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Finite State Automata



Concrete Model of FSA
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x1 x2 x3 … Xn-1 xn

L is a finite state (regular) language over finite alphabet S 
Each xi is a character in S
w = x1 x2 … xn is a string to be tested for membership in L

• Arrow above represents read head that starts on left.
• q0 ∈ Q (finite state set) is initial state of machine.
• Only action at each step is to change state based on 

character being read and current state. State change is 
determined by a transition function d: Q � S � Q.

• Once state is changed, read head moves right. 
• Machine stops when head passes last input character.
• Machine accepts string as member of L if it ends up in 

a state from Final State set F ⊆ Q.

q0



Finite State Automata
• A deterministic finite state automaton (DFA) A is defined 

by a 5-tuple 
A = (Q,Σ,δ,q0,F), where
– Q is a finite set of symbols called the states of A
– Σ is a finite set of symbols called the alphabet of A
– δ is a function from Q�Σ into Q (δ: Q�Σ → Q) called 

the transition function of A
– q0∈Q is a unique element of Q called the start state
– F is a subset of Q (F ⊆ Q) called the final states (can 

be empty)
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DFA Transitions
• Given a DFA, A = (Q,Σ,δ,q0,F), we can definition the 

reflexive transitive closure of δ, δ*:Q�Σ* → Q, by
– δ*(q,l) = q where l is the string of length 0

• Note that text uses ∊ rather than l as symbol for string of length zero

– δ*(q,ax) = δ*(δ(q,a),x), where a ∈ Σ and x ∈ Σ*
– Note that this means

δ*(q,a) = δ(q,a), where a ∈ Σ as a = al
• We also define the transitive closure of δ, δ+, by

– δ+(q,w) = δ*(q,w)  when |w|>0 or, equivalently, w ∈ Σ+

• The function δ* describes every step of computation by 
the automaton starting in some state until it runs out of 
characters to read
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Regular Languages and DFAs
• Given a DFA, A = (Q,Σ,δ,q0,F), we can define the 

language accepted by A as those strings that cause it to 
end up in a final state once it has consumed the entire 
string

• Formally, the language accepted by A is
– { w | δ*(q0,w) ∈ F }

• We generally refer to this language as L(A) 
• We define the notion of a Regular Language by saying 

that a language is Regular if and only if it is accepted 
(recognized) by some DFA
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State Diagram
• A finite state automaton can be described by a 

state diagram, where 
– Each state is represented by a node labelled with that 

state, e.g.,    q
– The state state has an arc entering it with no source, 

e.g.,      q0

– Each transition δ(q,a) = s is represented by a directed 
arc from node q to node s that is labelled with the 
letter a, e.g.,     q    a s

– Each final state has an extra circle around its node, 
e.g.,      f
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Sample DFAs # 1, 2
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E O
1

1

0 0

A = ( {E,O}, {0,1}, d, E, {O}), where d is defined by above 
diagram. L(A) = { w | w is a binary string of odd parity }

A

A’ = ( {C,NC,X}, {00,01,10,11}, d’, C, {NC}), where d’ is defined by above 
diagram. L(A’) = { w | w is a pair of binary strings where the bottom string 
is the 2’s complement of the top one, both read least (lsb) to most 
significant bit (msb) }

C NC11

00 01,10

A’
01,10

X

S

00,11



Sample DFA # 3
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A” = ( {0,1,2}, {0,1}, d”, 0, {2}), where d” is defined by 
above diagram. L(A”) = { w | w is a binary string of length 
at least 1 being read left to right (msb to lsb) that, when 
interpreted as a decimal number divided by 3, has a 
remainder of 2 }

0 1
1

0

A” 2

1

00
01



State Transition Table
• A finite state automaton can be described by a state 

transition table with |Q| rows and |Σ| columns
• Rows are labelled with state names and columns with 

input letters
• The start state has some indicator, e.g., a greater than 

sign (>q) and each final state has some indicator, e.g., 
an underscore (f)

• The entry in row q, column a, contains δ(q,a)
• In general we will use state diagrams, but transition 

tables are useful in some cases (state minimization)
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Sample DFA # 4
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A’’’ = ( {0%5,1%5,2%5,3%5,4%5}, {0,1}, d’’’, 0, {3%5}), 
where d’’’ is defined by above diagram.
L(A’’) = { w | w is a binary string of length at least 1 being 
read left to right (msb to lsb) that, when interpreted as a 
decimal number divided by 5, has a remainder of 3 }

Really, this is better done as a state diagram, but have put 
this up so you can see the pattern.

0 1
0 % 5 0 % 5 1 % 5
1 % 5 2 % 5 3 % 5
2 % 5 4 % 5 0 % 5
3 % 5 1 % 5 2 % 5
4 % 5 3 % 5 4 % 5

Accept State



Sample DFA # 5
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This checks a string to see if it’s a legal password. In our 
case, a legal password must contain at least one of each 
of the following: lower case letter, upper case letter, 
number, and special character from the following set 
{!@#$%^&}. No other characters are allowed 

A-Z a-z 0-9 @#$%^&
ð Empty A a 0 @

A A Aa A0 A@
a Aa a a0 a@
0 A0 a0 0 0@
@ A@ a@ 0@ @
Aa Aa Aa Aa0 Aa@
A0 A0 Aa0 A0 A0@
A@ A@ Aa@ A0@ A@
a0 Aa0 a0 a0 a0@
a@ Aa@ a@ a0@ a@
0@ A0@ a0@ 0@ 0@
Aa0 Aa0 Aa0 Aa0 Aa0@
Aa@ Aa@ Aa@ Aa0@ Aa@
A0@ A0@ Aa0@ A0@ A0@
a0@ Aa0@ a0@ a0@ a0@

