
Computability &
Complexity Theory

Charles E. Hughes
COT 6410 – Spring 2019

Review of Automata
and Formal Languages

Finite State Automata

Concrete Model of FSA

1/19/19 COT 4210 © UCF 3

x1 x2 x3 … Xn-1 xn

L is a finite state (regular) language over finite alphabet S
Each xi is a character in S
w = x1 x2 … xn is a string to be tested for membership in L

• Arrow above represents read head that starts on left.
• q0 ∈ Q (finite state set) is initial state of machine.
• Only action at each step is to change state based on

character being read and current state. State change is
determined by a transition function d: Q � S � Q.

• Once state is changed, read head moves right.
• Machine stops when head passes last input character.
• Machine accepts string as member of L if it ends up in

a state from Final State set F ⊆ Q.

q0

Finite State Automata
• A deterministic finite state automaton (DFA) A is defined

by a 5-tuple
A = (Q,Σ,δ,q0,F), where
– Q is a finite set of symbols called the states of A
– Σ is a finite set of symbols called the alphabet of A
– δ is a function from Q�Σ into Q (δ: Q�Σ → Q) called

the transition function of A
– q0∈Q is a unique element of Q called the start state
– F is a subset of Q (F ⊆ Q) called the final states (can

be empty)

1/19/19 COT 4210 © UCF 4

DFA Transitions
• Given a DFA, A = (Q,Σ,δ,q0,F), we can definition the

reflexive transitive closure of δ, δ*:Q�Σ* → Q, by
– δ*(q,l) = q where l is the string of length 0

• Note that text uses ∊ rather than l as symbol for string of length zero

– δ*(q,ax) = δ*(δ(q,a),x), where a ∈ Σ and x ∈ Σ*
– Note that this means

δ*(q,a) = δ(q,a), where a ∈ Σ as a = al
• We also define the transitive closure of δ, δ+, by

– δ+(q,w) = δ*(q,w) when |w|>0 or, equivalently, w ∈ Σ+

• The function δ* describes every step of computation by
the automaton starting in some state until it runs out of
characters to read

1/19/19 COT 4210 © UCF 5

Regular Languages and DFAs
• Given a DFA, A = (Q,Σ,δ,q0,F), we can define the

language accepted by A as those strings that cause it to
end up in a final state once it has consumed the entire
string

• Formally, the language accepted by A is
– { w | δ*(q0,w) ∈ F }

• We generally refer to this language as L(A)
• We define the notion of a Regular Language by saying

that a language is Regular if and only if it is accepted
(recognized) by some DFA

1/19/19 COT 4210 © UCF 6

State Diagram
• A finite state automaton can be described by a

state diagram, where
– Each state is represented by a node labelled with that

state, e.g., q
– The state state has an arc entering it with no source,

e.g., q0

– Each transition δ(q,a) = s is represented by a directed
arc from node q to node s that is labelled with the
letter a, e.g., q a s

– Each final state has an extra circle around its node,
e.g., f

1/19/19 COT 4210 © UCF 7

Sample DFAs # 1, 2

1/19/19 COT 4210 © UCF 8

E O
1

1

0 0

A = ({E,O}, {0,1}, d, E, {O}), where d is defined by above
diagram. L(A) = { w | w is a binary string of odd parity }

A

A’ = ({C,NC,X}, {00,01,10,11}, d’, C, {NC}), where d’ is defined by above
diagram. L(A’) = { w | w is a pair of binary strings where the bottom string
is the 2’s complement of the top one, both read least (lsb) to most
significant bit (msb) }

C NC11

00 01,10

A’
01,10

X

S

00,11

Sample DFA # 3

1/19/19 COT 4210 © UCF 9

A” = ({0,1,2}, {0,1}, d”, 0, {2}), where d” is defined by
above diagram. L(A”) = { w | w is a binary string of length
at least 1 being read left to right (msb to lsb) that, when
interpreted as a decimal number divided by 3, has a
remainder of 2 }

0 1
1

0

A” 2

1

00
01

State Transition Table
• A finite state automaton can be described by a state

transition table with |Q| rows and |Σ| columns
• Rows are labelled with state names and columns with

input letters
• The start state has some indicator, e.g., a greater than

sign (>q) and each final state has some indicator, e.g.,
an underscore (f)

• The entry in row q, column a, contains δ(q,a)
• In general we will use state diagrams, but transition

tables are useful in some cases (state minimization)

1/19/19 COT 4210 © UCF 10

Sample DFA # 4

1/19/19 COT 4210 © UCF 11

A’’’ = ({0%5,1%5,2%5,3%5,4%5}, {0,1}, d’’’, 0, {3%5}),
where d’’’ is defined by above diagram.
L(A’’) = { w | w is a binary string of length at least 1 being
read left to right (msb to lsb) that, when interpreted as a
decimal number divided by 5, has a remainder of 3 }

Really, this is better done as a state diagram, but have put
this up so you can see the pattern.

0 1
0 % 5 0 % 5 1 % 5
1 % 5 2 % 5 3 % 5
2 % 5 4 % 5 0 % 5
3 % 5 1 % 5 2 % 5
4 % 5 3 % 5 4 % 5

Accept State

Sample DFA # 5

1/19/19 COT 4210 © UCF 12

This checks a string to see if it’s a legal password. In our
case, a legal password must contain at least one of each
of the following: lower case letter, upper case letter,
number, and special character from the following set
{!@#$%^&}. No other characters are allowed

A-Z a-z 0-9 @#$%^&
ð Empty A a 0 @

A A Aa A0 A@
a Aa a a0 a@
0 A0 a0 0 0@
@ A@ a@ 0@ @
Aa Aa Aa Aa0 Aa@
A0 A0 Aa0 A0 A0@
A@ A@ Aa@ A0@ A@
a0 Aa0 a0 a0 a0@
a@ Aa@ a@ a0@ a@
0@ A0@ a0@ 0@ 0@
Aa0 Aa0 Aa0 Aa0 Aa0@
Aa@ Aa@ Aa@ Aa0@ Aa@
A0@ A0@ Aa0@ A0@ A0@
a0@ Aa0@ a0@ a0@ a0@

Aa0@ Aa0@ Aa0@ Aa0@ Aa0@

DFA Closure
• Regular languages (those recognized by DFAs) are closed

under complement, union, intersection, difference and
exclusive or (⊕) and many other set operations

• Let A1 = (Q1,Σ,δ1,q0,F1), A2 = (Q2,Σ,δ2,s0,F2) be arbitrary DFAs
• Σ*-L(A1) is recognized by A1

C = (Q1,Σ,δ1,q0,Q1-F1)
• Define A3 = (Q1�Q2,Σ,δ3,<q0,s0>,F3) where

δ3(<q,s>,a)= <δ1(q,a),δ2(s,a)>, qÎQ1, sÎQ2, aÎΣ
– L(A1)∪L(A2) is recognized when F3=(F1�Q2)∪(Q1�F2)
– L(A1)∩L(A2) is recognized when F3=F1�F2

– L(A1) - L(A2) is recognized when F3=F1�(Q2-F2)
– L(A1) ⊕ L(A2) is recognized when F3=F1�(Q2-F2)∪(Q1-F1)�F2

1/19/19 COT 4210 © UCF 13

Complement of Regular Sets
• Let A = (Q,Σ,δ,q0,F)
• Simply create new automaton

AC = (Q,Σ,δ,q0,Q-F)
• L(AC) = { w | δ*(q0,w) ∊ Q-F } =

{ w | δ*(q0,w) ∉ F } =
{ w | w ∉ L(A) }

• Again, imagine trying to do this in the context of regular
expressions

• Choosing the right representation can make a very big
difference in how easy or hard it is to prove some
property is true

1/19/19 COT 4210 © UCF 14

Parallelizing DFAs
• Regular sets can be shown closed under many binary operations

using the notion of parallel machine simulation
• Let A1 = (Q1,Σ,δ1,q0,F1) and A2 = (Q2,Σ,δ2,s0,F2) where

Q1∩Q2 = Ø
• B = (Q1�Q2,Σ,δ3,<q0,s0>,F3) where

δ3(<q,s>,a) = < δ1(q,a), δ2(s,a) >
• Union is F3 = F1�Q2 ∪ Q1�F2

• Intersection is F3 = F1�F2
– Can do by combining union and complement

• Difference is F3 = F1�(Q2 – F2)
– Can do by combining intersection and complement

• Exclusive Or is F3=F1�(Q2-F2)∪(Q1-F1)�F2

1/19/19 COT 4210 © UCF 15

Non-determinism NFA
• A non-deterministic finite state automaton (NFA) A is defined by a 5-tuple

A = (Q,Σ,δ,q0,F), where

– Q is a finite set of symbols called the states of A

– Σ is a finite set of symbols called the alphabet of A

– δ is a function from Q�Σe into P(Q) = 2Q ; Note: Σe = (Σ∪{l})
(δ: Q� Σe → P(Q)) called the transition function of A; by definition q ∈
δ(q,l)

– q0∈Q is a unique element of Q called the start state

– F is a subset of Q (F ⊆ Q) called the final states

– Note that a state/input (called a discriminant) can lead nowhere new, one place
or many places in an NFA; moreover, an NFA can jump between states even
without reading any input symbol

– For simplicity, we often extend the definition of δ: Q� Σe to a variant that
handles sets of states, where δ: P(Q)� Σe is defined as
δ(S,a) = ∪q∈S δ(q,a), where a ∈ Σe – if S=Ø, ∪q∈S δ(q,a) =Ø

1/19/19 COT 4210 © UCF 16

NFA Transitions
• Given an NFA, A = (Q,Σ,δ,q0,F), we can define the

reflexive transitive closure of δ, δ*:P(Q)�Σ* → P(Q), by
– l-Closure(S) = { t | t ∊ δ*(S,l)}, S ∈ P(Q) – extended δ
– δ*(S,l) = l-Closure(S)
– δ*(S,ax) = δ*(l-Closure(δ(S,a),x)), where a ∈ Σ and x ∈ Σ*

