A Language to Consider

\[B = \{ 0^n1^n \mid n \geq 0 \} \]

- Is \(B \) regular?
A Language to Consider

\[B = \{ 0^n1^n \mid n \geq 0 \} \]

- Is \(B \) regular?
 - No
- \(B \) has to count the number of zeroes – and that number is arbitrary
- What does the \(F \) in FSM, DFA and NFA stand for?
Pigeons and Pigeonholes

Here we see nine pigeons in nine pigeonholes

- If we put ten pigeons in these nine pigeonholes, we can say one thing for certain:
 - There is at least one pigeonhole with more than one pigeon

We call the generalization of this idea the pigeonhole principle:

If n items are put into m containers with $n > m$, at least one container contains more than one item

- It’s technically not an axiom, but like induction, it’s so basic that we don’t really call it a theorem

*Image: Wikimedia Commons, “Too Many Pigeons”, McKay from BenFrantzDale
 Used under Creative Commons Attribution-ShareAlike 3.0 Unported*
Pigeonholes and DFAs

Now consider a DFA, and consider a string we are accepting

- Say that the string has as many symbols as the DFA has states
- What does that mean we can say, with complete certainty?
Pigeonholes and DFAs

Now consider a DFA, and consider a string we are accepting

- Say that the string has as many symbols as the DFA has states
- What does that mean we can say, with complete certainty?

We cycled at least once

But that means...

![DFA Diagram]
Pigeonholes and DFAs

Now consider a DFA, and consider a string we are accepting

- Say that **the string has as many symbols as the DFA has states**
- What does that mean we can say, with complete certainty?

We cycled at least once

But that means...

We can run that same cycle indefinitely
The Pumping Lemma for Regular Languages

If A is a regular language, then there is a number p – the **pumping length** – so that if s is a string in A with length of at least p, then $s = xyz$ so that:

- xy^iz is a string in A for all $i \geq 0$,
- $|y| > 0$, and
- $|xy| \leq p$

Notes:

- y^i just means “y concatenated to itself i times”
- $|s|$ means the length of a string s
- x and z can be empty, but y can’t be – this is the whole point of the lemma
- We call it a lemma because all it’s good for is showing that some languages aren’t regular
Proof Idea: The Pumping Lemma for Regular Languages

Let $M = (Q, \Sigma, \delta, q_0, F)$ be a DFA recognizing language A, and let $p = |Q|$.
- Consider $s \in A$ so that $|s| = n$, with $n \geq p$.
- Show that $s = xyz$ so that xy^iz is a string in A for all $i \geq 0$, with $|y| > 0$ and $|xy| \leq p$.

Proof Idea: The Pumping Lemma for Regular Languages

Let \(M = (Q, \Sigma, \delta, q_0, F) \) be a DFA recognizing language \(A \), and let \(p = |Q| \).

- Consider \(s \in A \) so that \(|s| = n \), with \(n \geq p \).
- Show that \(s = xyz \) so that \(xy^iz \) is a string in \(A \) for all \(i \geq 0 \), with \(|y| > 0 \) and \(|xy| \leq p \).

We already showed the important parts of this.

- We go around a cycle – that is, we hit at least one state at least twice
- \(x \) is the part of the string before the cycle, \(y \) is the cyclic part, and \(z \) is the part after the cycle
Proof Idea: The Pumping Lemma for Regular Languages

Let $M = (Q, \Sigma, \delta, q_0, F)$ be a DFA recognizing language A, and let $p = |Q|$.

- Consider $s \in A$ so that $|s| = n$, with $n \geq p$.
- Show that $s = xyz$ so that xy^iz is a string in A for all $i \geq 0$, with $|y| > 0$ and $|xy| \leq p$.

We already showed the important parts of this.

- We go around a cycle – that is, we hit at least one state at least twice
- x is the part of the string before the cycle, y is the cyclic part, and z is the part after the cycle

All we’re saying is:

1. We can go around the cycle as many times as we want, since it’s a cycle
Proof Idea: The Pumping Lemma for Regular Languages

Let \(M = (Q, \Sigma, \delta, q_0, F) \) be a DFA recognizing language \(A \), and let \(p = |Q| \).

- Consider \(s \in A \) so that \(|s| = n \), with \(n \geq p \).
- Show that \(s = xyz \) so that \(xy^i z \) is a string in \(A \) for all \(i \geq 0 \), with \(|y| > 0 \) and \(|xy| \leq p \).

We already showed the important parts of this.

- We go around a cycle – that is, we hit at least one state at least twice
- \(x \) is the part of the string before the cycle, \(y \) is the cyclic part, and \(z \) is the part after the cycle

All we’re saying is:

1. We can go around the cycle as many times as we want, since it’s a cycle
2. The before and after parts can be empty, but the cyclic part can’t be empty or we don’t have enough states
Proof Idea: The Pumping Lemma for Regular Languages

Let $M = (Q, \Sigma, \delta, q_0, F)$ be a DFA recognizing language A, and let $p = |Q|$.