Aa0@ Aa0@ Aa0@ Aa0@ Aa0@



DFA Closure
• Regular languages (those recognized by DFAs) are closed 

under complement, union, intersection, difference and 
exclusive or (⊕) and many other set operations

• Let A1 = (Q1,Σ,δ1,q0,F1), A2 = (Q2,Σ,δ2,s0,F2) be arbitrary DFAs
• Σ*-L(A1) is recognized by A1

C = (Q1,Σ,δ1,q0,Q1-F1)
• Define A3 = (Q1�Q2,Σ,δ3,<q0,s0>,F3) where 

δ3(<q,s>,a)= <δ1(q,a),δ2(s,a)>, qÎQ1, sÎQ2, aÎΣ
– L(A1)∪L(A2) is recognized when F3=(F1�Q2)∪(Q1�F2)
– L(A1)∩L(A2) is recognized when F3=F1�F2

– L(A1) - L(A2) is recognized when F3=F1�(Q2-F2)
– L(A1) ⊕ L(A2) is recognized when F3=F1�(Q2-F2)∪(Q1-F1)�F2
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Complement of Regular Sets
• Let A = (Q,Σ,δ,q0,F)
• Simply create new automaton

AC = (Q,Σ,δ,q0,Q-F)
• L(AC) = { w | δ*(q0,w) ∊ Q-F } = 

{ w | δ*(q0,w) ∉ F } = 
{ w | w ∉ L(A) } 

• Again, imagine trying to do this in the context of regular 
expressions

• Choosing the right representation can make a very big 
difference in how easy or hard it is to prove some 
property is true
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Parallelizing DFAs
• Regular sets can be shown closed under many binary operations 

using the notion of parallel machine simulation
• Let A1 = (Q1,Σ,δ1,q0,F1)  and A2 = (Q2,Σ,δ2,s0,F2) where 

Q1∩Q2 = Ø
• B = (Q1�Q2,Σ,δ3,<q0,s0>,F3) where

δ3(<q,s>,a) = < δ1(q,a), δ2(s,a) >
• Union is F3 = F1�Q2 ∪ Q1�F2

• Intersection is F3 = F1�F2
– Can do by combining union and complement

• Difference is F3 = F1�(Q2 – F2) 
– Can do by combining intersection and complement

• Exclusive Or is F3=F1�(Q2-F2)∪(Q1-F1)�F2
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Non-determinism NFA
• A non-deterministic finite state automaton (NFA) A is defined by a 5-tuple 

A = (Q,Σ,δ,q0,F), where

– Q is a finite set of symbols called the states of A

– Σ is a finite set of symbols called the alphabet of A

– δ is a function from Q�Σe into P(Q) = 2Q  ; Note: Σe = (Σ∪{l}) 
(δ: Q� Σe → P(Q)) called the transition function of A; by definition q ∈
δ(q,l)

– q0∈Q is a unique element of Q called the start state

– F is a subset of Q (F ⊆ Q) called the final states

– Note that a state/input (called a discriminant) can lead nowhere new, one place 
or many places in an NFA; moreover, an NFA can jump between states even 
without reading any input symbol

– For simplicity, we often extend the definition of δ: Q� Σe to a variant that 
handles sets of states, where δ: P(Q)� Σe is defined as 
δ(S,a) = ∪q∈S δ(q,a), where a ∈ Σe – if S=Ø, ∪q∈S δ(q,a) =Ø
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NFA Transitions
• Given an NFA, A = (Q,Σ,δ,q0,F), we can define the 

reflexive transitive closure of δ, δ*:P(Q)�Σ* → P(Q), by
– l-Closure(S) = { t | t ∊ δ*(S,l)}, S ∈ P(Q) – extended δ
– δ*(S,l) = l-Closure(S) 
– δ*(S,ax) = δ*(l-Closure(δ(S,a),x)), where a ∈ Σ and x ∈ Σ*

• Note that δ*(S,ax) = ∪q∈S∪p∈l-Closure(δ(q,a)) δ*(p,x), where a ∈ Σ and x ∈ Σ*

• We also define the transitive closure of δ, δ+, by
– δ+(S,w) = δ*(S,w)  when |w|>0 or, equivalently, w ∈ Σ+

• The function δ* describes every “possible” step of 
computation by the non-deterministic automaton starting 
in some state until it runs out of characters to read
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NFA Languages
• Given an NFA, A = (Q,Σ,δ,q0,F), we can define the 

language accepted by A as those strings that allow it to 
end up in a final state once it has consumed the entire 
string – here we just mean that there is some accepting 
path

• Formally, the language accepted by A is
– { w | (δ*(l-Closure({q0}),w) ∩ F) ≠ Ø }

• Notice that we accept if there is any set of choices of 
transitions that lead to a final state
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Finite State Diagram
• A non-deterministic finite state automaton can 

be described by a finite state diagram, except
– We now can have transitions labelled with l
– The same letter can appear on multiple arcs from a 

state q to multiple distinct destination states
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Equivalence of DFA and NFA
• Clearly every DFA is an NFA except that 

δ(q,a) = s becomes δ(q,a) = {s}, so any 
language accepted by a DFA can be 
accepted by an NFA.

• The challenge is to show every language 
accepted by an NFA is accepted by an 
equivalent DFA. That is, if A is an NFA, 
then we can construct a DFA A’, such that 
L(A’) = L(A).
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Constructing DFA from NFA
• Let A = (Q,Σ,δ,q0,F) be an arbitrary NFA
• Let S be an arbitrary subset of Q.

