Assignment#2 Key

1a. NoLeadingOrLaggingAs(L) = { x | a*xa* is in L and x has no leading or lagging a's }

- Approach 1: Let L be a Regular language over the finite alphabet Σ. For each a∈Σ, define f(a) = {a,a'}, g(a) = a' and h(a) = a, h(a') = λ, f is a substitution, g and h are homomorphisms.
 NoLeadingOrLaggingAs(L) = h(f(L) ∩ (g(a*) (Σ-{a}) Σ* (Σ-{a}) g(a*)))
- Why this works:

f(L) gets us every possible random priming of letters of strings in L. (g(a*) (Σ -{a}) Σ * (Σ -{a}) g(a*)) gets every word composed of a sequence of zero of more a's followed by a non-a character from Σ then a sequence of characters from Σ that ends in a non-a character from Σ followed by a sequence of zero of more a's. Intersecting this with f(L) gets strings of the desired form that occur in L. Applying the homomorphism h erases all primed letters resulting in every string the language NoLeadingOrLaggingAs(L) that we sought. This works as Regular Languages are closed under intersection, concatenation, *, substitution and homomorphism.

1b. MidThird(L) = { y | there exists a x and z, $|\mathbf{x}| = |\mathbf{y}| = |\mathbf{z}|$ and xyz is in L }

- Let L be a Regular language over the finite alphabet Σ . Assume L is recognized by the DFA A₁ = (Q, Σ , δ_1 , q_1 , F). Define the NFA

 - $\begin{array}{l} A_{2} = ((Q \times Q \times Q \times Q) \cup \{q_{0}\}, \Sigma, \delta_{2}, q_{0}, F'), \text{ where} \\ \delta_{2}(q_{0}, \lambda) = union(q, r \in Q) \{ < q_{1}, q, q, r, r > \} \text{ and} \\ \delta_{2}(< s, t, u, v, w >, b) = union(a, c \in \Sigma) \{ < \delta_{1}(s, a), \delta_{1}(t, b), u, \delta_{1}(v, c), w > \}, s, t, u, v, w \in Q \\ F' = union(q \in Q) \{ < q, q, r, f, r > \}, f \in F \end{array}$
- Why this works:

The first part of a state < s, t, u, v, w > tracks A₁ for all possible strings that are the same length as what A₂ is reading in parallel. We guess it will end up in state q and so u=q to remember that guess. The second part of state < s, t, u, v, w > tracks A₁ as if it has read a string that ended in state q (u=q). This part actually reads the mid part of a string divided into thirds. The third part of a state $\langle s, t, u, v, w \rangle$ tracks A_1 for all possible strings that are the same length as what A_2 is reading in parallel. We guess that reading the mid part will end up in state r (w=r).

- Thus, we start with a guess (q) as to what state A_1 might end up in reading a string of length x. ٠ The guess is checked by requiring us to start up in state \mathbf{q} in the mid part which reads \mathbf{y} , were $|\mathbf{x}| = |\mathbf{y}|$. We guess that we will end up in state r after reading y. The guess is checked by requiring us to start up in state r in the third part which simulates reading a string z, where $|\mathbf{x}| = |\mathbf{y}| = |\mathbf{z}|$.
- The final states check that our guesses were correct, and the third part could end in a final state of A_1 .

2. Use Regular Equations to Solve for D + E

3. L = { $a^m b^{2^n} | m,n > 0$ }

a.) Use the **Myhill-Nerode Theorem** to show L <u>is not</u> Regular. Define the equivalence classes $[ab^{2^i}], i \ge 0$ Clearly $ab^{2^i}b^{2^i}$ is in L, but $ab^{2^j}b^{2^i}$ is not in L when j > iThus, $[ab^{2^i}] \neq [ab^{2^j}]$ when $j \neq i$ and so the index of R_L is infinite. By Myhill-Nerode, L is not Regular.

3. L = { $a^m b^{2^n} | m,n > 0$ }

b.) Use the **Pumping Lemma for CFLs** to show **L** <u>is not</u> a CFL Me: **L** is a CFL

PL: Provides N>0

Me: **z** = **a b**^{2^N}

PL: z = uvwxy, $|vwx| \le N$, |vx| > 0, and $\forall i \ge 0 uv^i wx^i y \in L$

Me: If **vwx** includes the one **a** then set **i=0** and we get a string with no **a**'s which is not in **L**. Thus, we can assume **vwx** is over **b**'s only. Since $0 < |vwx| \le N$, setting **i=2** adds at least one **b** and at most **N b**'s. However, the smallest member of **L** longer than **a b**²^N has 2^N more **a**'s and so **uv**²**wx**²**y** cannot be in **L**. Thus, the Pumping Lemma shows **L** to not be a CFL.

3. L = { $a^m b^{2^n} | m,n > 0$ }

c.) Present a CSG for L to show it is context sensitive

- G = ({ S, A, B, C, D, E, X, <a>, }, { a, b }, R, S)
- S \rightarrow <a>bb // Base case of a⁺b²
- S \rightarrow Bb // One b and a pseudo b that is a sentinel; gets all cases about b²
- Bb \rightarrow XbC // C will shuttle left doubling b's; first b doubled later
- Cb \rightarrow bbC // Double the number of b's
- C \rightarrow Db // Double but keep that sentinel at end
- $\mathsf{C}{<}\mathsf{b}{>} \longrightarrow \mathsf{E}\mathsf{b}\mathsf{b} \qquad // \text{ Done doubling so get rid of sentinel}$
- bD \rightarrow Db // Shuttle D back to start
- XD \rightarrow Bb // Change XD back to Bb to continue increasing b's
- bE \rightarrow Eb // Shuttle E back to start
- XE \rightarrow <a>b // Switch to generating a's

 $<a> \rightarrow a <a> | a // Start with a^+$