• Note that δ*(S,ax) = ∪q∈S∪p∈l-Closure(δ(q,a)) δ*(p,x), where a ∈ Σ and x ∈ Σ*

• We also define the transitive closure of δ, δ+, by
– δ+(S,w) = δ*(S,w) when |w|>0 or, equivalently, w ∈ Σ+

• The function δ* describes every “possible” step of
computation by the non-deterministic automaton starting
in some state until it runs out of characters to read

1/19/19 COT 4210 © UCF 17

NFA Languages
• Given an NFA, A = (Q,Σ,δ,q0,F), we can define the

language accepted by A as those strings that allow it to
end up in a final state once it has consumed the entire
string – here we just mean that there is some accepting
path

• Formally, the language accepted by A is
– { w | (δ*(l-Closure({q0}),w) ∩ F) ≠ Ø }

• Notice that we accept if there is any set of choices of
transitions that lead to a final state

1/19/19 COT 4210 © UCF 18

Finite State Diagram
• A non-deterministic finite state automaton can

be described by a finite state diagram, except
– We now can have transitions labelled with l
– The same letter can appear on multiple arcs from a

state q to multiple distinct destination states

1/19/19 COT 4210 © UCF 19

Equivalence of DFA and NFA
• Clearly every DFA is an NFA except that

δ(q,a) = s becomes δ(q,a) = {s}, so any
language accepted by a DFA can be
accepted by an NFA.

• The challenge is to show every language
accepted by an NFA is accepted by an
equivalent DFA. That is, if A is an NFA,
then we can construct a DFA A’, such that
L(A’) = L(A).

1/19/19 COT 4210 © UCF 20

Constructing DFA from NFA
• Let A = (Q,Σ,δ,q0,F) be an arbitrary NFA
• Let S be an arbitrary subset of Q.

– Construct the sequence seq(S) to be a sequence that contains
all elements of S in lexicographical order, using angle brackets
to . That is, if S={q1, q3, q2} then seq(S)=<q1,q2,q3>. If S=Ø
then seq(S)=<>

• Our goal is to create a DFA, A’, whose state set contains
seq(S), whenever there is some w such that S=δ*(q0,w)

• To make our life easier, we will act as if the states of A’
are sets, knowing that we really are talking about
corresponding sequences

1/19/19 COT 4210 © UCF 21

l-Closure
• Define the l-Closure of a state q as the set of states one can arrive

at from q, without reading any additional input.
• Formally l-Closure(q) = { t | t ∊ δ*(q,l) }
• We can extend this to S ∈ P(Q) by

l-Closure(S) = { t | t ∊ δ*(q,l), q ∈ S } = { t | t ∊ l-Closure(q),q ∈ S}

1/19/19 COT 4210 © UCF 22

A B C D E
1 l

0

1

0,1

λ

0

1

A:

State A B C D E

l-closure { A } { B , C } { C } { D, E } { E }

Details of DFA
• Let A = (Q,Σ,δ,q0,F) be an arbitrary NFA

• In an abstract sense,
A’ = (<P(Q)>,Σ,δ’, <l-Closure({q0})>, F’),
but we really don’t need so many states (2|Q|) and we
can iteratively determine those needed by starting at l-
Closure({q0}) and keeping only states reachable from
here

• Define δ’(<S>,a) = <l-Closure(δ(S,a))> =
<∪q∈S l-Closure(δ(q,a)) >, where a∈Σ, S ∈ P(Q)

• F’ = {<S> ∈ <P(Q)> | (S ∩ F) ≠ Ø }

1/19/19 COT 4210 © UCF 23

Regular Languages and NFAs
• Showing that every NFA can be simulated by a DFA that

accepts the same language proves the following

• A language is Regular if and only if it is accepted
(recognized) by some NFA

1/19/19 COT 4210 © UCF 24

Convert from NFA to DFA

1/19/19 COT 4210 © UCF 25

Regular Expressions
• Primitive:

– Φ denotes {}
– λ denotes {λ}
– a where a is in Σ denotes {a}

• Closure:
– If R and S are regular expressions then so are R � S, R + S and

R*, where
• R � S denotes RS = { xy | x is in R and y is in S }
• R + S denotes RÈS = { x | x is in R or x is in S }
• R* denotes R*

• Parentheses are used as needed

1/19/19 COT 4210 © UCF 26

Regular Sets =
Regular Languages

• Show every regular expression denotes a
language recognized by a finite state
automaton (can do deterministic or non-
deterministic)

• Show every Finite State Automata
recognizes a language denoted by a
regular expression

1/19/19 COT 4210 © UCF 27

Every Regular Set is a
Regular Language

• Primitive:
– Φ denotes {}
– λ denotes {λ}
– a where a is in Σ denotes {a}

• Closure: (Assume that R’s and S’s states do not overlap)
– R � S start with machine for R, add l transitions from

every final state of R’s recognizer to start state of S,
making final state of S final states of new machine

– R + S create new start state and add l transitions from new
state to start states of each of R and S, making union
of R’s and S’s final states the new final states

– R* add l transitions from each final state of R back to its start
state, keeping original start and final states (gets R+) – FIX?

1/19/19 COT 4210 © UCF 28

λ
aa

Every Regular Language is a
Regular Set Using Rij

k

• This is a challenge that can be addressed in multiple ways but
I like to start with the Rij

k approach. Here’s how it works.
• Let A = (Q,Σ,δ,q1,F) be a DFA, where Q = {q1,q2, … , qn}
• Rij

k = {w | δ*(qi,w) = qj, and no intermediate state visited
between qi and qj, while reading w, has index > k

• Basis: k=0, Rij
0 = { a | δ(qi,a) = qj } sets are either Φ, λ, or an

element of Σ or λ + element of Σ, and so are regular sets
• Inductive hypothesis: Assume Rij

m are regular sets for
0 ≤ m ≤ k

• Inductive step: k+1, Rij
k+1 = (Rij

k + Rik+1
k � (Rk+1k+1

k)* � Rk+1j
k)

• L(A) = +f∈F R1f
n

1/19/19 COT 4210 © UCF 29

Convert to RE

1/19/19 COT 4210 © UCF 30

q2 q3q1

0

11

0,
1

0 1

q2 q3q1
0

11

0,
1

0 1

• R110= l R120= 0 R130= f
• R210= 0 R220= l + 1 R230= 0 + 1
• R310= f R320= 1 R330= l + 1

• R111= l R121= 0 R131= f
• R211= 0 R221= l + 1 + 00 R231= 0 + 1
• R311 = f R321= 1 R331= l + 1

• R112= l + 0(1+00)*0 R122= 0(1+00)* R132= 0(1+00)*(0+1)
• R212= (1+00)*0 R222= (1+00)* R232= (1+00)*(0+1)
• R312= 1(1+00)*0 R322= 1(1+00)* R332= l+1+1(1+00)*(0+1)

• L = R12
3=

0(1+00)* + 0(1+00)*(0+1) (1+1(1+00)*(0+1))* 1(1+00)*

1/19/19 COT 4210 © UCF 31

State Ripping Concept
• This has its motivation from Rij

k approach
• Add a new start state and add a l–transition to existing start state
• Add a new final state qf and insert l–transitions from all existing final

states to the new one; make the old final states non-final
• Leaving the start and final states, successively pick states to remove
• For each state to be removed, change the arcs of every pair of

externally entering and exiting arcs to reflect the regular expression
that describes all strings that could result is such a double transition;
be sure to account for loops in the state being removed. Also, or (+)
together expressions that have the same start and end nodes

• When have just start and final, the regular expression that leads
from start to final describes the associated regular set

1/19/19 COT 4210 © UCF 32

State Ripping Details
• Let B be the node to be removed
• Let e1 be the regular expression on the arc from some node A to some

node B (A≠B); e2 be the expression from B back to B (or l if there is no
recursive arc); e3 be the expression on the arc from B to some other node
C (C ≠B but C could be A); e4 be the expression from A to C

• Erase the existing arcs from A to B and A to C, adding a new arc from A to
C labelled with the expression
e4 + e1 e2* e3

• Do this for all nodes that have edges to B until B has no more entering
edges; at this point remove B and any edges it has to other nodes and itself

• Iterate until all but the start and final nodes remain
• The expression from start to final describes regular set that is equivalent to

regular language accepted by original automaton
• Note: Your choices of the order of removal make a big difference in how

hard or easy this is

1/19/19 COT 4210 © UCF 33

Use Ripping; Rip q3

1/19/19 COT 4210 © UCF 34

q2 q3q1

0

11

0+
1

0 1

qf
l

l
q0

q2q1

0

0 1+(0+1)1+

qf
l

l
q0

Use Ripping; Rip q1

1/19/19 COT 4210 © UCF 35

q2q1

0

0 1+(0+1)1+

qf
l

l
q0

q2
0

1+(0+1)1++0
0

qf
l

q0

Use Ripping; Rip q2

1/19/19 COT 4210 © UCF 36

q2
0

1+(0+1)1++00

qf

l

q0

0 (1+(0+1)1++00)*
qfq0

L = 0 (1+(0+1)1++00)* = 0 (1+(0+1)1++00)*

Regular Equations
• Assume that R, Q and P are sets such that P

does not contain the string of length zero, and R
is defined by

• R = Q + RP
• We wish to show that
• R = QP*

1/19/19 COT 4210 © UCF 37

Show QP* is a Solution
• We first show that QP* is contained in R. By

definition, R = Q + RP.
• To see if QP* is a solution, we insert it as the

value of R in Q + RP and see if the equation
balances

• R = Q + QP*P = Q(λ+P*P) = QP*
• Hence QP* is a solution, but not necessarily the

only solution.