– Construct the sequence seq(S) to be a sequence that contains 
all elements of S in lexicographical order, using angle brackets 
to . That is, if S={q1, q3, q2} then seq(S)=<q1,q2,q3>. If S=Ø
then seq(S)=<>

• Our goal is to create a DFA, A’, whose state set contains 
seq(S), whenever there is some w such that S=δ*(q0,w)

• To make our life easier, we will act as if the states of A’ 
are sets, knowing that we really are talking about 
corresponding sequences
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l-Closure
• Define the l-Closure of a state q as the set of states one can arrive 

at from q, without reading any additional input.
• Formally l-Closure(q) = { t | t ∊ δ*(q,l) }
• We can extend this to S ∈ P(Q) by

l-Closure(S) = { t | t ∊ δ*(q,l), q ∈ S } = { t | t ∊ l-Closure(q),q ∈ S}
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A B C D E
1 l

0

1

0,1

λ

0

1

A:

State A B C D E

l-closure { A } { B , C } { C } { D, E } { E }



Details of DFA
• Let A = (Q,Σ,δ,q0,F) be an arbitrary NFA

• In an abstract sense,
A’ = (<P(Q)>,Σ,δ’, <l-Closure({q0})>, F’), 
but we really don’t need so many states (2|Q|) and we 
can iteratively determine those needed by starting at l-
Closure({q0}) and keeping only states reachable from 
here

• Define δ’(<S>,a) = <l-Closure(δ(S,a))> = 
<∪q∈S l-Closure(δ(q,a)) >, where a∈Σ, S ∈ P(Q)

• F’ = {<S> ∈ <P(Q)> | (S ∩ F) ≠ Ø }
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Regular Languages and NFAs
• Showing that every NFA can be simulated by a DFA that 

accepts the same language proves the following

• A language is Regular if and only if it is accepted 
(recognized) by some NFA
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Convert from NFA to DFA
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Regular Expressions
• Primitive:

– Φ denotes {}
– λ denotes {λ} 
– a where a is in Σ denotes {a}

• Closure:
– If R and S are regular expressions then so are R � S, R + S and 

R*, where
• R � S denotes RS = { xy | x is in R and y is in S }
• R + S denotes RÈS = { x | x is in R or x is in S }
• R* denotes R*

• Parentheses are used as needed
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Regular Sets =
Regular Languages

• Show every regular expression denotes a 
language recognized by a finite state 
automaton (can do deterministic or non-
deterministic)

• Show every Finite State Automata 
recognizes a language denoted by a 
regular expression
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Every Regular Set is a 
Regular Language

• Primitive:
– Φ denotes {}
– λ denotes {λ} 
– a where a is in Σ denotes {a}

• Closure: (Assume that R’s and S’s states do not overlap)
– R � S start with machine for R, add l transitions from 

every final state of R’s recognizer to start state of S,
making final state of S final states of new machine

– R + S create new start state and add l transitions from new
state to start states of each of R and S, making union 
of R’s and S’s final states the new final states 

– R* add l transitions from each final state of R back to its start
state, keeping original start and final states (gets R+) – FIX?
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λ
aa



Every Regular Language is a 
Regular Set Using Rij

k

• This is a challenge that can be addressed in multiple ways but 
I like to start with the Rij

k approach. Here’s how it works.
• Let A = (Q,Σ,δ,q1,F) be a DFA, where Q = {q1,q2, … , qn}
• Rij

k = {w | δ*(qi,w) = qj, and no intermediate state visited 
between qi and qj, while reading w, has index > k

• Basis: k=0, Rij
0 = { a | δ(qi,a) = qj } sets are either Φ, λ, or an 

element of Σ or λ + element of Σ, and so are regular sets
• Inductive hypothesis: Assume Rij

m are regular sets for 
0 ≤ m ≤ k

• Inductive step: k+1, Rij
k+1 = (Rij

k + Rik+1
k � ( Rk+1k+1

k )* � Rk+1j
k)

• L(A) = +f∈F R1f
n
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Convert to RE
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q2 q3q1

0

11

0, 
1

0 1



q2 q3q1
0

11

0, 
1

0 1

• R110= l R120= 0 R130= f
• R210= 0 R220= l + 1 R230= 0 + 1
• R310= f R320= 1 R330= l + 1

• R111= l R121= 0 R131= f
• R211= 0 R221= l + 1 + 00 R231= 0 + 1
• R311 = f R321= 1 R331= l + 1

• R112= l + 0(1+00)*0 R122= 0(1+00)* R132= 0(1+00)*(0+1)
• R212= (1+00)*0 R222= (1+00)* R232= (1+00)*(0+1)
• R312= 1(1+00)*0 R322= 1(1+00)* R332= l+1+1(1+00)*(0+1)

• L = R12
3= 

0(1+00)* + 0(1+00)*(0+1) (1+1(1+00)*(0+1))* 1(1+00)*
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State Ripping Concept
• This has its motivation from Rij

k approach
• Add a new start state and add a l–transition to existing start state
• Add a new final state qf and insert l–transitions from all existing final 

states to the new one; make the old final states non-final
• Leaving the start and final states, successively pick states to remove
• For each state to be removed, change the arcs of every pair of 

externally entering and exiting arcs to reflect the regular expression 
that describes all strings that could result is such a double transition; 
be sure to account for loops in the state being removed. Also, or (+) 
together expressions that have the same start and end nodes

• When have just start and final, the regular expression that leads 
from start to final describes the associated regular set

