Some Rules

1. $A \rightarrow 0A1$
2. $A \rightarrow B$
3. $B \rightarrow #$

These are rules for one thing becoming another:

- A can become $0A1$ or B
- B can only become $#$

Let’s start with A. What kinds of strings can we make with these rules?
Some Rules

1. $A \rightarrow 0A1$
2. $A \rightarrow B$
3. $B \rightarrow \#$

These are rules for one thing becoming another
- A can become $0A1$ or B
- B can only become $\#$

Let’s start with A. What kinds of strings can we make with these rules?
- $\#$

2 then 3
Some Rules

1. \(A \rightarrow 0A1 \)

2. \(A \rightarrow B \)

3. \(B \rightarrow # \)

These are rules for one thing becoming another

- \(A \) can become \(0A1 \) or \(B \)
- \(B \) can only become \(# \)

Let’s start with \(A \). What kinds of strings can we make with these rules?

- \(# \)
- \(0#1 \)
- \(2 \ then \ 3 \)
- \(1 \ then \ 2 \ then \ 3 \)
Some Rules

1. \(A \rightarrow 0A1\)
2. \(A \rightarrow B\)
3. \(B \rightarrow \#\)

These are rules for one thing becoming another:
- \(A\) can become \(0A1\) or \(B\)
- \(B\) can only become \(\#\)

Let’s start with \(A\). What kinds of strings can we make with these rules?
- \(\#\)
- \(0\#1\)
- \(00\#11\)

\(2\ then\ 3\)
\(1\ then\ 2\ then\ 3\)
\(1, 1, 2, 3\)
Some Rules

1. \(A \rightarrow 0A1 \)

2. \(A \rightarrow B \)

3. \(B \rightarrow \# \)

These are rules for one thing becoming another

- \(A \) can become \(0A1 \) or \(B \)
- \(B \) can only become \(\# \)

Let’s start with \(A \). What kinds of strings can we make with these rules?

- \# 2 then 3
- 0#1 1 then 2 then 3
- 00#11 1, 1, 2, 3
- 00000#11111 1, 1, 1, 1, 1, 2, 3
Some Rules

1. $A \rightarrow 0A1$
2. $A \rightarrow B$
3. $B \rightarrow #$

These are rules for one thing becoming another

◦ A can become $0A1$ or B
◦ B can only become $#$

Let’s start with A. What kinds of strings can we make with these rules?

◦ # $\quad 2 \, \text{then} \, 3$
◦ $0#1 \quad 1 \, \text{then} \, 2 \, \text{then} \, 3$
◦ $00#11 \quad 1, 1, 2, 3$
◦ $00000#11111 \quad 1,1,1,1,2,3$

Do you see how these rules are different from regular languages?
Some Rules

1. $A \rightarrow 0A1$
2. $A \rightarrow B$
3. $B \rightarrow \#$

These are rules for one thing becoming another

- A can become 0 or B
- B can only become #

Let's start with A. What kinds of strings can we make with these rules?

- #
- 0 then 3
- 00 then 3
- 000 then 3
- 0000 then 3
- 00000 then 3

Do you see how these rules are different from regular languages?

THEY CAN COUNT!
Context-Free Grammars: In Short

A context-free grammar is a series of substitution rules, or productions.

Each rule is a single line:
- The symbol on the left is called a variable, or non-terminal symbol.
- The symbols on the right can be any combination of variables and terminal symbols.

There are rules about where symbols can show up:
- Only variables can be on the left.
- Only one variable can be on the left.
- Variables or terminals can be on the right.

1. $A \rightarrow 0A1$
2. $A \rightarrow B$
3. $B \rightarrow #$.

- The symbol on the left is called a variable, or non-terminal symbol.
- The symbols on the right can be any combination of variables and terminal symbols.
Context-Free Grammars: How To Start

We can represent the start symbol in one of two ways

- We can represent it explicitly, using the generally-agreed name S...

1. $S \rightarrow A$
2. $A \rightarrow 0A1$
3. $A \rightarrow B$
4. $B \rightarrow \#$
Context-Free Grammars: How To Start

We can represent the start symbol in one of two ways:

- We can represent it *explicitly*, using the generally-agreed name \(S \).
- Or we can leave it *implicit*, which is more common.

If we do not give an explicit start symbol, the start symbol is understood to be the left-hand side of the topmost rule.

1. \(A \rightarrow 0A1 \)
2. \(A \rightarrow B \)
3. \(B \rightarrow \# \)
Context-Free Grammars: How To Start

We can represent the start symbol in one of two ways

◦ We can represent it *explicitly*, using the generally-agreed name S...
◦ Or we can leave it *implicit*, which is more common

1. $A \rightarrow 0A1$
2. $A \rightarrow B$
3. $B \rightarrow #$

If we do not give an explicit start symbol, the start symbol is understood to be the left-hand side of the topmost rule.