1/19/19 COT 4210 © UCF 38

Uniqueness of Solution
• To prove uniqueness, we show that R is contained in QP*.
• By definition, R = Q+RP = Q+(Q+RP)P
• = Q+QP+RP2 = Q+QP+(Q+RP)P2

• = Q+QP+QP2+RP3

• ...
• = Q(λ+P+P2+ ... +Pi)+RPi+1, for all i>=0
• Choose any w in R, where |W| = k. Then, from above,
• R = Q(λ+P+P2+ ... +Pk)+RPk+1

• but, since P does not contain the string of length zero, w is not in
RPk+1. But then w is in

• Q(λ+P+P2+ ... +Pk) and hence w is in QP*.

1/19/19 COT 4210 © UCF 39

Example
• We use the above to solve simultaneous regular equations.

For example, we can associate regular expressions with finite
state automata as follows

• Hence,
• For A, Q=l+B1; P=0

A = QP* = (l+B1)0*
= B10* + 0*

• B = B10*1 + B0 + 0*1
For B, Q=0*1; P= B10*1 + B0 = B(10*1 + 0)

• and therefore
• B = 0*1(10*1 + 0)*
• Note: This technique fails if there are lambda transitions.
1/19/19 COT 4210 © UCF 40

Using Regular Equations

1/19/19 COT 4210 © UCF 41

B CA

0

11

0,
1

0 1

A = l + B0
B = A0 + C1 + B1
C = B(0+1) + C1; C = B(0+1)1*
B = 0 + B00 + B(0+1)1+ + B1
B = 0 + B (00+(0+1) 1+ + 1); B = 0(00 +(0+1)1+ + 1)*

This is same form as with state ripping. It won’t always be
so.

State Minimization
• First step is to remove any state that is unreachable from the start

state; a depth first search rooted at start state will identify all
reachable states

• One seeks to merge compatible states – states q and s are
compatible if, for all strings x, δ*(q,x) and δ*(s,x) are either both an
accepting or both rejecting states

• One approach is to discover incompatible states – states q and s are
incompatible if there exists a string x such that one of δ*(q,x) and
δ*(s,x) is an accepting state and the other is not

• There are many ways to approach this, but my favorite is to do
incompatible states via an n by n lower triangular matrix

1/19/19 COT 4210 © UCF 42

Sample Minimization
• This uses a transition

table
• Just an X denotes

Immediately incompatible
• Pairs are dependencies

for compatibility
• If a dependent is

incompatible, so are pairs
that depend on it

• When done, any not x--ed
out are compatible

• Here, new states are
<1,3>, <2,4,5>, <6>;
<1,3> is start and not
accept; others are accept

• Write new diagram

1/19/19 COT 4210 © UCF 43

Reversal of Regular Sets
• It is easier to do this with regular sets than with DFAs
• Let E be some arbitrary expression; ER is formed by

– Primitives: ØR=Ø λR=λ aR=a
– Closure:

• (A � B)R = (BR � AR)
• (A + B)R = (AR + BR)
• (A*)R = (AR*)

• Challenge: How would you do this with FSA models?
– Start with DFA; change all final to start states; change start

to a final state; and reverse edges
– Note that this creates multiple start states; can create a

new start state with l-transitions to multiple starts
1/19/19 COT 4210 © UCF 44

Substitution
• A substitution is a function, f, from each

member, a, of an alphabet, Σ, to a language La

• Regular languages are closed under substitution
of regular languages (i.e., each La is regular)

• Easy to prove by replacing each member of Σ in
a regular expression for a language L with
regular expression for La

• A homomorphism is a substitution where each
La is a single string

1/19/19 COT 4210 © UCF 45

Quotient with Regular Sets
• Quotient of two languages B and C, denoted B/C, is defined as

B/C = {x | ∃y∈C where xy∈B}
• Let B be recognized by DFA

AB = (QB,Σ,δB,q1B,FB) and C by
AC = (QC,Σ,δC,q1C,FC)

• Define the recognizer for B/C by
AB/C = (QB∪QB�QC,Σ,δB/C,q1B, FB�FC)
δB/C(q,a) = {δB(q,a)} a∈Σ,q∈QB
δB/C(q,l) = {<q,q1C>} q∈QB
δB/C(<q,p>,l) = {δB(q,a),δC(p,a)} a∈Σ,q∈QB,p∈QC

• The basic idea is that we simulate B and then randomly decide it
has seen x and continue by looking for y, simulating B continuing
after x but with C starting from scratch

1/19/19 COT 4210 © UCF 46

Quotient Again
• Assume some class of languages, C, is closed

under concatenation, intersection with regular
and substitution of members of C, show C is
closed under Quotient with Regular

• L/R = { x |∃y∈R where xy∈L }
– Define Σ’ = { a’ | a∈Σ }
– Let h(a) = a; h(a’) = l where a∈Σ
– Let g(a) = a’ where a∈Σ
– Let f(a) = {a,a’} where a∈Σ
– L/R = h(f(L) ∩ (Σ* � g(R)))

1/19/19 COT 4210 © UCF 47

Applying Meta Approach
• INIT(L) = { x |∃y∈Σ* where xy∈L }

– INIT(L) = h(f(L) ∩ (Σ* � g(Σ*)))
– Also INIT(L) = L / Σ*

• LAST(L) = { y |∃x∈Σ* where xy∈L }
– LAST(L) = h(f(L) ∩ (g(Σ*) � Σ*))

• MID(L) = { y |∃x,z∈Σ* where xyz∈L }
• MID(L) = h(f(L) ∩ (g(Σ*) � Σ* � g(Σ*)))

• EXTERIOR(L) = { xz |∃y∈Σ* where xyz∈L }
– EXTERIOR(L) = h(f(L) ∩ (Σ* � g(Σ*) � Σ*))

1/19/19 COT 4210 © UCF 48

Making Life Easy
• The key in proving closure is to always try to identify the

“best” equivalent formal model for regular sets when
trying to prove a particular property

• For example, how could you even conceive of proving
closure under intersection and complement in regular
expression notations?

• Note how much easier quotient is when have closure
under concatenation, and substitution and intersection
with regular languages than showing in FSA notation

1/19/19 COT 4210 © UCF 49

Reachable and Reaching
• Reachablefrom(q) = { p | ∃w ∍ δ(q,w)=p }

– Just do depth first search from q, marking all
reachable states. Works for NFA as well.

• Reachingto(q) = { p | ∃w ∍ δ(p,w)=q }
– Do depth first from q, going backwards on

transitions, marking all reaching states. Works
for NFA as well.

1/19/19 COT 4210 © UCF 50

Min and Max
• Min(L) = { w | w∈L and no proper prefix of w is in L } =

{ w | w∈L and if w=xy, x∈Σ*, y∈Σ+ then x∉L}
• Max(L) = { w | w∈L and w is not the proper prefix of any word in L } =

{ w | w∈L and if y∈Σ+ then wy∉L }
• Examples:

– Min(0(0+1)*) = {0}
– Max(0(0+1)*) = {}
– Min(01 + 0 + 10) = {0,10}
– Max(01 + 0 + 10) = {01,10}
– Min({aibjck | i ≤ k or j ≤ k}) = {aibjck | | i,j ≥0, k = min(i, j)}
– Max({aibjck | i ≤ k or j ≤ k}) = {} because k has no bound
– Min({aibjck | i ≥ k or j ≥ k}) = {λ}
– Max({aibjck | i ≥ k or j ≥ k}) = {aibjck | | i,j ≥0, k = max(i, j)}

1/19/19 COT 4210 © UCF 51

Regular Closed under Min
• Assume L is regular then Min(L) is regular
• Let L= L(A), where A = (Q,Σ,δ,q0,F) is a DFA with no

state unreachable from q0

• Define Amin = (Q∪{dead},Σ,δmin,q0,F), where for a∈Σ
δmin(q,a) = δ(q,a), if q∈Q-F; δmin(q,a) = dead, if q∈F;
δmin(dead,a) = dead

The reasoning is that the machine Amin accepts only elements in L that are not
extensions of shorter strings in L. By making it so transitions from all final
states in Amin go to the new “dead” state, we guarantee that extensions of
accepted strings will not be accepted by this new automaton.

Therefore, Regular Languages are closed under Min.

1/19/19 COT 4210 © UCF 52

Regular Closed under Max
• Assume L is regular then Max(L) is regular

• Let L= L(A), where A = (Q,Σ,δ,q0,F) is a DFA with no state

unreachable from q0

• Define Amax = (Q,Σ,δ,q0,Fmax), where

Fmax= { f | f∈F and Reachablefrom+(f)∩F=Φ }

where Reachablefrom+(q) = { p | ∃w ∍ |w|>0 and δ(q,w) = p }

The reasoning is that the machine Amax accepts only elements in L that cannot be

extended. If there is a non-empty string that leads from some final state f to any final

state, including f, then f cannot be final in Amax. All other final states can be retained.

The inductive definition of Reachablefrom+ is:

1. Reachablefrom+(q) contains { s | there exists an element of S, a, such that d(q,a) = s }

2. If s is in Reachablefrom+ (q) then Reachablefrom+ (q) contains

{ t | there exists an element of S, a, such that d(s,a) = t }

3. No other states are in Reachablefrom+(q)

Therefore, Regular Languages are closed under Max.