1/19/19 COT 4210 © UCF 32



State Ripping Details
• Let B be the node to be removed
• Let e1 be the regular expression on the arc from some node A to some 

node B (A≠B); e2 be the expression from B back to B (or l if there is no 
recursive arc); e3 be the expression on the arc from B to some other node 
C (C ≠B but C could be A); e4 be the expression from A to C

• Erase the existing arcs from A to B and A to C, adding a new arc from A to 
C labelled with the expression
e4 + e1 e2* e3

• Do this for all nodes that have edges to B until B has no more entering 
edges; at this point remove B and any edges it has to other nodes and itself

• Iterate until all but the start and final nodes remain
• The expression from start to final describes regular set that is equivalent to 

regular language accepted by original automaton
• Note: Your choices of the order of removal make a big difference in how 

hard or easy this is
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Use Ripping; Rip q3
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q2 q3q1

0

11

0+
1

0 1

qf
l

l
q0

q2q1

0

0 1+(0+1)1+

qf
l

l
q0



Use Ripping; Rip q1
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q2q1

0

0 1+(0+1)1+

qf
l

l
q0

q2
0

1+(0+1)1++0
0

qf
l

q0



Use Ripping; Rip q2
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q2
0

1+(0+1)1++00

qf

l

q0

0 (1+(0+1)1++00)*
qfq0

L = 0 (1+(0+1)1++00)* = 0 (1+(0+1)1++00)*  



Regular Equations
• Assume that R, Q and P are sets such that P 

does not contain the string of length zero, and R 
is defined by

• R = Q + RP
• We wish to show that
• R = QP*
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Show QP* is a Solution
• We first show that QP* is contained in R. By 

definition, R = Q + RP.
• To see if QP* is a solution, we insert it as the 

value of R in Q + RP and see if the equation 
balances

• R = Q + QP*P = Q(λ+P*P) = QP*
• Hence QP* is a solution, but not necessarily the 

only solution.
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Uniqueness of Solution
• To prove uniqueness, we show that R is contained in QP*. 
• By definition, R = Q+RP = Q+(Q+RP)P 
• = Q+QP+RP2 = Q+QP+(Q+RP)P2

• = Q+QP+QP2+RP3

• ... 
• = Q(λ+P+P2+ ... +Pi)+RPi+1, for all i>=0
• Choose any w in R, where |W| = k. Then, from above,
• R = Q(λ+P+P2+ ... +Pk)+RPk+1

• but, since P does not contain the string of length zero, w is not in 
RPk+1. But then w is in

• Q(λ+P+P2+ ... +Pk) and hence w is in QP*.
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Example
• We use the above to solve simultaneous regular equations. 

For example, we can associate regular expressions with finite 
state automata as follows 

• Hence,
• For A, Q=l+B1; P=0

A = QP* = (l+B1)0*
= B10* + 0*

• B = B10*1 + B0 + 0*1  
For B, Q=0*1; P= B10*1 + B0 = B(10*1 + 0)

• and therefore
• B = 0*1(10*1 + 0)*  
• Note: This technique fails if there are lambda transitions.
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Using Regular Equations
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B CA

0

11

0, 
1

0 1

A = l + B0
B = A0 + C1 + B1
C = B(0+1) + C1; C = B(0+1)1*
B = 0 + B00 + B(0+1)1+ + B1
B = 0 + B (00+(0+1) 1+ + 1); B = 0(00 +(0+1)1+ + 1)*

This is same form as with state ripping. It won’t always be 
so.



State Minimization
• First step is to remove any state that is unreachable from the start 

state; a depth first search rooted at start state will identify all 
reachable states

• One seeks to merge compatible states – states q and s are 
compatible if, for all strings x, δ*(q,x) and δ*(s,x) are either both an 
accepting or both rejecting states

• One approach is to discover incompatible states – states q and s are 
incompatible if there exists a string x such that one of δ*(q,x) and 
δ*(s,x) is an accepting state and the other is not

• There are many ways to approach this, but my favorite is to do 
incompatible states via an n by n lower triangular matrix
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Sample Minimization
• This uses a transition 

table
• Just an X denotes

Immediately incompatible
• Pairs are dependencies 

for compatibility
• If a dependent is 

incompatible, so are pairs 
that depend on it

• When done, any not x--ed
out are compatible

• Here, new states are 
<1,3>, <2,4,5>, <6>; 
<1,3> is start and not 
accept; others are accept

• Write new diagram
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Reversal of Regular Sets
• It is easier to do this with regular sets than with DFAs
• Let E be some arbitrary expression; ER is formed by

– Primitives: ØR=Ø λR=λ aR=a
– Closure:

• (A � B)R = (BR � AR)
• (A + B)R = (AR + BR) 
• (A*)R = (AR*)

• Challenge: How would you do this with FSA models?
– Start with DFA; change all final to start states; change start 

to a final state; and reverse edges
– Note that this creates multiple start states; can create a 

new start state with l-transitions to multiple starts
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Substitution
• A substitution is a function, f, from each 

member, a, of an alphabet, Σ, to a language La

• Regular languages are closed under substitution 
of regular languages (i.e., each La is regular)

• Easy to prove by replacing each member of Σ in 
a regular expression for a language L with 
regular expression for La

• A homomorphism is a substitution where each 
La is a single string
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Quotient with Regular Sets
• Quotient of two languages B and C, denoted B/C, is defined as 

B/C = {x | ∃y∈C where xy∈B}
• Let B be recognized by DFA 

AB = (QB,Σ,δB,q1B,FB) and C by 
AC = (QC,Σ,δC,q1C,FC)

