Consider an Automatic Entry Door

- When do we open and close the door?
Consider an Automatic Entry Door

- When do we open and close the door?
- Four possible inputs: Outside, Inside, Both and Neither
- We *open* the door at Outside (only)
- We *close* the door at Neither
- Otherwise the door stays right where it is
States and Transitions

We can think of the door in terms of:
- Its *states*: Open and Closed
- Its *transitions*: When it opens and closes

Two concise ways to depict these
- A *state transition table*
- A *state diagram*
- Either may be better for a given machine

We call logical constructs that we think of in these terms *automata*, or *machines*
- Let’s make this less fuzzy
- First, let’s remember strings
An alphabet is a non-empty, finite set of symbols.

A string over an alphabet is a finite sequence of symbols from that alphabet.

Strings have length, like any sequence; the empty string \(\varepsilon \) is the string with length 0.

A language is a set of strings over a given alphabet.

Do not confound the empty language with the empty string.

Given strings \(S \), \(T \), \(U \) and \(V \), we write:

- \(S_i \) to denote the \(i \)th symbol in \(S \)
- \(ST \) to denote the concatenation of \(S \) and \(T \)
- \(S^R \) to denote the reverse of \(S \)

...and we say:

- \(S \) is a substring of \(V \) if \(\exists T, U \ni TSU = V \)
 - ...and a proper substring if \(S \neq V \)
- \(S \) is a prefix of \(V \) if \(\exists T \ni ST = V \)
 - ...and a proper prefix if \(S \neq V \)
- \(S \) is a suffix of \(V \) if \(\exists T \ni TS = V \)
 - ...and a proper suffix if \(S \neq V \)
Another Machine

This machine can read strings over the binary alphabet

- The incoming arrow on the left means q_1 is the **starting** state
- The double circle around q_2 means it is an **accepting** state
- This kind of machine, given any string over its alphabet, either **accepts** or **rejects** it
- So what strings will this machine accept?
Definition:
Deterministic Finite Automata

A **deterministic finite automaton** is a 5-tuple \((Q, \Sigma, \delta, q_0, F)\) that consists of:

- \(Q\) \hspace{1cm} A finite set of *states*
- \(\Sigma\) \hspace{1cm} An *alphabet*
- \(\delta: Q \times \Sigma \rightarrow Q\) \hspace{1cm} A *transition function*
- \(q_0 \in Q\) \hspace{1cm} A *start state*
- \(F \subseteq Q\) \hspace{1cm} A set of *accept* (or *final*) *states*
Example 1 (1.6)

- $Q = \{q_1, q_2, q_3\}$
- $\Sigma = \{0, 1\}$
- δ:

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>q_1</td>
<td>q_1</td>
</tr>
<tr>
<td>q_2</td>
<td>q_3</td>
</tr>
<tr>
<td>q_3</td>
<td>q_2</td>
</tr>
</tbody>
</table>

- q_1 (start state)
- $F = \{q_2\}$
Examples 2 and 3 (1.7, 1.9)
Example 4 (1.11)
Definition: Acceptance

Let $M = (Q, \Sigma, \delta, q_0, F)$ and $w = w_1w_2...w_n$ be a string of length n over Σ.

M accepts w if there exists a sequence of states in Q $r_0, r_1, ..., r_n$ so that:

1. $r_0 = q_0$
2. For i from 0 to $n - 1$, $\delta(r_i, w_{i+1}) = r_{i+1}$
3. $r_n \in F$
Definition: Acceptance (Computation)

Let $M = (Q, \Sigma, \delta, q_0, F)$ and $w = w_1w_2...w_n$ be a string of length n over Σ.

M accepts w if there exists a sequence of states in Q $r_0, r_1, ..., r_n$ so that:

1. $r_0 = q_0$
2. For i from 0 to $n - 1$, $\delta(r_i, w_{i+1}) = r_{i+1}$
3. $r_n \in F$
Definition: Recognition

A machine M recognizes language A if $A = \{w \mid M \text{ accepts } w\}$.
Definition: Regular Language

A language is regular if and only if it can be recognized by a DFA.
Designing Finite Automata (pp. 41-44)

(board work)
The Regular Operations

Let A and B be languages. We define union, concatenation and star (or Kleene Closure) as:

- $A \cup B = \{x \mid x \in A \text{ or } x \in B\}$
- $A \circ B = \{xy \mid x \in A \text{ and } y \in B\}$
- $A^* = \{x_1x_2 \ldots x_k \mid k \geq 0 \text{ and each } x_i \in A\}$
Regular Languages: Union Closure

We want to prove that the class of regular languages is **closed** under the regular operations – that performing those operations on regular languages results in regular languages.

Let’s start with union – and for that, let’s go to the board...
Next Time:
Nondeterminism