1/19/19 COT 4210 © UCF 53

Pumping Lemma Concept
• Let A = (Q,Σ,δ,q1,F) be a DFA, where Q = {q1,q2, … , qN}
• The “pigeon hole principle” tells us that whenever we visit N+1

or more states, we must visit at least one state more than
once (loop)

• Any string, w, of length N or greater leads to us making N
transitions after visiting the start state, and so we visit at least
one state more than once when reading w

1/19/19 COT 4210 © UCF 54

Pumping Lemma For Regular
• Theorem: Let L be regular then there

exists an N>0 such that, if w Î L and
|w| ≥ N, then w can be written in the form
xyz, where |xy| ≤ N, |y|>0, and for all i≥0,
xyiz Î L

• This means that interesting regular
languages (infinite ones) have a very
simple self-embedding property that
occurs early in long strings

1/19/19 COT 4210 © UCF 55

Pumping Lemma Proof
• If L is regular then it is recognized by some DFA, A=(Q,S,d,q0,F). Let |Q| = N

states. For any string w, such that |w| ≥ N, A must make N+1 state visits to
consume its first N characters, followed by |w|-N more state visits.

• In its first N+1 state visits, A must enter at least one state two or more times.

• Let w = v1…vj…vk…vm, where m =|w|, and d(q0,v1…vj)=d(q0,v1…vk), k > j,
and let this state represent the first one repeated while A consumes w.

• Define x = v1…vj, y = vi+1…vk, and z = vk+1…vm. Clearly w=xyz. Moreover,
since k > j, |y| > 0, and since k ≤ N, |xy| ≤ N.

• Since A is deterministic, d(q0,xy)=d(q0,xyi), for all i ≥ 0.

• Thus, if w Î L, d(q0,xyz) Î F, and so d(q0,xyiz) Î F, for all i ≥ 0.
• Consequently, if w Î L, |w|≥N, then w can be written in the form xyz, where

|xy| ≤ N, |y| > 0, and for all i ≥ 0, xyiz Î L.

1/19/19 COT 4210 © UCF 56

Lemma’s Adversarial Process
• Assume L = {anbn | n>0 } is regular
• P.L.: Provides N > 0

– We CANNOT choose N; that’s the P.L.’s job

• Our turn: Choose aNbN Î L
– We get to select a string in L

• P.L.: aNbN = xyz, where |xy| ≤ N, |y| > 0, and for all i ≥ 0, xyiz Î L
– We CANNOT choose split, but P.L. is constrained by N

• Our turn: Choose i = 0.
– We have the power here

• P.L: aN-|y|bN Î L; just a consequence of P.L.
• Our turn: aN-|y|bN Ï L; just a consequence of L’s structure
• CONTRADICTION, so L is NOT regular

1/19/19 COT 4210 © UCF 57

xwx is not Regular (PL)
• L = { x w x | x,w∈{a,b}+} :
• Assume that L is Regular.

• PL: Let N > 0 be given by the Pumping Lemma.

• YOU: Let s be a string, s ∈ L, such that s = aNbaaNb

• PL: Since s ∈ L and |s| ≥ N, s can be split into 3 pieces, s = xyz, such that
|xy| ≤ N and |y| > 0 and ∀ i ≥ 0 xyiz ∈ L

• YOU: Choose i = 2

• PL: xy2z = xyyz ∈ L

• Thus, aN + |y|baaNb would be in L, but this is not so since N+|y| ≠ N

• We have arrived at a contradiction.

• Therefore L is not Regular.

1/19/19 COT 4210 © UCF 58

aFib(k) is not Regular (PL)
• L = {aFib(k) | k>0} :
• Assume that L is regular
• Let N be the positive integer given by the Pumping Lemma
• Let s be a string s = aFib(N+3)Î L
• Since s Î L and |s| ≥ N (Fib(N+3)>N in all cases; actually Fib(N+2)>N as

well), s is split by PL into xyz, where |xy| ≤ N and |y| > 0 and for all i ≥ 0,
xyiz Î L

• We choose i = 2; by PL: xy2z = xyyzÎ L
• Thus, aFib(N+3)+|y| would be Î L. This means that there is a Fibonacci number

between Fib(N+3) and Fib(N+3)+N, but the smallest Fibonacci greater than
Fib(N+3) is Fib(N+3)+Fib(N+2) and Fib(N+2)>N
This is a contradiction, therefore L is not regular �

• Note: Using values less than N+3 could be dangerous because N could be
1 and both Fib(2) and Fib(3) are within N (1) of Fib(1).

1/19/19 COT 4210 © UCF 59

Myhill-Nerode Theorem
The following are equivalent:
1. L is accepted by some DFA
2. L is the union of some of the classes of a right invariant

equivalence relation, R, of finite index.
3. The specific right invariance equivalence relation

RL where x RL y iff "z [xz Î L iff yz Î L]
has finite index

Definition. R is a right invariant equivalence relation iff R is
an equivalence relation and "z [x R y implies xz R yz].
Note: This is only meaningful for relations over strings.

1/19/19 COT 4210 © UCF 60

Myhill-Nerode 1 ⇒ 2
1. Assume L is accepted by some DFA, A = (Q,Σ,δ,q1,F)
2. Define RA by x RA y iff δ*(q1,x) = δ*(q1,y). First, RA is

defined by equality and so is obviously an equivalence
relation (Clearly if δ*(q1,x) = δ*(q1,y) then "z δ*(q1,xz) =
δ*(q1,yz) because A is deterministic. Moreover if "z
δ*(q1,xz) = δ*(q1,yz) then δ*(q1,x) = δ*(q1,y), just by
letting z = l. Putting it together x RA y L iff "z xz RA yz.
Thus, RA is right invariant; its index is |Q| which is finite;
and L(A) = ∪δ*(x)∊F[x]RA, where [x]RA refers to the
equivalence class containing the string x.

1/19/19 COT 4210 © UCF 61

Myhill-Nerode 2 ⇒ 3
2. Assume L is the union of some of the classes of a right

invariant equivalence relation, R, of finite index.
3. Since x R y iff "z [xz R yz], R is right invariant and L is

the union of some of the equivalence classes, then
x R y ⇒ "z [xz Î L iff yz Î L] ⇒ x RL y.
This means that the index of RL is less than or equal to
that of R and so is finite. Note than the index of RL is
then less than or equal to that of any other right
invariant equivalence relation, R, of finite index that
defines L.

1/19/19 COT 4210 © UCF 62

Myhill-Nerode 3 ⇒ 1
3. Assume the specific right invariance equivalence

relation RL where x RL y iff "z [xz Î L iff yz Î L]
has finite index

1. Define the automaton A = (Q,Σ,δ,q1,F) by
Q = { [x]RL | x ∈ Σ* }
δ([x]RL,a) = [xa]RL
q1 = [l]
F = { [x]RL | x ∈ L }

Note: This is the minimum state automaton and all
others are either equivalent or have redundant
indistinguishable states

1/19/19 COT 4210 © UCF 63

Use of Myhill-Nerode
• L = {anbn | n>0 } is NOT regular.
• Assume otherwise.
• M-N says that the specific r.i. equiv. relation RL has finite

index, where x RL y iff "z [xz Î L iff yz Î L].
• Consider the equivalence classes [aib] and [ajb], where

i,j>0 and i ≠ j.
• aibbi-1 Î L but ajbbi-1 Ï L and so [aib] is not related to

[ajb] under RL and thus [aib] ≠ [ajb].
• This means that RL has infinite index.
• Therefore L is not regular.

1/19/19 COT 4210 © UCF 64

xwx is not Regular (MN)
• L = { x a x | x∈{a,b}+} :
• We consider the right invariant equivalence class [aib],

i>0.
• It’s clear that aibaaib is in the language, but akbaaib is

not when k < i.
• This shows that there is a separate equivalence class,

[aib], induced by RL, for each i>0. Thus, the index of RL is
infinite and Myhill-Nerode states that L cannot be
Regular.

1/19/19 COT 4210 © UCF 65

aFib(k) is not Regular (MN)
• L = {aFib(k) | k>0} :
• We consider the collection of right invariant equivalence

classes [aFib(j)], j > 2.
• It’s clear that aFib(j)aFib(j+1) is in the language, but

aFib(k)aFib(j+1) is not when k>2 and k≠j and k≠j+2
• This shows that there is a separate equivalence class

[aFib(j)] induced by RL, for each j > 2.
• Thus, the index of RL is infinite and Myhill-Nerode states

that L cannot be Regular.

1/19/19 COT 4210 © UCF 66

anbm m≠m is not Regular (MN)
• L = {anbm | n≠m} :
• We consider the collection of right invariant equivalence

classes [ai], i ≥ 0.

• It’s clear that aibi is not in L, but ajbi is when j ≠ i

• This shows that there is a separate equivalence class [ai]
induced by RL, for each i ≥ 0.

• Thus, the index of RL is infinite and Myhill-Nerode states
that L cannot be Regular.

1/19/19 COT 4210 © UCF 67

Myhill-Nerode and
Minimization

• Corollary: The minimum state DFA for a
regular language, L, is formed from the
specific right invariance equivalence
relation RL where
x RL y iff "z [xz Î L iff yz Î L]

• Moreover, all minimum state machines
have the same structure as the above,
except perhaps for the names of states

1/19/19 COT 4210 © UCF 68

What is Regular So Far?
• Any language accepted by a DFA
• Any language accepted by an NFA
• Any language specified by a Regular

Expression
• Any language representing the unique

solution to a set of properly constrained
regular equations

1/19/19 COT 4210 © UCF 69

What is NOT Regular?
• Well, anything for which you cannot write

an accepting DFA or NFA, or a defining
regular expression, or a right/left linear
grammar, or a set of regular equations, but
that’s not a very useful statement

• There are two tools we have:
– Pumping Lemma for Regular Languages
– Myhill-Nerode Theorem

1/19/19 COT 4210 © UCF 70

Finite State Transducers
• A transducer is a machine with output
• Mealy Model

– M = (Q, S, G, d, g, q0)
G is the finite output alphabet
g: Q � S ® G is the output function

– Essentially a Mealy Model machine produced a character of
output for each character of input it consumes, and it does so on
the transitions from one state to the next.

– A Mealy Model represents a synchronous circuit whose output is
triggered each time a new input arrives.

