Assignment#2 Key
1a. \(\text{NoLeadingOrLaggingAs}(L) = \{ x \mid \text{a}^*\text{x}\text{a}^* \text{ is in } L \text{ and } x \text{ has no leading or lagging a’s } \} \)

- Approach 1: Let \(L \) be a Regular language over the finite alphabet \(\Sigma \). For each \(a \in \Sigma \), define \(f(a) = \{a,a’\} \), \(g(a) = a’ \) and \(h(a) = a, h(a’) = \lambda \), \(f \) is a substitution, \(g \) and \(h \) are homomorphisms.

\(\text{NoLeadingOrLaggingAs}(L) = h(f(L) \cap (g(a^*) (\Sigma-\{a\}) \Sigma^* (\Sigma-\{a\}) g(a^*))) \)

- Why this works:
 \(f(L) \) gets us every possible random priming of letters of strings in \(L \).
 \((g(a^*) (\Sigma-\{a\}) \Sigma^* (\Sigma-\{a\}) g(a^*)) \) gets every word composed of a sequence of zero of more \(a \)’s followed by a non-\(a \) character from \(\Sigma \) then a sequence of characters from \(\Sigma \) that ends in a non-\(a \) character from \(\Sigma \) followed by a sequence of zero of more \(a \)’s. Intersecting this with \(f(L) \) gets strings of the desired form that occur in \(L \). Applying the homomorphism \(h \) erases all primed letters resulting in every string the language \(\text{NoLeadingOrLaggingAs}(L) \) that we sought. This works as Regular Languages are closed under intersection, concatenation, \(* \), substitution and homomorphism.
1b. \[\text{MidThird}(L) = \{ y \mid \text{there exists a } x \text{ and } z, \ |x| = |y| = |z| \text{ and } xyz \text{ is in } L \} \]

- Let \(L \) be a Regular language over the finite alphabet \(\Sigma \). Assume \(L \) is recognized by the DFA \(A_1 = (Q, \Sigma, \delta_1, q_1, F) \). Define the NFA \(A_2 = ((Q \times Q \times Q \times Q \times Q) \cup \{ q_0 \}, \Sigma, \delta_2, q_0, F') \), where
 \[
 \delta_2(q_0, \lambda) = \text{union}(q, r \in Q) \{ <q_1, q, q, r, r> \} \]
 and
 \[
 \delta_2(<s, t, u, v, w>, b) = \text{union}(a, c \in \Sigma) \{ <\delta_1(s, a), \delta_1(t, b), u, \delta_1(v, c), w> \}, s, t, u, v, w \in Q

 \]
 \[
 F' = \text{union}(q \in Q) \{ <q, q, r, f, r> \}, f \in F

 \]

- Why this works:
 The first part of a state \(<s, t, u, v, w>\) tracks \(A_1 \) for all possible strings that are the same length as what \(A_2 \) is reading in parallel. We guess it will end up in state \(q \) and so \(u=q \) to remember that guess.
 The second part of state \(<s, t, u, v, w>\) tracks \(A_1 \) as if it has read a string that ended in state \(q \) (\(u=q \)). This part actually reads the mid part of a string divided into thirds.
 The third part of a state \(<s, t, u, v, w>\) tracks \(A_1 \) for all possible strings that are the same length as what \(A_2 \) is reading in parallel. We guess that reading the mid part will end up in state \(r \) (\(w=r \)).

- Thus, we start with a guess (\(q \)) as to what state \(A_1 \) might end up in reading a string of length \(x \).
 The guess is checked by requiring us to start up in state \(q \) in the mid part which reads \(y \), were \(|x|=|y| \).
 We guess that we will end up in state \(r \) after reading \(y \).
 The guess is checked by requiring us to start up in state \(r \) in the third part which simulates reading a string \(z \), where \(|x|=|y|=|z| \).

- The final states check that our guesses were correct, and the third part could end in a final state of \(A_1 \).
2. Use Regular Equations to Solve for $D + E$

A = λ
B = A₁ + C₁ + E(0+1) + B₀ = 1 + B₀*1 + D(0+1) + B₀ = 1 + C₁(0+1) + B(0*1 + 0)

= 1 + B₀*1(0+1) + B(0*1 + 0) = 1(0*1(0+1) + 0*1 + 0)*
C = B + C₀ = B₀* = 1(0*1(0+1) + 0*1 + 0)* 0*
D = C₁ = 1(0*1(0+1) + 0*1 + 0)* 0*1 = 1(0*1(0+1+\lambda) + 0)* 0*1
E = D
3. \(L = \{ a^m b^{2^n} \mid m, n > 0 \} \)

a.) Use the **Myhill-Nerode Theorem** to show \(L \) is not Regular.

Define the equivalence classes \([ab^{2^i}], i \geq 0\)

Clearly \(ab^{2^i}b^{2^i} \) is in \(L \), but \(ab^{2^j}b^{2^i} \) is not in \(L \) when \(j > i \)

Thus, \([ab^{2^i}] \neq [ab^{2^j}]\) when \(j \neq i \) and so the index of \(R_L \) is infinite.

By Myhill-Nerode, \(L \) is not Regular.
3. \(L = \{ a^m b^{2^n} \mid m, n > 0 \} \)

b.) Use the **Pumping Lemma for CFLs** to show \(L \) **is not** a CFL

Me: \(L \) is a CFL

PL: Provides \(N > 0 \)

Me: \(z = a b^{2^N} \)

PL: \(z = uvwxy, \ |vwx| \leq N, \ |vx| > 0, \) and \(\forall i \geq 0 \ uv^iwx^iy \in L \)

Me: If \(vwx \) includes the one \(a \) then set \(i = 0 \) and we get a string with no \(a \)'s which is not in \(L \). Thus, we can assume \(vwx \) is over \(b \)'s only. Since \(0 < |vwx| \leq N \), setting \(i = 2 \) adds at least one \(b \) and at most \(N \) \(b \)'s. However, the smallest member of \(L \) longer than \(a b^{2^N} \) has \(2^N \) more \(a \)'s and so \(uv^2wx^2y \) cannot be in \(L \). Thus, the Pumping Lemma shows \(L \) to not be a CFL.
3. \(L = \{ a^m b^{2^n} \mid m, n > 0 \} \)

c.) Present a CSG for \(L \) to show it is context sensitive
\[
G = (\{ S, A, B, C, D, E, X, <a>, \}, \{ a, b \}, R, S)
\]
\[
S \rightarrow <a>bb \quad \text{// Base case of } a^*b^2
\]
\[
S \rightarrow Bb \quad \text{// One } b \text{ and a pseudo } b \text{ } \text{ that is a sentinel; gets all cases about } b^2
\]
\[
Bb \rightarrow XbC \quad \text{// } C \text{ will shuttle left doubling } b \text{'s; first } b \text{ doubled later}
\]
\[
Cb \rightarrow bbC \quad \text{// Double the number of } b \text{'s}
\]
\[
C \rightarrow Db \quad \text{// Double but keep that sentinel at end}
\]
\[
C \rightarrow Ebb \quad \text{// Done doubling so get rid of sentinel}
\]
\[
bD \rightarrow Db \quad \text{// Shuttle } D \text{ back to start}
\]
\[
XD \rightarrow Bb \quad \text{// Change } XD \text{ back to } Bb \text{ to continue increasing } b \text{'s}
\]
\[
bE \rightarrow Eb \quad \text{// Shuttle } E \text{ back to start}
\]
\[
XE \rightarrow <a>b \quad \text{// Switch to generating } a \text{'s}
\]
\[
<a> \rightarrow a<a> | a \quad \text{// Start with } a^+"