Revisited: NFA-to-DFA Conversion

NFAs have three capabilities that DFAs don’t:

- Multiple transitions on the same symbol
- Empty-string transitions
- No transitions on some symbols
Revisited: NFA-to-DFA Conversion: Multiple Transitions

Recall our original NFA
Revisited: NFA-to-DFA Conversion: Multiple Transitions

Recall our original NFA

Now recall what computation on it looks like

- Every time we have more than one choice, we spin off as many copies of the NFA as necessary to account for that choice
Revisited: NFA-to-DFA Conversion: Multiple Transitions

Recall our original NFA

Now recall what computation on it looks like
- Every time we have more than one choice, we spin off as many copies of the NFA as necessary to account for that choice

Observe that we only need the copies that are actually unique against time and current states
- We only care whether we accept or not, not how many times we accept
- At a given time, it only matters whether we are in a given state or not – not how many times we are in it
- This means prior computation doesn’t matter

So at a given time, an NFA is in a set of states
Revisited: NFA-to-DFA Conversion: Empty Transitions

Multiple transitions imply that at any given time, an NFA is in a set of states.

What about empty transitions?

- Note that the empty string never appears here.
Revisited: NFA-to-DFA Conversion: Empty Transitions

Multiple transitions imply that at any given time, an NFA is in a set of states

What about empty transitions?
- Note that the empty string never appears here
- ...but everywhere q_2 does, q_3 does too
Revisited: NFA-to-DFA Conversion: Empty Transitions

Multiple transitions imply that at any given time, an NFA is in a set of states

What about empty transitions?
- Note that the empty string never appears here
- ...but everywhere q_2 does, q_3 does too
- We can handle empty-string transitions by just “looking forward” at them and including them in the set of possible states at a given moment

Empty transitions are handled in computation by including their possibilities in the set of states
Revisited: NFA-to-DFA Conversion: Empty Transitions

Multiple transitions imply that at any given time, an NFA is in a set of states.

Empty transitions are handled in computation by including their possibilities in the set of states.

What about missing transitions?
- We’re already in a set of states.
- If a state in that set is missing a transition from our next input symbol, it just doesn’t add anything to the next set of states.

Missing transitions simply don’t add anything to the next set of states.
Revisited: NFA-to-DFA Conversion: Simulating the NFA

Keep in mind our three observations about the computation process of an NFA:

1. **Multiple transitions imply that at any given time, an NFA is in a set of states**
2. **Empty transitions are handled in computation by including their possibilities in the set of states**
3. **Missing transitions simply don’t add anything to the next set of states**

Now take this a bit further:
- The power set \(P(Q) \) of an NFA’s states is the set of all possible subsets of its states
- So at any given time, the set of states an NFA is in is an element in \(P(Q) \)
- \(P(Q) \) is itself a set

So on a given transition, an NFA is simply transitioning from one element of \(P(Q) \) to another
Revisited: NFA-to-DFA Conversion: Simulating the NFA

Keep in mind our three observations about the computation process of an NFA:

1. Multiple transitions imply that at any given time, an NFA is in a set of states
2. Empty transitions are handled in computation by including their possibilities in the set of states
3. Missing transitions simply don’t add anything to the next set of states

We have also observed that:

4. On a given transition, an NFA is simply transitioning from one element of \(P(Q) \) to another

Now consider empty and missing transitions:

- The possibilities of empty transitions are included in the set of states by look-ahead
- Missing transitions are handled by simply not adding anything to the set of states
- So given the next input symbol, we account for them completely in the next set of states

This means that an NFA transitions from one element of \(P(Q) \) to another element of \(P(Q) \) based only on the next input symbol
Revisited: NFA-to-DFA Conversion: Simulating the NFA

Keep in mind our three observations about the computation process of an NFA:

1. Multiple transitions imply that at any given time, an NFA is in a set of states
2. Empty transitions are handled in computation by including their possibilities in the set of states
3. Missing transitions simply don’t add anything to the next set of states

We have also observed that:

4. On a given transition, an NFA is simply transitioning from one element of $P(Q)$ to another
5. An NFA transitions from one element of $P(Q)$ to another element of $P(Q)$ based only on the next input symbol

So while an NFA is computing, we have:

- A finite set of states it can be in, and
- A way to know which state it will be in next, given only its current state and the input symbol
Revisited: NFA-to-DFA Conversion:
Simulating the NFA

Keep in mind our three observations about the computation process of an NFA:

1. Multiple transitions imply that at any given time, an NFA is in a set of states
2. Empty transitions are handled in computation by including their possibilities in the set of states
3. Missing transitions simply don't add anything to the next set of states

We have also observed that:

4. On a given transition, an NFA is simply transitioning from one element of \(P(Q) \) to another
5. An NFA transitions from one element of \(P(Q) \) to another element of \(P(Q) \) based only on the next input symbol

So while an NFA is computing, we have:

- A finite set of states it can be in, and
- A way to know which state it will be in next, given only its current state and the input symbol

That's a DFA.
Building the DFA

We want to build a DFA $D = \{ Q_D, \Sigma, \delta_D, q_{0D}, F_D \}$ that simulates NFA $N = \{ Q_N, \Sigma, \delta_N, q_{0N}, F_N \}$

We need to figure out:
- The state set
- The transition function
- The start state
- The final states
Building the DFA: States

We want to build a DFA $D = \{ Q_D, \Sigma, \delta_D, q_{0D}, F_D \}$ that simulates NFA $N = \{ Q_N, \Sigma, \delta_N, q_{0N}, F_N \}$

The state set is the easiest part: just remember that we need to simulate being in some subset of the states of N, and say:

$Q_D = P(Q_N)$, the power set of Q_N
Building the DFA: Starting

We want to build a DFA $D = \{ Q_D, \Sigma, \delta_D, q_{0D}, F_D \}$ that simulates NFA $N = \{ Q_N, \Sigma, \delta_N, q_{0N}, F_N \}$

- $Q_D = P(Q_N)$, the power set of Q_N

Next let’s look at the start state

- Easy answer: the state corresponding to being in, and only in, the start state of the NFA
- ...with one wrinkle: empty-string transitions

So we need the set-state containing:

- q_{0N}
- The states you can reach from q_{0N} with only empty-string transitions

Let’s call that set-state $E(\{q_{0N}\})$, and say:

- $q_{0D} = E(\{q_{0N}\})$
Building the DFA: Acceptance

We want to build a DFA $D = \{ Q_D, \Sigma, \delta_D, q_0D, F_D \}$ that simulates NFA $N = \{ Q_N, \Sigma, \delta_N, q_0N, F_N \}$

- $Q_D = P(Q_N)$, the power set of Q_N
- $q_0D = E(\{q_0N\})$

Next the accept states – which actually are easy
- Recall that the NFA accepts if it has any computation path to an accept state
- This means that in our computation, if there is any state we could be in that is an NFA accept state, we accept

So a state-set accepts if it contains any accept state from the NFA
- $F_D = \{ R \in Q_D \mid R \text{ and } F_N \text{ have a common member} \}$, or
- $F_D = \{ R \in Q_D \mid R \cap F_N \neq \emptyset \}$
We want to build a DFA $D = \{ Q_D, \Sigma, \delta_D, q_{0D}, F_D \}$ that simulates NFA $N = \{ Q_N, \Sigma, \delta_N, q_{0N}, F_N \}$

- $Q_D = P(Q_N)$, the power set of Q_N
- $q_{0D} = E(\{q_{0N}\})$
- $F_D = \{ R \in Q_D \mid R \cap F_N \neq \emptyset \}$

Now the transition function. Remember:

- The NFA transitions between *sets of states*
- We simulate that by having a state for each possible set

So to transition on a given symbol a, we:

- Look at *all* the NFA states we are currently simulating
- Look at all the states they can possibly transition to on a
- Transition to the set of all of those states
Building the DFA: Transition

We want to build a DFA $D = \{ Q_D, \Sigma, \delta_D, q_{0D}, F_D \}$ that simulates NFA $N = \{ Q_N, \Sigma, \delta_N, q_{0N}, F_N \}$

- $Q_D = P(Q_N)$, the power set of Q_N
- $q_{0D} = E(\{q_{0N}\})$
- $F_D = \{ R \in Q_D \mid R \cap F_N \neq \emptyset \}$

To transition on a given symbol a, we:
- Look at all the NFA states we are currently simulating
- Look at all the states they can possibly transition to on a
- Transition to the set of all of those states

So we define $\delta_D: Q_D \times \Sigma \to Q_D$ as:
- $\delta_D(R, a) = \{ q \in Q_N \mid q \in \delta_N(r, a) \text{ for some } r \in R \}$
- ...almost
Building the DFA: Transition

We want to build a DFA $D = \{ Q_D, \Sigma, \delta_D, q_{0D}, F_D \}$ that simulates NFA $N = \{ Q_N, \Sigma, \delta_N, q_{0N}, F_N \}$

- $Q_D = P(Q_N)$, the power set of Q_N
- $q_{0D} = E(\{q_{0N}\})$
- $F_D = \{ R \in Q_D \mid R \cap F_N \neq \emptyset \}$

We just defined $\delta_D : Q_D \times \Sigma \rightarrow Q_D$ as:

- $\delta_D(R, a) = \{ q \in Q_N \mid q \in \delta_N(r, a) \}$ for some $r \in R$

But we need to consider empty string transitions

- We can just do this the same way we did with the start state

So we finally say:

- $\delta_D(R, \epsilon) = \{ q \in Q_N \mid q \in E(\delta_N(r, \epsilon)) \}$ for some $r \in R$
Building the DFA: Transition

We have built a DFA $D = \{Q_D, \Sigma, \delta_D, q_{0D}, F_D\}$ that simulates NFA $N = \{Q_N, \Sigma, \delta_N, q_{0N}, F_N\}$

- $Q_D = P(Q_N)$, the power set of Q_N
- $q_{0D} = E(\{q_{0N}\})$
- $F_D = \{R \in Q_D \mid R \cap F_N \neq \emptyset\}$
- $\delta_D(R, a) = \{q \in Q_N \mid q \in E(\delta_N(r, a)) \text{ for some } r \in R\}$

From our observations during construction, D is always in a state corresponding to the subset of states N could be in on the same input.

We have observed that for any NFA N, a corresponding DFA D exists that recognizes the same language as N.

Hence, by definition of regular languages, any language recognized by an NFA is regular.
We have built a DFA $D = \{ Q_D, \Sigma, \delta_D, q_{0D}, F_D \}$ that simulates NFA $N = \{ Q_N, \Sigma, \delta_N, q_{0N}, F_N \}$

$Q_D = P(Q_N)$, the power set of Q_N

$q_{0D} = E(\{q_{0N}\})$

$\delta_D(R, a) = \{ \delta_N(r, a) \mid r \in R \}$ for some $r \in R$

From our observations during construction, D is always in a state corresponding to the subset of states N could be in on the same input.

We have observed that for any NFA N, a corresponding DFA D exists that recognizes the same language as N.

Hence, by definition of regular languages, any language recognized by an NFA is regular.

No, this isn’t a formal proof. I’m not going to draw the little square.

But it’s good enough for the book, let alone this class, and doing a formal proof would take weeks.
Next Time:
Non-Regular Languages