- Consider $s \in A$ so that $|s| = n$, with $n \geq p$.
- Show that $s = xyz$ so that xy^iz is a string in A for all $i \geq 0$, with $|y| > 0$ and $|xy| \leq p$.

We already showed the important parts of this.

- We go around a cycle – that is, we hit at least one state at least twice
- x is the part of the string before the cycle, y is the cyclic part, and z is the part after the cycle

All we’re saying is:

1. We can go around the cycle as many times as we want, since it’s a cycle
2. The before and after parts can be empty, but the cyclic part can’t be empty or we don’t have enough states
3. We have to hit some state twice by the time we hit a number of symbols equal to the number of states
Proof: The Pumping Lemma for Regular Languages

Let $M = (Q, \Sigma, \delta, q_0, F)$ be a DFA recognizing language A, and let $p = |Q|$.

- Consider $s \in A$ so that $|s| = n$, with $n \geq p$.
- Show that $s = xyz$ so that xy^iz is a string in A for all $i \geq 0$, with $|y| > 0$ and $|xy| \leq p$.

Proof: The Pumping Lemma for Regular Languages

Let $M = (Q, \Sigma, \delta, q_0, F)$ be a DFA recognizing language A, and let $p = |Q|$.

- Consider $s \in A$ so that $|s| = n$, with $n \geq p$.
- Show that $s = xyz$ so that xy^iz is a string in A for all $i \geq 0$, with $|y| > 0$ and $|xy| \leq p$.

Let $s = s_1s_2...s_n$ be a string accepted by M, with $n \geq p$.

Let $r_1r_2...r_{n+1}$ be the sequence of states that M enters while computing S.
Proof: The Pumping Lemma for Regular Languages

Let $M = (Q, \Sigma, \delta, q_0, F)$ be a DFA recognizing language A, and let $p = |Q|$.
- Consider $s \in A$ so that $|s| = n$, with $n \geq p$.
- Show that $s = xyz$ so that xy^iz is a string in A for all $i \geq 0$, with $|y| > 0$ and $|xy| \leq p$.

Let $s = s_1s_2... s_n$ be a string accepted by M, with $n \geq p$.

Let $r_1r_2... r_{n+1}$ be the sequence of states that M enters while computing s. Observe that:
- The state sequence has length $n + 1$, which is at least $p + 1$.
- Within the first $p + 1$ states in the sequence, two different points in the sequence have to be the same state, by the pigeonhole principle.
- Call the first one r_j and the second one r_k.

Proof: The Pumping Lemma for Regular Languages

Let $M = (Q, \Sigma, \delta, q_0, F)$ be a DFA recognizing language A, and let $p = |Q|$.

- Consider $s \in A$ so that $|s| = n$, with $n \geq p$.
- Show that $s = xyz$ so that xy^iz is a string in A for all $i \geq 0$, with $|y| > 0$ and $|xy| \leq p$.

Let $s = s_1s_2...s_n$ be a string accepted by M, with $n \geq p$

Let $r_1r_2...r_{n+1}$ be the sequence of states that M enters while computing s. Observe that:

- The state sequence has length $n + 1$, which is at least $p + 1$
- Within the first $p + 1$ states in the sequence, two different points in the sequence have to be the same state, by the pigeonhole principle
- Call the first one r_j and the second one r_k

Now let $x = s_1...s_{j-1}$, $y = s_j...s_{k-1}$, and $z = s_k...s_n$.
Proof: The Pumping Lemma for Regular Languages

Let $M = (Q, \Sigma, \delta, q_0, F)$ be a DFA recognizing language A, and let $p = |Q|$.

- Consider $s \in A$ so that $|s| = n$, with $n \geq p$.
- Show that $s = xyz$ so that xy^iz is a string in A for all $i \geq 0$, with $|y| > 0$ and $|xy| \leq p$.

Let $s = s_1s_2...s_n$ be a string accepted by M, with $n \geq p$.

Let $r_1r_2...r_{n+1}$ be the sequence of states that M enters while computing s. Observe that:

- The state sequence has length $n + 1$, which is at least $p + 1$.
- Within the first $p + 1$ states in the sequence, two different points in the sequence have to be the same state, by the pigeonhole principle.
- Call the first one r_j and the second one r_k.

Now let $x = s_1...s_{j-1}$, $y = s_j...s_{k-1}$, and $z = s_k...s_n$.

Observe that:
- x takes M from r_1 to r_j.
- y takes M from r_j to r_k.
- z takes M from r_k to r_{n}.
- But r_j and r_k are the same state!
- Therefore, M must accept xy^iz for all $i \geq 0$.
Proof: The Pumping Lemma for Regular Languages

Let $M = (Q, \Sigma, \delta, q_0, F)$ be a DFA recognizing language A, and let $p = |Q|$.

- Consider $s \in A$ so that $|s| = n$, with $n \geq p$.
- Show that $s = xyz$ so that xy^iz is a string in A for all $i \geq 0$, with $|y| > 0$ and $|xy| \leq p$.