If a start symbol isn’t the left-hand side of the topmost rule, **GIVE AN EXPLICIT START SYMBOL!**

◦ Yes, even if it’s obvious
◦ It’s not really obvious enough
Context-Free Grammars: How To Use

A grammar generates strings
1. Write down the start variable

1. \(A \rightarrow 0A1 \)
2. \(A \rightarrow B \)
3. \(B \rightarrow \# \)

A
Context-Free Grammars: How To Use

A grammar generates strings

1. Write down the start variable
2. Find a variable that’s written and a rule that has it as its left-hand side
3. Replace the variable with the right-hand side of the rule

1. $A \rightarrow 0A1$
2. $A \rightarrow B$
3. $B \rightarrow #$

\[0A1 \]

(1)
Context-Free Grammars: How To Use

A grammar generates strings

1. Write down the start variable
2. Find a variable that’s written and a rule that has it as its left-hand side
3. Replace the variable with the right-hand side of the rule
4. Repeat from step 2...

<table>
<thead>
<tr>
<th>Step</th>
<th>Rule</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$A \rightarrow 0A1$</td>
</tr>
<tr>
<td>2</td>
<td>$A \rightarrow B$</td>
</tr>
<tr>
<td>3</td>
<td>$B \rightarrow #$</td>
</tr>
</tbody>
</table>

00A11

(1, 1)
Context-Free Grammars: How To Use

A grammar generates strings

1. Write down the **start** variable
2. **Find** a variable that’s written and a rule that has it as its left-hand side
3. **Replace** the variable with the right-hand side of the rule
4. **Repeat** from step 2...

1. \(A \rightarrow 0A1 \)
2. \(A \rightarrow B \)
3. \(B \rightarrow # \)

00B11

(1, 1, 2)
Context-Free Grammars: How To Use

A grammar generates strings

1. Write down the start variable

2. Find a variable that’s written and a rule that has it as its left-hand side

3. Replace the variable with the right-hand side of the rule

4. Repeat from step 2 until you’re out of variables

1. $A \rightarrow 0A1$
2. $A \rightarrow B$
3. $B \rightarrow #$

00#11

(1, 1, 2, 3)
Context-Free Grammars: How To Use

A grammar generates strings
1. Write down the **start** variable
2. **Find** a variable that’s written and a rule that has it as its left-hand side
3. **Replace** the variable with the right-hand side of the rule
4. **Repeat** from step 2 until you’re out of variables

Three things:
• Notice that only terminal symbols remain

```
1. A → 0A1
2. A → B
3. B → #
```

00#11
(1, 1, 2, 3)
Context-Free Grammars: How To Use

A grammar generates strings
1. Write down the **start** variable
2. Find a variable that’s written and a rule that has it as its left-hand side
3. Replace the variable with the right-hand side of the rule
4. Repeat from step 2 until you’re out of variables

Three things:
- Notice that only terminal symbols remain
- The chain you follow to get to the string is called a derivation...

```
1. A → 0A1
2. A → B
3. B → #
```

00#11
(1, 1, 2, 3)

A ⇒ 0A1 ⇒ 00A11 ⇒ 00B11 ⇒ 00#11
A grammar generates strings
1. Write down the start variable
2. Find a variable that’s written and a rule that has it as its left-hand side
3. Replace the variable with the right-hand side of the rule
4. Repeat from step 2 until you’re out of variables

Three things:
◦ Notice that only terminal symbols remain
◦ The chain you follow to get to the string is called a derivation...
◦ ...and it can also be represented as a parse tree
Another Grammar

1. SENTENCE \rightarrow ANOUN VERB ANOUN
2. ANOUN \rightarrow ARTICLE NOUN
3. ARTICLE \rightarrow a | an | the
the person hears the music
4. NOUN \rightarrow person | eye | music | image
 a person sees the image
5. VERB \rightarrow hears | sees
 an eye sees an image
Another Grammar

1. SENTENCE → ANOUN VERB ANOUN
2. ANOUN → ARTICLE NOUN
3. ARTICLE → a | an | the
4. NOUN → person | eye | music | image
5. VERB → hears | sees

the person hears the music
a person sees the image
an eye sees an image
the image hears an person
a eye hears an music
A grammar *generates* strings.

In fact, we can think of the strings that a given grammar can generate as a *set* of strings.

Guess what we call that set of strings.

Go on. Guess.
A **context-free grammar** is a 4-tuple $G = (V, \Sigma, R, S)$ where:

- V is a finite set called the **variables**
- Σ is a finite set, **disjoint** from V, called the **terminals**
- R is a finite set of **rules**, each rule allowing a variable to be rewritten as a string of variables and terminals, and
- $S \in V$ is the start variable.

The language $L(G)$ of a grammar is the set of strings that can be generated by that grammar.

A **context-free language** is a language that can be generated by a context-free grammar.
An Arithmetic Example

\[V = \{ \text{EXPR, TERM, FACTOR} \} \]

\[\Sigma = \{ a, +, \times, (,) \} \]

Rules \(R \) are...

\[
\begin{align*}
\text{EXPR} & \rightarrow \text{EXPR} + \text{TERM} | \text{TERM} \\
\text{TERM} & \rightarrow \text{TERM} \times \text{FACTOR} | \text{FACTOR} \\
\text{FACTOR} & \rightarrow (\text{EXPR}) | a
\end{align*}
\]
An Arithmetic Example
Generating: \(a + a \times a \)

\[V = \{ \text{EXPR}, \text{TERM}, \text{FACTOR} \} \]

\[\Sigma = \{ a, +, \times, (,) \} \]

Rules \(R \) are...

