
Assignment#2 Key



1a. NoLeadingOrLaggingAs(L) = { x| 
a*xa* is in L and x has no leading or lagging a’s }
• Approach 1: Let L be a Regular language over the finite alphabet Σ. For each a∈Σ, 

define f(a) = {a,a’}, g(a) = a’ and h(a) = a, h(a’) = λ, 
f is a substitution, g and h are homomorphisms.
NoLeadingOrLaggingAs(L) = h(f(L) ∩ ( g(a*) (Σ-{a}) Σ* (Σ-{a}) g(a*) ) )
• Why this works: 

f(L) gets us every possible random priming of letters of strings in L.
( g(a*) (Σ-{a}) Σ* (Σ-{a}) g(a*) ) gets every word composed of a sequence of zero 
of more a’s followed by a non-a character from Σ then a sequence of characters 
from Σ that ends in a non-a character from Σ followed by a sequence of zero of 
more a’s. Intersecting this with f(L) gets strings of the desired form that occur in L. 
Applying the homomorphism h erases all primed letters resulting in every string
the language NoLeadingOrLaggingAs(L) that we sought. This works as Regular 
Languages are closed under intersection, concatenation, *, substitution and 
homomorphism.



1b. MidThird(L) = { y | there exists a x and z, 
|x| = |y| = |z| and xyz is in L }
• Let L be a Regular language over the finite alphabet Σ. Assume L is recognized by the DFA A1 = (Q, Σ, δ1, q1, 

F). Define the NFA 
A2 = ((Q×Q×Q×Q×Q)∪{q0}, Σ, δ2, q0, F’), where 
δ2(q0,λ) = union(q,r∈Q) {<q1, q, q, r, r >} and 
δ2(< s, t, u, v, w >, b) = union(a,c∈Σ) { < δ1(s,a), δ1(t,b), u, δ1(v,c), w> } , s,t,u,v,w ∈ Q
F’ = union(q∈Q) {<q, q, r, f, r>}, f∈F

• Why this works: 
The first part of a state < s, t, u, v, w > tracks A1 for all possible strings that are the same length as what A2 is 
reading in parallel. We guess it will end up in state q and so u=q to remember that guess.
The second part of state < s, t, u, v, w  > tracks A1 as if it has read a string that ended in state q (u=q). This 
part actually reads the mid part of a string divided into thirds.
The third part of a state < s, t, u, v, w > tracks A1 for all possible strings that are the same length as what A2 is 
reading in parallel. We guess that reading the mid part will end up in state r (w=r). 

• Thus, we start with a guess (q) as to what state A1 might end up in reading a string of length x.
The guess is checked by requiring us to start up in state q in the mid part which reads y, were |x|=|y|.
We guess that we will end up in state r after reading y.
The guess is checked by requiring us to start up in state r in the third part which simulates reading a string z, 
where |x|=|y|=|z|.

• The final states check that our guesses were correct, and the third part could end in a final state of A1.



2. Use Regular Equations to Solve for D + E

A = λ
B = A1 + C1 + E(0+1) + B0 = 1 + B0*1 + D(0+1) + B0 = 1 + C1(0+1) + B(0*1 + 0) 

= 1 + B0*1(0+1) + B(0*1 + 0) = 1(0*1(0+1) + 0*1 + 0)* 
C = B + C0 = B0* = 1(0*1(0+1) + 0*1 + 0)* 0*
D = C1 = 1(0*1(0+1) + 0*1 + 0)* 0*1 = 1(0*1(0+1+λ) + 0)* 0*1
E = D



3. L = { am b2^n | m,n > 0 }

a.) Use the Myhill-Nerode Theorem to show L is not Regular.
Define the equivalence classes [ab2^i], i ≥ 0
Clearly ab2^ib2^i is in L, but ab2^jb2^i is not in L when j > i
Thus, [ab2^i] ≠ [ab2^j] when j ≠ i and so the index of RL is infinite.
By Myhill-Nerode, L is not Regular.



3. L = { am b2^n | m,n > 0 }

b.) Use the Pumping Lemma for CFLs to show L is not a CFL
Me: L is a CFL
PL: Provides N>0
Me: z = a b2^N

PL: z = uvwxy, |vwx| ≤ N, |vx| > 0, and ∀i≥0 uviwxiy ∈ L
Me: If vwx includes the one a then set i=0 and we get a string with no a’s 
which is not in L. Thus, we can assume vwx is over b’s only. Since 
0<|vwx|≤N, setting i=2 adds at least one b and at most N b’s. However, the 
smallest member of L longer than a b2^N has 2N more a’s and so uv2wx2y
cannot be in L. Thus, the Pumping Lemma shows L to not be a CFL.



3. L = { am b2^n | m,n > 0 }
c.) Present a CSG for L to show it is context sensitive
G = ( { S, A, B, C, D, E, X, <a>, <b> }, { a, b }, R, S )
S   → <a>bb // Base case of a+b2
S   → Bb<b> // One b and a pseudo b <b> that is a sentinel; gets all cases about b2
Bb → XbC // C will shuttle left doubling b’s; first b doubled later
Cb → bbC // Double the number of b’s
C<b> → Db<b> // Double but keep that sentinel at end
C<b> → Ebb // Done doubling so get rid of sentinel
bD → Db // Shuttle D back to start
XD → Bb // Change XD back to Bb to continue increasing b’s
bE → Eb // Shuttle E back to start
XE → <a>b // Switch to generating a’s
<a> → a<a> | a // Start with a+