1/19/19 COT 4210 © UCF 71

Sample Mealy Model
• Write a Mealy finite state machine that

produces the 2’s complement result of

subtracting 1101 from a binary input

stream (assuming at least 4 bits of input)

1/19/19 COT 4210 © UCF 72

C

1..1

001

NC

1..1

0011

1/0

0/1 NC

1..1

001

C

1..1

00

NC

1..1

00

1/0

1/1,0/0

0/1

C

1..1

0

NC

1..1

0

0/1

1/0

0/0,1/1

C

1..1

NC

1..1

0/1

1/0

0/0,1/1

1/1,0/0

0/1

1/0

Finite State Transducers
• Moore Model

– M = (Q, S, G, d, g, q0)
G is the finite output alphabet
g: Q ® G is the output function

– Essentially a Moore Model machine produced a
character of output whenever it enters a state,
independent of how it arrived at that state.

– A Moore Model represents an asynchronous circuit
whose output is a steady state until new input arrives.

1/19/19 COT 4210 © UCF 73

Decision and Closure
Properties

Regular Languages

Decidable Properties
• Membership (just run DFA over string)
• L = Ø: Minimize and see if minimum state DFA is

• L = Σ*: Minimize and see if minimum state DFA is

• Finiteness: Minimize and see if there are no loops
emanating from a final state

• Equivalence: Minimize both and see if isomorphic

1/19/19 COT 4210 © UCF 75

A

Σ

A

Σ

Closure Properties
• Virtually everything with members of its own class as we

have already shown

• Union, concatenation, Kleene *, complement,
intersection, set difference, reversal, substitution,
homomorphism, quotient with regular sets, Prefix, Suffix,
Substring, Exterior, Min, Max and so much more

1/19/19 COT 4210 © UCF 76

Formal Languages

History of Formal Language
• In 1940s, Emil Post (mathematician) devised rewriting systems as a

way to describe how mathematicians do proofs. Purpose was to
mechanize them.

• Early 1950s, Noam Chomsky (linguist) developed a hierarchy of
rewriting systems (grammars) to describe natural languages.

• Late 1950s, Backus-Naur (computer scientists) devised BNF (a
variant of Chomsky�s context-free grammars) to describe the
programming language Algol.

• 1960s was the time of many advances in parsing. In particular,
parsing of context free was shown to be no worse than O(n3). More
importantly, useful subsets were found that could be parsed in O(n).

1/19/19 COT 4210 © UCF 78

Formalism for Grammars
Definition : A language is a set of strings of characters from some alphabet.

The strings of the language are called sentences or statements.

A string over some alphabet is a finite sequence of symbols drawn from that
alphabet.

A meta-language is a language that is used to describe another language.

A very well known meta-language is BNF (Backus Naur Form)

It was developed by John Backus and Peter Naur, in the late 50s, to describe
programming languages.

Noam Chomsky in the early 50s developed context free grammars that can be
expressed using BNF.

1/19/19 COT 4210 © UCF 79

Grammars
• G = (V, Σ, R, S) is a Phrase Structured Grammar (PSG)

where
– V: Finite set of non-terminal symbols
– Σ: Finite set of terminal symbols
– R: finite set of rules of form α ® β,

• α in (V È Σ)* V (V È Σ)*
• β in (V È Σ)*

– S: a member of V called the start symbol
• Right linear restricts all rules to be of forms

– α in V
– β of form ΣV, Σ or λ

1/19/19 COT 4210 © UCF 80

Derivations
• x Þ y reads as x derives y iff

– x = γαδ, y = γβδ and α ® β
• Þ* is the reflexive, transitive closure of Þ
• Þ+ is the transitive closure of Þ
• x Þ* y iff x = y or x Þ* z and z Þ y
• Or, x Þ* y iff x = y or x Þ z and z Þ* y
• L(G) = { w | S Þ* w } is the language

generated by G.
1/19/19 COT 4210 © UCF 81

Regular Grammars
• Regular grammars are also called right

linear grammars
• Each rule of a regular grammar is

constrained to be of one of the three
forms:
A → a, A ∈ V, a ∈ Σ*
A → l, A ∈ V, a ∈ Σ*
A → aB, A, B ∈ V, a ∈ Σ*

1/19/19 COT 4210 © UCF 82

DFA to Regular Grammar
• Every language recognized by a DFA is

generated by an equivalent regular
grammar

• Given A = (Q,Σ,δ,q0,F), L(A) is generated
by GA = (Q,Σ,R,q0) where R contains
q ® as iff δ(q,a) = s
q ® l iff q ∈ F

1/19/19 COT 4210 © UCF 83

Example of DFA to Grammar
• DFA

• Grammar
A ® 0 B | 1 B
B ® 0 A | 1 C | l
C ® 0 C | 1 A | l

1/19/19 COT 4210 © UCF 84

A CBA:

0

0,1

0

1

1

Regular Grammar to NFA
• Every language generated by a regular grammar

is recognized by an equivalent NFA
• Given G = (V, Σ, R, S), L(G) is recognized by

AG = (V∪{f},Σ,δ,S,{f}) where δ is defined by
δ(A,a) ⊆{B} iff A → aB
δ(A,a) ⊆{f} iff A → a
δ(A,l) ⊆{f} iff A → l

1/19/19 COT 4210 © UCF 85

Example of Grammar to NFA
• Grammar
S ® 0 S | 1 A
A ® 0 S | 0 A | 1 B | l
B ® 1 S | 0 B
• DFA

1/19/19 COT 4210 © UCF 86

S BA:

0 0 0

1

0

1

1

A

What More is Regular?
• Any language, L, generated by a right linear grammar
• Any language, L, generated by a left linear grammar

(A → a, A → l, A → Ba)
– Easy to see L is regular as we can reverse these rules and get a

right linear grammar that generates LR, but then L is the reverse
of a regular language which is regular

– Similarly, the reverse LR of any regular language L is right linear
and hence the language itself is left linear

• Any language, L, that is the union of some of the classes
of a right invariant equivalence relation of finite index

1/19/19 COT 4210 © UCF 87

Mixing Right and Left Linear
• We can get non-Regular languages if we present

grammars that have both right and left linear rules
• To see this, consider G = ({S,T}, Σ, R, S), where R is:

– S → aT
– T → Sb | b

• L(G) = { anbn | n > 0 } which is a classic non-regular,
context-free language

1/19/19 COT 4210 © UCF 88

Context Free Languages

Context Free Grammar
G = (V, S, R, S) is a PSG where
Each member of R is of the form
A ® a where a is a strings (VÈS)*
Note that the left hand side of a rule is a letter in V;
The right hand side is a string from the combined alphabets
The right hand side can even be empty (e or λ)
A context free grammar is denoted as a CFG and the language
generated is a Context Free Language (CFL).
A CFL is recognized by a Push Down Automaton (PDA) to be
discussed a bit later.

1/19/19 COT 4210 © UCF 90

Sample CFG
Example of a grammar for a small language:

G = ({<program>, <stmt-list>, <stmt>, <expression>},
{begin, end, ident, ;, =, +, -}, R, <program>) where R is

<program> à begin <stmt-list> end

<stmt-list> à <stmt> | <stmt> ; <stmt-list>

<stmt> à ident = <expression>

<expression> à ident + ident | ident - ident | ident

Here �ident� is a token return from a scanner, as are �begin�, �end�, �;�, �=�,
�+�, �-�

Note that �;� is a separator (Pascal style) not a terminator (C style).

1/19/19 COT 4210 © UCF 91

Derivation

1/19/19 COT 4210 © UCF 92

A sentence generation is called a derivation.

Grammar for a simple
assignment statement:

R1 <assgn> à <id> := <expr>
R2 <id> à a | b | c
R3 <expr> à <id> + <expr>
R4 | <id> * <expr>
R5 | (<expr>)
R6 | <id>

The statement a := b * (a + c)
Is generated by the leftmost derivation:

<assgn> Þ <id> := <expr> R1
Þ a := <expr> R2
Þ a := <id> * <expr> R4
Þ a := b * <expr> R2
Þ a := b * (<expr>) R5
Þ a := b * (<id> + <expr>) R3
Þ a := b * (a + <expr>) R2
Þ a := b * (a + <id>) R6
Þ a := b * (a + c) R2In a leftmost derivation only the

leftmost non-terminal is replaced

Parse Trees

1/19/19 COT 4210 © UCF 93

A parse tree is a graphical representation of a derivation
For instance the parse tree for the statement a := b * (a + c) is:

<assign>

<id> := <expr>

a <id> * <expr>

b (<expr>)

<id> + <expr>

a <id>

c

Every internal node of a
parse tree is labeled with
a non-terminal symbol.

Every leaf is labeled with a
terminal symbol.

The generated string is read
left to right

Ambiguity
A grammar that generates a sentence for which there are two or more
distinct parse trees is said to be �ambiguous�

For instance, the following grammar is ambiguous because it generates
distinct parse trees for the expression a := b + c * a

<assgn> à <id> := <expr>
<id> à a | b | c
<expr> à <expr> + <expr>

| <expr> * <expr>
| (<expr>)
| <id>

1/19/19 COT 4210 © UCF 94

Ambiguous Parse

1/19/19 COT 4210 © UCF 95

This grammar generates two parse trees for the same expression.

If a language structure has more than one parse tree,
the meaning of the structure cannot be determined uniquely.

<assign>

<id> := <expr>

A <expr> + <expr>

<id> <expr> * <expr>

B <id> <id>

C A

<assign>

<id> := <expr>

A <expr> * <expr>

<expr> + <expr> <id>

<id> <id> A

B C

Precedence

1/19/19 COT 4210 © UCF 96

Operator precedence:
If an operator is generated lower in the parse tree, it indicates that the
operator has precedence over the operator generated higher up in the tree.