• Define the recognizer for B/C by 
AB/C = (QB∪QB�QC,Σ,δB/C,q1B, FB�FC)
δB/C(q,a) = {δB(q,a)} a∈Σ,q∈QB
δB/C(q,l) = {<q,q1C>} q∈QB
δB/C(<q,p>,l) = {δB(q,a),δC(p,a)} a∈Σ,q∈QB,p∈QC

• The basic idea is that we simulate B and then randomly decide it 
has seen x and continue by looking for y, simulating B continuing 
after x but with C starting from scratch 
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Quotient Again
• Assume some class of languages, C, is closed 

under concatenation, intersection with regular 
and substitution of members of C, show C is 
closed under Quotient with Regular

• L/R = { x |∃y∈R where xy∈L }
– Define Σ’ = { a’ | a∈Σ }
– Let h(a) = a; h(a’) = l where a∈Σ
– Let g(a) = a’ where a∈Σ
– Let f(a) = {a,a’} where a∈Σ
– L/R = h( f(L) ∩ ( Σ* � g(R) ) )
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Applying Meta Approach
• INIT(L) = { x |∃y∈Σ* where xy∈L }

– INIT(L) = h( f(L) ∩ ( Σ* � g(Σ*) ) )
– Also INIT(L) = L / Σ*

• LAST(L) = { y |∃x∈Σ* where xy∈L }
– LAST(L) = h( f(L) ∩ ( g(Σ*) � Σ* ) )

• MID(L) = { y |∃x,z∈Σ* where xyz∈L }
• MID(L) = h( f(L) ∩ ( g(Σ*) � Σ* � g(Σ*) ) )

• EXTERIOR(L) = { xz |∃y∈Σ* where xyz∈L }
– EXTERIOR(L) = h( f(L) ∩ ( Σ* � g(Σ*) � Σ* ) )
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Making Life Easy
• The key in proving closure is to always try to identify the 

“best” equivalent formal model for regular sets when 
trying to prove a particular property

• For example, how could you even conceive of proving 
closure under intersection and complement in regular 
expression notations?

• Note how much easier quotient is when have closure 
under concatenation, and substitution and intersection 
with regular languages than showing in FSA notation
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Reachable and Reaching
• Reachablefrom(q) = { p | ∃w ∍ δ(q,w)=p }

– Just do depth first search from q, marking all 
reachable states. Works for NFA as well.

• Reachingto(q) = { p | ∃w ∍ δ(p,w)=q }
– Do depth first from q, going backwards on 

transitions, marking all reaching states. Works 
for NFA as well.
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Min and Max
• Min(L) = { w | w∈L and no proper prefix of w is in L } = 

{ w | w∈L and if w=xy, x∈Σ*, y∈Σ+ then x∉L}
• Max(L) = { w | w∈L and w is not the proper prefix of any word in L } = 

{ w | w∈L and if y∈Σ+ then wy∉L }
• Examples:

– Min(0(0+1)*) = {0}
– Max(0(0+1)*) = {}
– Min(01 + 0 + 10) = {0,10}
– Max(01 + 0 + 10) = {01,10}
– Min({aibjck | i ≤ k or j ≤ k}) = {aibjck | | i,j ≥0, k = min(i, j)}
– Max({aibjck | i ≤ k or j ≤ k}) = {} because k has no bound
– Min({aibjck | i ≥ k or j ≥ k}) = {λ}
– Max({aibjck | i ≥ k or j ≥ k}) = {aibjck | | i,j ≥0, k = max(i, j)}
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Regular Closed under Min
• Assume L is regular then Min(L) is regular
• Let L= L(A), where A = (Q,Σ,δ,q0,F) is a DFA with no 

state unreachable from q0

• Define Amin = (Q∪{dead},Σ,δmin,q0,F), where for a∈Σ
δmin(q,a) = δ(q,a), if q∈Q-F; δmin(q,a) = dead, if q∈F;
δmin(dead,a) = dead

The reasoning is that the machine Amin accepts only elements in L that are not 
extensions of shorter strings in L. By making it so transitions from all final 
states in Amin go to the new “dead” state, we guarantee that extensions of 
accepted strings will not be accepted by this new automaton.

Therefore, Regular Languages are closed under Min.
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Regular Closed under Max
• Assume L is regular then Max(L) is regular

• Let L= L(A), where A = (Q,Σ,δ,q0,F) is a DFA with no state 

unreachable from q0

• Define Amax = (Q,Σ,δ,q0,Fmax), where 

Fmax= { f | f∈F and Reachablefrom+(f)∩F=Φ }

where Reachablefrom+(q) = { p | ∃w ∍ |w|>0 and δ(q,w) = p }

The reasoning is that the machine Amax accepts only elements in L that cannot be 

extended. If there is a non-empty string that leads from some final state f to any final 

state, including f, then f cannot be final in Amax. All other final states can be retained. 

The inductive definition of Reachablefrom+ is:

1. Reachablefrom+(q) contains { s | there exists an element of S, a, such that d(q,a) = s }

2. If s is in Reachablefrom+ (q) then Reachablefrom+ (q) contains 

{ t | there exists an element of S, a, such that d(s,a) = t }

3. No other states are in Reachablefrom+(q)

Therefore, Regular Languages are closed under Max.
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Pumping Lemma Concept
• Let A = (Q,Σ,δ,q1,F) be a DFA, where Q = {q1,q2, … , qN}
• The “pigeon hole principle” tells us that whenever we visit N+1 

or more states, we must visit at least one state more than 
once (loop)

• Any string, w, of length N or greater leads to us making N 
transitions after visiting the start state, and so we visit at least 
one state more than once when reading w
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Pumping Lemma For Regular
• Theorem: Let L be regular then there 

exists an N>0 such that, if w Î L and 
|w| ≥ N, then w can be written in the form 
xyz, where |xy| ≤ N, |y|>0, and for all i≥0, 
xyiz Î L

• This means that interesting regular 
languages (infinite ones) have a very 
simple self-embedding property that 
occurs early in long strings
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Pumping Lemma Proof
• If L is regular then it is recognized by some DFA, A=(Q,S,d,q0,F). Let |Q| = N 

states. For any string w, such that |w| ≥ N, A must make N+1 state visits to 
consume its first N characters, followed by |w|-N more state visits. 