- \(\text{EXPR} \rightarrow \text{EXPR} + \text{TERM} \mid \text{TERM} \)
- \(\text{TERM} \rightarrow \text{TERM} \times \text{FACTOR} \mid \text{FACTOR} \)
- \(\text{FACTOR} \rightarrow (\text{EXPR}) \mid a \)
An Arithmetic Example
Generating: \((a + a) \times a\)

\[V = \{ \text{EXPR, TERM, FACTOR} \} \]
\[\Sigma = \{ a, +, \times, (,) \} \]

Rules \(R \) are...

- \(\text{EXPR} \rightarrow \text{EXPR} + \text{TERM} | \text{TERM} \)
- \(\text{TERM} \rightarrow \text{TERM} \times \text{FACTOR} | \text{FACTOR} \)
- \(\text{FACTOR} \rightarrow (\text{EXPR}) | a \)
Notes on CFG Design

Divide and conquer applies
- Make simpler portions of the grammar, then make the grammar out of them
- Simulate recursion by letting a variable generate itself, directly or indirectly

DFAs are easy to simulate with CFGs
- Make a variable V_i for each state q_i
- If $\delta(q_i, q_k) = a$, make a rule $V_i \rightarrow aV_k$
- If q_i is an accept state, make a rule $V_i \rightarrow \varepsilon$
- Make V_0 the starting variable

Since you can have $V \rightarrow aVb$, you can count
Ambiguity

\[V = \{ \text{EXPR} \} \]
\[\Sigma = \{ a, +, \times, (,) \} \]

Rules \(R \) are...

- \(\text{EXPR} \rightarrow \text{EXPR} + \text{EXPR} \)
- \(\text{EXPR} \rightarrow \text{EXPR} \times \text{EXPR} \)
- \(\text{EXPR} \rightarrow (\text{EXPR}) \)
- \(\text{EXPR} \rightarrow a \)
Ambiguity

\[V = \{ \text{EXPR} \} \]
\[\Sigma = \{ a, +, \times, (,) \} \]

Rules \(R \) are...

- \(\text{EXPR} \rightarrow \text{EXPR} + \text{EXPR} \)
- \(\text{EXPR} \rightarrow \text{EXPR} \times \text{EXPR} \)
- \(\text{EXPR} \rightarrow (\text{EXPR}) \)
- \(\text{EXPR} \rightarrow a \)
Ambiguity

A grammar may generate a string **ambiguously** by having two different parse trees for it

- That’s *not* the same thing as having two different *derivations* – derivations can differ just by what order the rules are applied in
- To formalize ambiguity, we first define a **leftmost derivation** as a derivation in which, at every step, the leftmost remaining variable is the one replaced; that gives us:

Definition (Ambiguity):

- A string \(w \) is derived **ambiguously** in grammar \(G \) if it has two or more different leftmost derivations.
- A grammar \(G \) is **ambiguous** if it generates some string ambiguously.

Sometimes we can find an unambiguous grammar to generate the same language...

- ...sometimes we can’t
- There are languages that are **inherently ambiguous**
Chomsky Normal Form

A simplified form for context-free grammars

- Useful for working with CFGs using algorithms

A CFG is in **Chomsky Normal Form** if:

- Every rule is of one of the following forms:
 - $A \rightarrow BC$
 - $A \rightarrow a$
 - $S \rightarrow \epsilon$

- Where A, B and C are variables, a is a terminal, and:
 - S is the starting variable
 - Neither B nor C are S (A can be)
Converting to CNF: 4-Step Process

1. **Add a new start variable.**
 It rewrites only to the old start variable:
 - $S_0 \rightarrow S$

2. **Get rid of rewrites to the empty string.**
 For every rewrite of variable $X \rightarrow \varepsilon$:
 - Remove the rule $X \rightarrow \varepsilon$
 - Find every instance of a variable Y being rewritten to anything involving X
 - Add a new rule rewriting Y to the same thing, but with X removed

3. **Get rid of unit rules.**
 For every rewrite of variables $X \rightarrow Y$:
 - Remove the rule $X \rightarrow Y$
 - Find every instance of Y being rewritten to anything
 - Add a new rule rewriting X to the same thing

4. **Convert all the remaining rules.**
 For every rule $X \rightarrow y_1y_2y_3...y_n$:
 - Remove the rule $X \rightarrow y_1y_2y_3...y_n$
 - Make new rules $X \rightarrow y_1x_1$, $x_1 \rightarrow y_2x_2$, $x_2 \rightarrow y_3x_3$, ..., $x_{n-2} \rightarrow y_{n-1}y_n$
 - When making these rules, for every y_i that’s a terminal:
 - Replace it with a new variable Y_i
 - Create new rule $Y_i \rightarrow y_i$
CNF Conversion Example

(Board work: 2.10)
Next Time: Pushdown Automata