An unambiguous grammar for expressions:

<assign> à <id> := <expr>
<id> à a | b | c
<expr> à <expr> + <term>

| <term>
<term> à <term> * <factor>

| <factor>
<factor> à (<expr>)

| <id>

This grammar indicates the usual
precedence order of multiplication and
addition operators.

This grammar generates unique parse
trees independently of doing a
rightmost or leftmost derivation

Left (right)most Derivations

1/19/19 COT 4210 © UCF 97

Rightmost derivation:
<assgn> Þ <id> := <expr>

Þ <id> := <expr> + <term>
Þ <id> := <expr> + <term> *<factor>
Þ <id> := <expr> + <term> *<id>
Þ <id> := <expr> + <term> * a
Þ <id> := <expr> + <factor> * a
Þ <id> := <expr> + <id> * a
Þ <id> := <expr> + c * a
Þ <id> := <term> + c * a
Þ <id> := <factor> + c * a
Þ <id> := <id> + c * a
Þ <id> := b + c * a
Þ a := b + c * a

Leftmost derivation:
<assgn> à <id> := <expr>

à a := <expr>
à a := <expr> + <term>
à a := <term> + <term>
à a := <factor> + <term>
à a := <id> + <term>
à a := b + <term>
à a := b + <term> *<factor>
à a := b + <factor> * <factor>
à a := b + <id> * <factor>
à a := b + c * <factor>
à a := b + c * <id>
à a := b + c * a

Ambiguity Test
• A Grammar is Ambiguous if there are two

distinct parse trees for some string
• Or, two distinct leftmost derivations
• Or, two distinct rightmost derivations
• Some languages are inherently ambiguous but

many are not
• Unfortunately (to be shown later) there is no

systematic test for ambiguity of context free
grammars

1/19/19 COT 4210 © UCF 98

Unambiguous Grammar
When we encounter ambiguity, we try to rewrite the grammar to avoid
ambiguity.

The ambiguous expression grammar:

<expr> à <expr> <op> <expr> | id | int | (<expr>)
<op> à + | - | * | /

Can be rewritten as:

<expr> à <term> | <expr> + <term> | <expr> - <term>
<term> à <factor> | <term> * <factor> | <term> / <factor>.
<factor> à id | int | (<expr>)

1/19/19 COT 4210 © UCF 99

Parsing Problem
The parsing Problem: Take a string of symbols in a language (tokens)
and a grammar for that language to construct the parse tree or report
that the sentence is syntactically incorrect.

For correct strings:

Sentence + grammar à parse tree

For a compiler, a sentence is a program:

Program + grammar à parse tree

Types of parsers:

Top-down aka predictive (recursive descent parsing)

Bottom-up aka shift-reduce

1/19/19 COT 4210 © UCF 100

Removing Left Recursion if
doing Top Down

Given left recursive and non left recursive rules
A ® Aa1 | … | Aan | b1 | … | bm

Can view as
A ® (b1 | … | bm) (a1 | … | an)*
Star notation is an extension to normal notation with
obvious meaning
Now, it should be clear this can be done right recursive as
A ® b1B | … | bm B
B ® a1B| … | anB | λ

1/19/19 COT 4210 © UCF 101

Right Recursive Expressions
Grammar: Expr à Expr + Term | Term

Term à Term * Factor | Factor
Factor à (Expr) | Int

Fix: Expr à Term ExprRest
ExprRest à + Term ExprRest | l
Term à Factor TermRest
TermRest à * Factor TermRest | l
Factor à (Expr) | Int

1/19/19 COT 4210 © UCF 102

Bottom Up vs Top Down
• Bottom-Up: Two stack operations

– Shift (move input symbol to stack)
– Reduce (replace top of stack a with A, when A®a)
– Challenge is when to do shift or reduce and what reduce to do.

• Can have both kinds of conflict

• Top-Down:
– If top of stack is terminal

• If same as input, read and pop
• If not, we have an error

– If top of stack is a non-terminal A
• Replace A with some a, when A®a
• Challenge is what A-rule to use

1/19/19 COT 4210 © UCF 103

Chomsky Normal Form
• Each rule of a CFG is constrained to be of

one of the three forms:
A → a, A ∈ V, a ∈ Σ
A → BC, A,B,C ∈ V

• If the language contains l then we allow
S → l
and constrain all non-terminating rules of
form to be
A → BC, A ∈ V, B,C ∈ V-{S}

1/19/19 COT 4210 © UCF 104

Nullable Symbols
• Let G = (V, S, R, S) be an arbitrary CFG
• Compute the set Nullable(G) = {A | A ⇒* l }
• Nullable(G) is computed as follows

Nullable(G) ⊇ { A | A → l }
Repeat

Nullable(G) ⊇ { B | B → a and a ∈ Nullable* }
until no new symbols are added

1/19/19 COT 4210 © UCF 105

Removal of l-Rules
• Let G = (V, S, R, S) be an arbitrary CFG
• Compute the set Nullable(G)
• Remove all l-rules
• For each rule of form B → aAb where A is nullable, add

in the rule B → ab
• The above has the potential to greatly increase the

number of rules and add unit rules
(those of form B → C, where B,C∈V)

• If S is nullable, add new start symbol S0, as new start
state, plus rules S0, → l and S0 → a, where S → a

1/19/19 COT 4210 © UCF 106

Chains (Unit Rules)
• Let G = (V, S, R, S) be an arbitrary CFG that has

had its l-rules removed
• For A∈V, Chain(A) = { B | A ⇒* B, B∈V }
• Chain(A) is computed as follows

Chain(A) ⊇ { A }
Repeat

Chain(A) ⊇ { C | B → C and B ∈ Chain(A) }
until no new symbols are added

1/19/19 COT 4210 © UCF 107

Removal of Unit-Rules
• Let G = (V, S, R, S) be an arbitrary CFG that has had its
l-rules removed, except perhaps from start symbol

• Compute Chain(A) for all A∈V
• Create the new grammar G = (V, S, R, S) where R is

defined by including for each A∈V, all rules of the form
A → a, where B → a ∈ R, a ∉ V and B ∈ Chain(A)
Note: A∈Chain(A) so all its non unit-rules are included

1/19/19 COT 4210 © UCF 108

Non-Productive Symbols
• Let G = (V, S, R, S) be an arbitrary CFG that has had its
l-rules and unit-rules removed

• Non-productive non-terminal symbols never lead to a
terminal string (not productive)

• Productive(G) is computed by
Productive(G) ⊇ { A | A → a, a∈S* }
Repeat

Productive(G) ⊇ { B | B → a, a∈(S∪Productive)* }
until no new symbols are added

• Keep only those rules that involve productive symbols
• If no rules remain, grammar generates nothing

1/19/19 COT 4210 © UCF 109

Unreachable Symbols
• Let G = (V, S, R, S) be an arbitrary CFG that has had its l-

rules, unit-rules and non-productive symbols removed
• Unreachable symbols are ones that are inaccessible from

start symbol

• We compute the complement (Useful)
• Useful(G) is computed by

Useful(G) ⊇ { S }
Repeat

Useful(G) ⊇ { C | B → aCb, C∈V∪Σ, B∈ Useful(G) }
until no new symbols are added

• Keep only those rules that involve useful symbols

• If no rules remain, grammar generates nothing

1/19/19 COT 4210 © UCF 110

Reduced CFG
• A reduced CFG is one without l-rules

(except possibly for start symbol), no unit-
rules, no non-productive symbols and no
useless symbols

1/19/19 COT 4210 © UCF 111

CFG to CNF
• Let G = (V, S, R, S) be arbitrary reduced CFG
• Define G’=(V∪{<a>|a∈Σ}, S, R, S)
• Add the rules <a> → a, for all a∈Σ
• For any rule, A → a, |a| > 1, change each terminal

symbol, a, in a to the non-terminal <a>
• Now, for each rule A → BCa, |a| > 0, introduce the new

non-terminal B<Ca>, and replace the rule A → BCa with
the rule A → B<Ca> and add the rule <Ca> → Ca

• Iteratively apply the above step until all rules are in CNF

1/19/19 COT 4210 © UCF 112

Example of CNF Conversion

Starting Grammars
• L = { ai bj ck | i=j or j=k }
• G = ({S,A,<B=C>,C,<A=B>}, {a,b}, R, S)
• R:

– S à A | C
– A à a A | <B=C>
– <B=C> à b <B=C> c | λ
– C à C c | <A=B>
– <A=B> à a <A=B> b | λ

1/19/19 COT 4210 © UCF 114

Remove Null Rules
• Nullable = {<B=C>, <A=B>, A, C, S}

– S’ à S | λ // S’ added to V
– S à A | C
– A à a A | a |<B=C>
– <B=C> à b <B=C> c | b c
– C à C c | c | <A=B>
– <A=B> à a <A=B> b | ab

1/19/19 COT 4210 © UCF 115

Remove Unit Rules
• Chains=

{[S’:S’,S,A,C,<A=B>,<B=C>],[S:S,A,C,<A=B>,<
B=C>],
[A:A,<B=C>],[C:C,<B=C>],[<B=C>:<B=C>],
[<A=B>:<A=B>]}
– S’ à λ | aA | a | b<B=C>c | bc | Cc | c | a<A=B>b | ab
– S à aA | a | b<B=C>c | bc | Cc | c | a<A=B>b | ab
– A à aA | a | b<B=C>c | bc
– <B=C> à b<B=C>c | bc
– C à Cc | c | a<A=B>b | ab
– <A=B> à a<A=B>b | ab

1/19/19 COT 4210 © UCF 116

Remove Useless Symbols
• All non-terminal symbols are productive (lead

to terminal string)

• S is useless as it is unreachable from S’ (new
start).