• In its first N+1 state visits, A must enter at least one state two or more times.

• Let w = v1…vj…vk…vm, where m =|w|, and d(q0,v1…vj)=d(q0,v1…vk), k > j, 
and let this state represent the first one repeated while A consumes w.

• Define x = v1…vj, y = vi+1…vk, and z = vk+1…vm. Clearly w=xyz. Moreover, 
since k > j, |y| > 0, and since k ≤ N, |xy| ≤ N.

• Since A is deterministic, d(q0,xy)=d(q0,xyi), for all i ≥ 0.

• Thus, if w Î L, d(q0,xyz) Î F, and so d(q0,xyiz) Î F, for all i ≥ 0. 
• Consequently, if w Î L, |w|≥N, then w can be written in the form xyz, where 

|xy| ≤ N, |y| > 0, and for all i ≥ 0, xyiz Î L.
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Lemma’s Adversarial Process
• Assume L = {anbn | n>0 } is regular
• P.L.: Provides N > 0

– We CANNOT choose N; that’s the P.L.’s job

• Our turn: Choose aNbN Î L
– We get to select a string in L

• P.L.: aNbN = xyz, where |xy| ≤ N, |y| > 0, and for all i ≥ 0, xyiz Î L
– We CANNOT choose split, but P.L. is constrained by N

• Our turn: Choose i = 0.
– We have the power here

• P.L: aN-|y|bN Î L; just a consequence of P.L.
• Our turn: aN-|y|bN Ï L; just a consequence of L’s structure
• CONTRADICTION, so L is NOT regular
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xwx is not Regular (PL)
• L = { x w x | x,w∈{a,b}+} : 
• Assume that L is Regular.

• PL:    Let N > 0 be given by the Pumping Lemma.

• YOU: Let s be a string, s ∈ L, such that s = aNbaaNb

• PL:    Since s ∈ L and |s| ≥ N, s can be split into 3 pieces, s = xyz, such that 
|xy| ≤ N and |y| > 0 and ∀ i ≥ 0 xyiz ∈ L

• YOU: Choose i = 2

• PL:    xy2z = xyyz ∈ L 

• Thus, aN + |y|baaNb would be in L, but this is not so since N+|y| ≠ N

• We have arrived at a contradiction.

• Therefore L is not Regular.
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aFib(k) is not Regular (PL)
• L = {aFib(k) | k>0} : 
• Assume that L is regular
• Let N be the positive integer given by the Pumping Lemma
• Let s be a string s = aFib(N+3)Î L
• Since s Î L and |s| ≥ N (Fib(N+3)>N in all cases; actually Fib(N+2)>N as 

well), s is split by PL into xyz, where |xy| ≤ N  and |y| > 0 and for all i ≥ 0, 
xyiz Î L

• We choose i = 2; by PL: xy2z = xyyzÎ L
• Thus, aFib(N+3)+|y| would be Î L. This means that there is a Fibonacci number 

between Fib(N+3) and Fib(N+3)+N, but the smallest Fibonacci greater than 
Fib(N+3) is Fib(N+3)+Fib(N+2) and Fib(N+2)>N
This is a contradiction, therefore L is not regular  �

• Note: Using values less than N+3 could be dangerous because N could be 
1 and both Fib(2) and Fib(3) are within N (1) of Fib(1).
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Myhill-Nerode Theorem
The following are equivalent:
1. L is accepted by some DFA
2. L is the union of some of the classes of a right invariant 

equivalence relation, R, of finite index.
3. The specific right invariance equivalence relation 

RL where x RL y iff "z [ xz Î L iff yz Î L ]
has finite index

Definition. R is a right invariant equivalence relation iff R is 
an equivalence relation and "z [ x R y implies xz R yz ].
Note: This is only meaningful for relations over strings.
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Myhill-Nerode 1 ⇒ 2
1. Assume L is accepted by some DFA, A = (Q,Σ,δ,q1,F) 
2. Define RA by x RA y iff δ*(q1,x) = δ*(q1,y). First, RA is 

defined by equality and so is obviously an equivalence 
relation (Clearly if δ*(q1,x) = δ*(q1,y) then "z δ*(q1,xz) = 
δ*(q1,yz) because A is deterministic. Moreover if "z 
δ*(q1,xz) = δ*(q1,yz) then δ*(q1,x) = δ*(q1,y), just by 
letting z = l.  Putting it together x RA y L iff "z xz RA yz. 
Thus, RA is right invariant; its index is |Q| which is finite; 
and L(A) = ∪δ*(x)∊F[x]RA, where [x]RA refers to the 
equivalence class containing the string x.
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Myhill-Nerode 2 ⇒ 3
2. Assume L is the union of some of the classes of a right 

invariant equivalence relation, R, of finite index.
3. Since x R y iff "z [ xz R yz ], R is right invariant and L is 

the union of some of the equivalence classes, then 
x R y ⇒ "z [ xz Î L iff yz Î L ] ⇒ x RL y. 
This means that the index of RL is less than or equal to 
that of R and so is finite. Note than the index of RL is 
then less than or equal to that of any other right 
invariant equivalence relation, R, of finite index that 
defines L.
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Myhill-Nerode 3 ⇒ 1
3. Assume the specific right invariance equivalence 