Let $s = s_1s_2...s_n$ be a string accepted by M, with $n \geq p$.

Let $r_1r_2...r_{n+1}$ be the sequence of states that M enters while computing s. Observe that:

- The state sequence has length $n + 1$, which is at least $p + 1$.
- Within the first $p + 1$ states in the sequence, two different points in the sequence have to be the same state, by the pigeonhole principle.
- Call the first one r_j and the second one r_k.

Now let $x = s_1...s_{j-1}$, $y = s_j...s_{k-1}$, and $z = s_k...s_n$.

Observe that:

- x takes M from r_1 to r_j.
- y takes M from r_j to r_k.
- z takes M from r_k to r_n.
- But r_j and r_k are the same state!
- Therefore, M must accept xy^iz for all $i \geq 0$.

Observe that:

- Since $j \neq k$, $|y| > 0$.
Proof: The Pumping Lemma for Regular Languages

Let $M = (Q, \Sigma, \delta, q_0, F)$ be a DFA recognizing language A, and let $p = |Q|$.

- Consider $s \in A$ so that $|s| = n$, with $n \geq p$.
- Show that $s = xyz$ so that xy^iz is a string in A for all $i \geq 0$, with $|y| > 0$ and $|xy| \leq p$.

Let $s = s_1s_2... s_n$ be a string accepted by M, with $n \geq p$.

Let $r_1r_2... r_{n+1}$ be the sequence of states that M enters while computing s. Observe that:

- The state sequence has length $n + 1$, which is at least $p + 1$.
- Within the first $p + 1$ states in the sequence, two different points in the sequence have to be the same state, by the pigeonhole principle.
- Call the first one r_j and the second one r_k.

Now let $x = s_1...s_{j-1}$, $y = s_j...s_{k-1}$, and $z = s_k...s_n$.

Observe that:

- x takes M from r_1 to r_j.
- y takes M from r_j to r_k.
- z takes M from r_k to r_n.
- But r_j and r_k are the same state!
- Therefore, M must accept xy^iz for all $i \geq 0$.

Observe that:

- Since $j \neq k$, $|y| > 0$.

Finally, observe that:

- Since $k \leq p + 1$, $|xy| \leq p$.
Proof: The Pumping Lemma for Regular Languages

Let $M = (Q, \Sigma, \delta, q_0, F)$ be a DFA recognizing language A, and let $p = |Q|$.

- Consider $s \in A$ so that $|s| = n$, with $n \geq p$.
- Show that $s = xyz$ so that xy^iz is a string in A for all $i \geq 0$, with $|y| > 0$ and $|xy| \leq p$.

Let $s = s_1s_2...s_n$ be a string accepted by M, with $n \geq p$.

Let $r_1r_2...r_{n+1}$ be the sequence of states that M enters while computing s. Observe that:

- The state sequence has length $n + 1$, which is at least $p + 1$.
- Within the first $p + 1$ states in the sequence, two different points in the sequence have to be the same state, by the pigeonhole principle.
- Call the first one r_j and the second one r_k.

Now let $x = s_1...s_{j-1}$, $y = s_j...s_{k-1}$, and $z = s_k...s_n$.

Observe that:

- x takes M from r_1 to r_j.
- y takes M from r_j to r_k.
- z takes M from r_k to r_n.
- But r_j and r_k are the same state!
- Therefore, M must accept xy^iz for all $i \geq 0$.

Observe that:

- Since $j \neq k$, $|y| > 0$.

Finally, observe that:

- Since $k \leq p + 1$, $|xy| \leq p$.

We have shown that all three conditions of the pumping lemma hold.
Using the Pumping Lemma

The pumping lemma is basically only good for proofs by contradiction. Three steps:

1. **Set Up the Pump**
 - **Assume** a language A is regular
 - Observe that, therefore, by the pumping lemma, there is a p so that any string s in A, of length p or greater, can be cut into xyz and **pumped**
 - You don’t need to know what p is – only that it exists!

2. **Break the Pump**
 - Find a string s in it, of length p or greater, that **can’t** be pumped
 - Demonstrate that no matter how you cut it into xyz, it **still** can’t be pumped
 - Remember all parts of the pumping lemma here – part 3 can be more useful than you’d think

3. **Clean Up the Mess**
 - Observe that since string s in A, of length p or greater, can’t be pumped; and A is regular; we have a **contradiction** with the pumping lemma
 - Conclude that A is **not regular**
Some Non-Regular Languages

(Board Work: 1.73, 1.74, 1.75, 1.76, 1.77)
Categorizing Languages

◦ We have shown that there are plenty of languages we can't process using the tools we use for regular languages
◦ That does not mean we can't process them
 ◦ Obviously, any language we can think of an algorithm to recognize can be recognized
 ◦ It just can't be done with a DFA
◦ We consider regular languages the simplest class of languages worth putting serious thought into
◦ We have other tools for processing more complex classes of languages
◦ Over the next few weeks, we will walk our way up this hierarchy of languages
Next Time: Context-Free Languages