• All other symbols are reachable from S’

1/19/19 COT 4210 © UCF 117

Normalize rhs as CNF
• S’ à λ | <a>A | a | <<B=C><c>> | <c> |

C<c> | c | <a><<A=B>> | <a>
• A à <a>A | a |<<B=C><c>> | <c>
• <B=C> à <<B=C><c>> | <c>
• C à C<c> | c | <a><<A=B>> | <a>
• <A=B> à <a> <<A=B>> | <a>
• <<B=C><c>> à <B=C><c>
• <<A=B>> à <A=B>
• <a> à a
• à b
• <c> à c

1/19/19 COT 4210 © UCF 118

CKY (Cocke, Kasami, Younger)
O(N3) PARSING

1/19/19 COT 4210 © UCF 119

Dynamic Programming
To solve a given problem, we solve small parts of the problem (subproblems),
then combine the solutions of the subproblems to reach an overall solution.

The Parsing problem for arbitrary CFGs was elusive, in that its complexity was
unknown until the late 1960s. In the meantime, theoreticians developed notion
of simplified forms that were as powerful as arbitrary CFGs. The one most
relevant here is the Chomsky Normal Form – CNF. It states that the only rule
forms needed are:

A ® BC where B and C are non-terminals

A ® a where a is a terminal

This is provided the string of length zero is not part of the language.

1/19/19 COT 4210 © UCF 120

CKY (Bottom-Up Technique)
Let the input string be a sequence of n letters a1 ... an.
Let the grammar contain r terminal and nonterminal symbols R1 ... Rr,
Let R1 be the start symbol.
Let P[n,n,r] be an array of Booleans. Initialize all elements of P to false.
For each i = 1 to n

For each unit production Rj → ai, set P[i,1,j] = true.
For each i = 2 to n

For each j = 1 to n-i+1
For each k = 1 to i-1

For each production RA -> RB RC

If P[j,k,B] and P[j+k,i-k,C] then set P[j,i,A] = true
If P[1,n,1] is true then a1 ... an is member of language
else a1 ... an is not member of language

1/19/19 COT 4210 © UCF 121

CKY Parser
Present the CKY recognition matrix for the string abba assuming the Chomsky
Normal Form grammar, G = ({S,A,B,C,D,E}, {a,b}, R, S), specified by the rules R:

S ® AB | BA
A ® CD | a
B ® CE | b
C ® a | b
D ® AC
E ® BC

1/19/19 COT 4210 © UCF 122

a b b a
1 A,C B,C B,C A,C
2 S,D E S,E
3 B B
4 S,E

2nd CKY Example

1/19/19 COT 4210 © UCF 123

a - a + a - a
1 E M E P E M E

2 E, F E, F E, F

3 E E E

4 E, F E, F

5 E E

6 E, F

7 E

E ® E F | M E | P E | a
F ® M F | P F | M E | P E
P ® +
M ® -

CFL Pumping Lemma
Concept

• Let L be a context free language the there is CNF grammar
G = (V, Σ, R, S) such that L(G) = L.

• As G is in CNF all its rules that allow the string to grow are of the form
A � BC, and thus growth has a binary nature.

• Any sufficiently long string z in L will have a parse tree that must have deep
branches to accommodate z’s growth.

• Because of the binary nature of growth, the width of a tree with maximum
branch length k at its deepest nodes is at most 2k; moreover, if the frontier
of the tree is all terminal, then the string so produced is of length at most
2k-1; since the last rule applied for each leaf is of the form A � a.

• Any terminal branch in a derivation tree of height > |V| has more than |V|
internal nodes labelled with non-terminals. The “pigeon hole principle” tells
us that whenever we visit |V| +1 or more nodes, we must use at least one
variable label more than once. This creates a self-embedding property that
is key to the repetition patterns that occur in the derivation of sufficiently
long strings.

1/19/19 COT 4210 © UCF 124

Pumping Lemma For CFL
• Let L be a CFL then there exists an N>0 such

that, if z Î L and |z| ≥ N, then z can be written in
the form uvwxy, where |vwy| ≤ N, |vx|>0, and for
all i≥0, uviwxiy Î L.

• This means that interesting context free
languages (infinite ones) have a self-embedding
property that is symmetric around some central
area, unlike regular where the repetition has no
symmetry and occurs at the start.

1/19/19 COT 4210 © UCF 125

Pumping Lemma Proof
• If L is a CFL then it is generated by some CNF grammar, G = (V, Σ,

R, S). Let |V| = k. For any string z, such that |z| ≥ N = 2k, the
derivation tree for z based on G must have a branch with at least
k+1 nodes labelled with variables from G.

• By the Pigeon Hole Principle at least two of these labels must be the
same. Let the first repeated variable be T and consider the last two
instances of T on this path.

• Let z = uvwxy, where S ⇒* uTy ⇒* uvTxy ⇒* uvwxy
• Clearly, then, we know S ⇒* uTy; T ⇒* vTx; and T ⇒* w
• But then, we can start with S ⇒* uTy; repeat T ⇒* vTx zero or more

times; and then apply T ⇒* w.
• But then, S ⇒* uviwxiy for all i≥0, and thus uviwxiy Î L, for all i ≥0.

1/19/19 COT 4210 © UCF 126

Visual Support of Proof

1/19/19 COT 4210 © UCF 127

T

T

T

T

T

2 =i 0 =i
T

S S S

u v w x y

w

u yu v x y

v w x

Lemma’s Adversarial Process
• Assume L = {anbncn | n>0 } is a CFL

• P.L.: Provides N>0 We CANNOT choose N; that’s the P.L.’s job

• Our turn: Choose aNbNcN Î L We get to select a string in L

• P.L.: aNbNcN = uvwxy, where |vwx| ≤ N, |vx|>0, and for all i≥0,
uviwxiy Î L We CANNOT choose split, but P.L. is constrained by N

• Our turn: Choose i=0. We have the power here

• P.L: Two cases:
(1) vwx contains some a’s and maybe some b’s. Because |vwx| ≤ N, it cannot
contain c’s if it has a’s. i=0 erases some a’s but we still have N c’s so uwy∉L
(2) vwx contains no a’s. Because |vx|>0, vx contains some b’s or c’s or some of each.
i=0 erases some b’s and/or c’s but we still have N a’s so uwy∉L

• CONTRADICTION, so L is NOT a CFL

1/19/19 COT 4210 © UCF 128

Non-Closure
• Intersection ({ anbncn | n≥0 } is not a CFL)

{ anbncn | n≥0 } =
{ anbncm | n,m≥0 } ∩ { ambncn | n,m≥0 }
Both of the above are CFLs

• Complement
If closed under complement then would be
closed under Intersection as
A ∩ B = ~(~A ∪ ~B)

1/19/19 COT 4210 © UCF 129

Max and Min of CFL
• Consider the two operations on languages max and min, where

– max(L) = { x | x ∈ L and, for no non-null y does xy ∈ L } and
– min(L) = { x | x ∈ L and, for no proper prefix of x, y, does y ∈ L }

• Describe the languages produced by max and min. for each of :
– L1 = { ai bj ck | k ≤ i or k ≤ j } CFL

• max(L1) = { ai bj ck | k =max(i, j) } Non-CFL
• min(L1) = { λ } (string of length 0) Regular

– L2 = { ai bj ck | k > i or k > j } CFL
• max(L2) = { } (empty) Regular
• min(L2) = { ai bj ck | k =min(i, j)+1 } Non-CFL

• max(L1) shows CFL not closed under max
• min(L2) shows CFL not closed under min

1/19/19 COT 4210 © UCF 130

Complement of ww
• Let L = { ww | w ∈ {a,b}+ }. L is not a CFL
• Consider L’s complement, it must be of form xayx’by’ or xbyx’ay’,

where |x|=|x’| and |y|=|y’|
• The above reflects that this language has one “transcription error”
• This seems really hard to write a CFG but it’s all a matter of how you

view it
• We don’t care about what precedes or follows the errors so long as

the lengths are right
• Thus, we can view above as xax’yby’ or xbx’y’ay’,

where |x|=|x’| and |y|=|y’|
• The grammar for this has rules

S � AB | BA ; A � XAX | a ; B � XBX | b
X � a | b

1/19/19 COT 4210 © UCF 131

Solvable CFL Problems
• Let L be an arbitrary CFL generated by CFG G

with start symbol S then the following are all
decidable
– Is w in L? Run CKY

If S in final cell then w∈L
– Is L empty (non-empty)? Reduce G

If no rules left then empty
– Is L finite (infinite)? Reduce G

Run DFS(S)
If no loops then finite

1/19/19 COT 4210 © UCF 132

Formalization of PDA
• A = (Q, Σ, Γ, δ, q0, Z0, F)
• Q is finite set of states
• Σ is finite input alphabet
• Γ is finite set of stack symbols
• δ : Q�Σe�Γe → 2Q�Γ* is transition function

– Note: Can limit stack push to Γe but it’s equivalent!!
• Z0 ∈ Γ is an optional initial symbol on stack
• F ⊆ Q is final set of states and can be omitted

for some notions of a PDA
1/19/19 COT 4210 © UCF 133

Notion of ID for PDA
• An instantaneous description for a PDA is

[q, w, γ] where
– q is current state
– w is remaining input
– γ is contents of stack (leftmost symbol is top)

• Single step derivation is defined by
– [q,ax,Zα] |— [p,x,βα] if δ(q,a,Z) contains (p,β)

• Multistep derivation (|—*) is reflexive transitive
closure of single step.

