to choose one node per clause to participate in an independent set.
By adding an edge between every instance of variable v and every instance of
variable ~v, we guarantee that we cannot choose nodes labeled v and ~v as part
of an independent set. Here, assume we have V Boolean variables

• When the required independent set must be C, where C is the number of clauses,
we must choose one node per clause and we must do this in a way so that no
nodes labeled with a variable and its complement are chosen. That can only be
done if there is an assignment to variables (true or false) that satisfy the original
instance of 3SAT. Thus IS is NP-Hard. But, we can check a proposed independent
set in time proportional to the size of the graph (which is actually linear in the
size of the 3SAT problem). Thus IS is in P. In conclusion, IS is NP-Complete.

Sample#4: Independent Set
(a + ~b + c) (~a + b + ~c) (a + b + c) (~a + b + b)

Place an edge between every node
labeled V and every node labeled ~V,
where V can be a, b or c.

Vertex Cover (VC) is NP-Complete

• We represent each clause (assume there are C of them) in an instance of 3SAT with a triangle, one
node per literal. One key is that two nodes in each clause triangle must be chosen to cover the
three internal edges. We represent each assignment to a variable v (assume there are V variables)
by a pair of connected nodes labeled v and ~v. The second key is that we must choose precisely
one of v or ~v for each variable to cover the edge that connects its pair. Thus, the minimum cover
set contains 2C+V nodes.

• We add an edge from each v and to all literals v in clauses, and each ~v to all literals ~v in clauses.
To cover all the edges added here for the variable nodes, we must choose nodes in each clause
that cover edges from variable nodes that are not chosen in the variable pair. If all clauses have at
least one of these incoming edges already covered (we chose an assignment to the variable that
matches a literal in this clause), then we will be able to cover all internal edges in each clause and
all edges entering the clause from a variable pair, by just choosing two nodes in the clause.

• Choosing 2C+V nodes that cover all edges can only be done if there is an assignment to variables
(true or false) that satisfy the original instance of 3SAT. Thus VC is NP-Hard. But, we can check a
proposed cover set of vertices in time proportional to the size of the graph (which is actually
linear in the size of the 3SAT problem). Thus VC is in P. In conclusion, VC is NP-Complete.

Sample # 5: VC Gadgets

Sample#6: Vertex Cover
(a + ~b + c) (~a + b + ~c) (a + b + c) (~a + b + b)

a ~a

b

~c

~b

c

Place an edge between every variable node labeled V and every clause
node labeled ~V, where V can be a, b or c.

Variable Nodes/Edges

Clause Nodes/Edges

K = 2*C+V = 8+3 = 11