relation RL where x RL y iff "z [ xz Î L iff yz Î L ]
has finite index

1. Define the automaton A = (Q,Σ,δ,q1,F) by
Q = { [x]RL | x ∈ Σ* }
δ([x]RL,a) = [xa]RL
q1 = [l]
F = { [x]RL | x ∈ L }

Note: This is the minimum state automaton and all 
others are either equivalent or have redundant 
indistinguishable states
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Use of Myhill-Nerode
• L = {anbn | n>0 } is NOT regular. 
• Assume otherwise.
• M-N says that the specific r.i. equiv. relation RL has finite 

index, where x RL y iff  "z [ xz Î L iff yz Î L ].
• Consider the equivalence classes [aib] and [ajb], where 

i,j>0 and i ≠ j.
• aibbi-1 Î L  but  ajbbi-1 Ï L and so [aib] is not related to 

[ajb] under RL and thus [aib] ≠ [ajb].
• This means that RL has infinite index.
• Therefore L is not regular.
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xwx is not Regular (MN)
• L = { x a x | x∈{a,b}+} :
• We consider the right invariant equivalence class [aib], 

i>0.
• It’s clear that aibaaib is in the language, but akbaaib is 

not when k < i. 
• This shows that there is a separate equivalence class, 

[aib], induced by RL, for each i>0. Thus, the index of RL is 
infinite and Myhill-Nerode states that L cannot be 
Regular.
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aFib(k) is not Regular (MN)
• L = {aFib(k) | k>0} : 
• We consider the collection of right invariant equivalence 

classes [aFib(j)], j > 2.
• It’s clear that aFib(j)aFib(j+1) is in the language, but 

aFib(k)aFib(j+1) is not when k>2 and k≠j and k≠j+2
• This shows that there is a separate equivalence class 

[aFib(j)] induced by RL, for each j > 2.
• Thus, the index of RL is infinite and Myhill-Nerode states 

that L cannot be Regular.
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anbm m≠m is not Regular (MN)
• L = {anbm | n≠m} : 
• We consider the collection of right invariant equivalence 

classes [ai], i ≥ 0.

• It’s clear that aibi is not in L, but ajbi is when j ≠ i

• This shows that there is a separate equivalence class [ai] 
induced by RL, for each i ≥ 0.

• Thus, the index of RL is infinite and Myhill-Nerode states 
that L cannot be Regular.
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Myhill-Nerode and 
Minimization

• Corollary: The minimum state DFA for a 
regular language, L, is formed from the 
specific right invariance equivalence 
relation RL where 
x RL y iff "z [ xz Î L iff yz Î L ]

• Moreover, all minimum state machines 
have the same structure as the above, 
except perhaps for the names of states
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What is Regular So Far?
• Any language accepted by a DFA
• Any language accepted by an NFA
• Any language specified by a Regular 

Expression
• Any language representing the unique 

solution to a set of properly constrained 
regular equations
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What is NOT Regular?
• Well, anything for which you cannot write 

an accepting DFA or NFA, or a defining 
regular expression, or a right/left linear 
grammar, or a set of regular equations, but 
that’s not a very useful statement

• There are two tools we have:
– Pumping Lemma for Regular Languages
– Myhill-Nerode Theorem
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Finite State Transducers
• A transducer is a machine with output
• Mealy Model

– M = (Q, S, G, d, g, q0)
G is the finite output alphabet
g: Q � S ® G is the output function

– Essentially a Mealy Model machine produced a character of 
output for each character of input it consumes, and it does so on 
the transitions from one state to the next.

– A Mealy Model represents a synchronous circuit whose output is 
triggered each time a new input arrives.
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Sample Mealy Model
• Write a Mealy finite state machine that 

produces the 2’s complement result of 

subtracting 1101 from a binary input 

stream (assuming at least 4 bits of input)
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Finite State Transducers
• Moore Model

– M = (Q, S, G, d, g, q0)
G is the finite output alphabet
g: Q ® G is the output function

– Essentially a Moore Model machine produced a 
character of output whenever it enters a state, 
independent of how it arrived at that state.

– A Moore Model represents an asynchronous circuit 
whose output is a steady state until new input arrives.
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Decision and Closure 
Properties

Regular Languages



Decidable Properties
• Membership (just run DFA over string)
• L = Ø: Minimize and see if minimum state DFA is

• L = Σ*: Minimize and see if minimum state DFA is 

• Finiteness: Minimize and see if there are no loops 
emanating from a final state

• Equivalence: Minimize both and see if isomorphic
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Closure Properties
• Virtually everything with members of its own class as we 

have already shown

• Union, concatenation, Kleene *, complement, 
intersection, set difference, reversal, substitution, 
homomorphism, quotient with regular sets, Prefix, Suffix, 
Substring, Exterior, Min, Max and so much more
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Formal Languages



History of Formal Language
• In 1940s, Emil Post (mathematician) devised rewriting systems as a 

way to describe how mathematicians do proofs. Purpose was to 
mechanize them.

• Early 1950s, Noam Chomsky (linguist) developed a hierarchy of 
rewriting systems (grammars) to describe natural languages.

• Late 1950s, Backus-Naur (computer scientists) devised BNF (a 
variant of Chomsky�s context-free grammars) to describe the 
programming language Algol.

• 1960s was the time of many advances in parsing. In particular, 
parsing of context free was shown to be no worse than O(n3). More 
importantly, useful subsets were found that could be parsed in O(n).
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Formalism for Grammars
Definition : A language is a set of strings of characters from some alphabet.