1/19/19 COT 4210 © UCF 134

Language Recognized by PDA
• Given A = (Q, Σ, Γ, δ, q0, Z0, F)

there are three senses of recognition
• By final state

L(A) = {w|[q0,w,Z0] |—* [f,λ,β]}, where f∈F
• By empty stack

N(A) = {w|[q0,w,Z0] |—* [q,λ,λ]}
• By empty stack and final state

E(A) = {w|[q0,w,Z0] |—* [f,λ,λ]}, where f∈F

1/19/19 COT 4210 © UCF 135

Top Down Parsing by PDA
• Given G = (V, Σ, R, S), define

A = ({q}, Σ, Σ∪V, δ, q, S, ϕ)
• δ(q,a,a) = {(q,λ)} for all a ∈ Σ
• δ(q,λ,A) = {(q,α) | A → α ∈ R (guess) }
• N(A) = L(G)

• Give just one state, this is essentially
stateless, except for stack

1/19/19 COT 4210 © UCF 136

Top Down Parsing by PDA
E à E + T | T
T à T * F | F
F à (E) | Int
•δ(q,+,+) = {(q,λ)}, δ(q,*,*) = {(q,λ)},
•δ(q,Int,Int) = {(q,λ)},
•δ(q,(,() = {(q,λ)}, δ(q,),)) = {(q,λ)}
•δ(q,λ,E) = {(q,E+T), (q,T)}
•δ(q,λ,T) = {(q,T*F), (q,F)}
•δ(q,λ,F) = {(q,(E)), (q,Int)}
1/19/19 COT 4210 © UCF 137

Bottom Up Parsing by PDA
• Given G = (V, Σ, R, S), define

A = ({q,f}, Σ, Σ∪V∪{$}, δ, q, $, {f})
• δ(q,a,λ) = {(q,a)} for all a ∈ Σ , SHIFT
• δ(q,λ,αR) ⊇ {(q,A)} if A → α ∈ R, REDUCE

Cheat: looking at more than top of stack
• δ(q,λ,S) ⊇ {(f,λ)}
• δ(f,λ,$) = {(f,λ)} , ACCEPT
• E(A) = L(G)
• Could also do δ(q,λ,S$)⊇{(q,λ)}, N(A) = L(G)
1/19/19 COT 4210 © UCF 138

Bottom Up Parsing by PDA
E à E + T | T
T à T * F | F
F à (E) | Int
•δ(q,+,λ)={(q,+)}, δ(q,*,λ)={(q,*)}, δ(q,Int,λ)={(q,Int)},
δ(q,(,λ)={(q,()}, δ(q,),λ)={(q,))}
•δ(q,λ,T+E) = {(q,E)}, δ(q,λ,T) ⊇ {(q,E)}
•δ(q,λ,F*T) ⊇ {(q,T)}, δ(q,λ,F) ⊇ {(q,T)}
•δ(q,λ,)E() ⊇ {(q,F)}, δ(q,λ,Int) ⊇ {(q,F)}
•δ(q,λ,E) ⊇ {(f,λ)}
•δ(f,λ,$) = {(f,λ)}
•E(A) = L(G)
1/19/19 COT 4210 © UCF 139

Converting a PDA to CFG
• Book has one approach; here is another

• Let A = (Q, S, G, d, q0, Z, F) accept L by empty stack and final state

• Define A’ = (QÈ{q0’,f}, S, GÈ{$}, d’, q0’, $, {f}) where
– d’(q0’, λ, $) = {(q0, PUSH(Z)) or in normal notation {(q0, Z$)}

– d’ does what d does but only uses PUSH and POP instructions, always reading top of stack
Note1: we need to consider using the $ for cases of the original machine looking at empty
stack, when using λ for stack check. This guarantees we have top of stack until very end.
Note2: If original adds stuff to stack, we do pop, followed by a bunch of pushes.

– We add (f, λ) = (f, POP) to d’(qf, λ, $) whenever qf is in F, so we jump to a fixed final state.

• Now, wlog, we can assume our PDA uses only POP and PUSH, has just
one final state and accepts by empty stack and final state. We will assume
the original machine is of this form and that its bottom of stack is $.

• Define G = (V, S, R, S) where

– V = {S} È { <q, X, p> | q,p Î Q, X Î G }

– R on next page

1/19/19 COT 4210 © UCF 140

Rules for PDA to CFG
• R contains rules as follows:

S ® <q0,$,f> where F = {f}
meaning: want to generate w whenever
[q0,w,$] |¾*[f,λ,λ]

• Remaining rules are:
<q,X,p> ® a<s,Y,t><t,X,p>
whenever d(q,a,X) ⊇ {(s,PUSH(Y))}
<q,X,p> ® a
whenever d(q,a,X) ⊇ {(p,POP)}

• Want <q,X,p>Þ*w when [q,w,X] |¾*[p,λ,λ]
1/19/19 COT 4210 © UCF 141

Greibach Normal Form
• Each rule of a GNF is constrained to be of form:

A → aa, A ∈ V, a ∈ Σ, a ∈ V*
• If the language contains l then we allow

S → l
and constrain S to not be on right hand side of any rule

• The beauty of this form is that, in a bottom up parse,
every step consumes an input character and so parse is
linear (if we guess right)

• We will not show details of conversion but it is
dependent on starting in CNF and then removing left
recursion, both of which we have already shown

1/19/19 COT 4210 © UCF 142

Closure Properties

Context Free Languages

Intersection with Regular
• CFLs are closed under intersection with Regular sets

– To show this we use the equivalence of CFGs generative power with the
recognition power of PDAs.

– Let A0 = (Q0, S, G, d0, q0, $, F0) be an arbitrary PDA
– Let A1 = (Q1, S, d1, q1, F1) be an arbitrary DFA
– Define A2 = (Q0 ´ Q1, S, G, d2, <q0,q1> $, F0 ´ F1) where

• d2(<q,s>, a, X) ⊇ {(<q�,s�>, a)}, aÎSÈ{l}, XÎG iff
d0(q, a, X) ⊇ {(q�, a)} and
d1(s,a) = s� (if a=l then s� = s).

– Using the definition of derivations we see that
[<q0,q1>, w, $] |¾* [<t,s>, l, b] in A2 iff
[q0, w, $] |¾* [t, l, b] in A0 and
[q1, w] |¾* [s, l] in A1

But then wÎF(A2) iff tÎF0 and sÎF1 iff wÎF(A0) and wÎF(A1)

1/19/19 COT 4210 © UCF 144

Substitution
• CFLs are closed under CFL substitution

– Let G=(V,S,R,S) be a CFG.
– Let f be a substitution over S such that

• f(a) = La for a Î S
• Ga = (Va,Sa,Ra,Sa) is a CFG that produces La.
• No symbol appears in more than one of V or any Va

– Define Gf = (V ÈaÎSVa, ÈaÎSSa, R� ÈaÎSRa, S)
• R� = { A ® g(a) where A ® a is in R }
• g: (VÈS)* ® (V ÈaÎSSa)*
• g(l) = l; g(B) = B, B Î V; g(a) = Sa, a Î S
• g(aX) = g(a) g(X), |a| > 0, X Î VÈS

– Claim, f(L(G)) = L(Gf), and so CFLs closed under
substitution and homomorphism.

1/19/19 COT 4210 © UCF 145

More on Substitution
• Consider G�f. If we limit derivations to the rules R� = { A ® g(a)

where A ® a is in R } and consider only sentential forms over the
ÈaÎSSa , then S Þ* Sa1 Sa2 … San in G� iff S Þ* a1 a2 … an
iff a1 a2 … an Î L(G). But, then w Î L(G) iff f(w) Î L(Gf) and, thus,
f(L(G)) = L(Gf).

• Given that CFLs are closed under intersection, substitution,
homomorphism and intersection with regular sets, we can recast
previous proofs to show that CFLs are closed under
– Prefix, Suffix, Substring, Quotient with Regular Sets

• Later we will show that CFLs are not closed under Quotient with
CFLs.

1/19/19 COT 4210 © UCF 146

Context Sensitive

Context Sensitive Grammar
G = (V, S, R, S) is a PSG where
Each member of R is a rule whose right side is no shorter than its left
side.
The essential idea is that rules are length preserving, although we do
allow S ® λ so long as S never appears on the right hand side of any
rule.
A context sensitive grammar is denoted as a CSG and the language
generated is a Context Sensitive Language (CSL).
The recognizer for a CSL is a Linear Bounded Automaton (LBA), a form
of Turing Machine (soon to be discussed), but with the constraint that it
is limited to moving along a tape that contains just the input surrounded
by a start and end symbol.

1/19/19 COT 4210 © UCF 148

Phrase Structured Grammar
We previously defined PSGs. The language generated by a
PSG is a Phrase Structured Language (PSL) but is more
commonly called a recursively enumerable (re) language.
The reason for this will become evident a bit later in the
course.

The recognizer for a PSL (re language) is a Turing
Machine, a model of computation we will soon discuss.

1/19/19 COT 4210 © UCF 149

CSG Example#1
L = { anbncn | n>0 }
G = ({A,B,C}, {a,b,c}, R, A) where R is
A → aBbc | abc
B → aBbC | abC
Note: A ⇒ aBbc ⇒n an+1(bC)n bc // n>0
Cb → bC // Shuttle C over to a c
Cc → cc // Change C to a c
Note: an+1(bC)n bc ⇒* an+1bn+1cn+1

Thus, A ⇒* anbncn , n>0

1/19/19 COT 4210 © UCF 150

CSG Example#2
L = { ww | w ∈{0,1}+ }
G = ({S,A,X,Z,<0>,<1>}, {0,1}, R, S) where R is
S → 00 | 11 | 0A<0> | 1A<1>
A → 0AZ | 1AX | 0Z | 1X
Z0 → 0Z Z1 → 1Z // Shuttle Z (for owe zero)
X0 → 0X X1 → 1X // Shuttle X (for owe one)
Z<0> → 0<0> Z<1> → 1<0> // New 0 must be on rhs of old 0/1’s
X<0> → 0<1> X<1> → 1<1> // New 1 must be on rhs of old 0/1’s
<0> → 0 // Guess we are done
<1> → 1 // Guess we are done

1/19/19 COT 4210 © UCF 151