The strings of the language are called sentences or statements.

A string over some alphabet is a finite sequence of symbols drawn  from that 
alphabet.

A meta-language is a language that is used to describe another language.

A very well known meta-language is BNF (Backus Naur Form)

It was developed by John Backus and Peter Naur, in the late 50s, to describe 
programming languages.

Noam Chomsky in the early 50s developed context free grammars that can be 
expressed using BNF.
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Grammars
• G = (V, Σ, R, S) is a Phrase Structured Grammar (PSG) 

where
– V: Finite set of non-terminal symbols
– Σ: Finite set of terminal symbols
– R: finite set of rules of form α ® β, 

• α in (V È Σ)* V (V È Σ)*
• β in (V È Σ)*

– S: a member of V called the start symbol
• Right linear restricts all rules to be of forms

– α in V
– β of form ΣV, Σ or λ
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Derivations
• x Þ y reads as x derives y iff

– x = γαδ, y = γβδ and α ® β 
• Þ* is the reflexive, transitive closure of Þ
• Þ+ is the transitive closure of Þ
• x Þ* y iff x = y or x Þ* z and z Þ y
• Or, x Þ* y iff x = y or x Þ z and z Þ* y
• L(G) = { w | S Þ* w } is the language 

generated by G.
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Regular Grammars
• Regular grammars are also called right 

linear grammars
• Each rule of a regular grammar is 

constrained to be of one of the three 
forms:
A → a, A ∈ V, a ∈ Σ*
A → l, A ∈ V, a ∈ Σ*
A → aB, A, B ∈ V, a ∈ Σ*
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DFA to Regular Grammar
• Every language recognized by a DFA is 

generated by an equivalent regular 
grammar

• Given A = (Q,Σ,δ,q0,F), L(A) is generated 
by GA = (Q,Σ,R,q0) where R contains
q ® as iff δ(q,a) = s
q ® l iff q ∈ F
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Example of DFA to Grammar
• DFA

• Grammar
A ® 0 B | 1 B
B ® 0 A | 1 C | l
C ® 0 C | 1 A | l
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Regular Grammar to NFA
• Every language generated by a regular grammar 

is recognized by an equivalent NFA
• Given G = (V, Σ, R, S), L(G) is recognized by 

AG = (V∪{f},Σ,δ,S,{f}) where δ is defined by
δ(A,a) ⊆{B} iff A → aB
δ(A,a) ⊆{f} iff A → a
δ(A,l) ⊆{f} iff A → l
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Example of Grammar to NFA
• Grammar
S ® 0 S | 1 A
A ® 0 S | 0 A | 1 B | l
B ® 1 S | 0 B
• DFA
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What More is Regular?
• Any language, L, generated by a right linear grammar
• Any language, L, generated by a left linear grammar 

(A → a, A → l, A → Ba)
– Easy to see L is regular as we can reverse these rules and get a 

right linear grammar that generates LR, but then L is the reverse 
of a regular language which is regular

– Similarly, the reverse LR of any regular language L is right linear 
and hence the language itself is left linear

• Any language, L, that is the union of some of the classes 
of a right invariant equivalence relation of finite index
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Mixing Right and Left Linear
• We can get non-Regular languages if we present 

grammars that have both right and left linear rules
• To see this, consider G = ({S,T}, Σ, R, S), where R is:

– S → aT
– T → Sb | b

• L(G) = { anbn | n > 0 } which is a classic non-regular, 
context-free language
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Context Free Languages



Context Free Grammar
G = (V, S, R, S) is a PSG where
Each member of R is of the form
A ® a where a is a strings (VÈS)*
Note that the left hand side of a rule is a letter in V;
The right hand side is a string from the combined alphabets
The right hand side can even be empty (e or λ) 
A context free grammar is denoted as a CFG and the language 
generated is a Context Free Language (CFL).
A CFL is recognized by a Push Down Automaton (PDA) to be 
discussed a bit later.
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Sample CFG
Example of a grammar for a small language: 

G = ({<program>, <stmt-list>, <stmt>, <expression>}, 
{begin, end, ident, ;, =, +, -}, R, <program>) where R is

<program> à begin <stmt-list> end

<stmt-list> à <stmt> | <stmt> ; <stmt-list>

<stmt> à ident = <expression>

<expression> à ident + ident | ident - ident | ident 

Here �ident� is a token return from a scanner, as are  �begin�, �end�, �;�, �=�, 
�+�, �-�

Note that �;� is a separator (Pascal style) not a terminator (C style).
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Derivation
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A sentence generation is called a derivation.

Grammar for a simple 
assignment statement:

R1  <assgn> à <id> := <expr>
R2  <id> à a | b | c
R3  <expr>    à <id> + <expr>
R4 |   <id> * <expr>
R5 |   ( <expr> )
R6                   | <id>

The statement a := b * ( a + c ) 
Is generated by the leftmost derivation:

<assgn> Þ <id> := <expr> R1
Þ a := <expr> R2
Þ a := <id> * <expr> R4
Þ a := b * <expr> R2
Þ a := b * ( <expr> )               R5
Þ a := b * ( <id> + <expr> )   R3
Þ a := b * ( a + <expr> ) R2
Þ a := b * ( a + <id> ) R6
Þ a := b * ( a + c ) R2In a leftmost derivation only the

leftmost non-terminal is replaced



Parse Trees
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A parse tree is a graphical representation of a derivation
For instance the parse tree for the statement  a := b * ( a + c )  is:

<assign>

<id>      := <expr>

a <id> * <expr>

b ( <expr>            )

<id> +          <expr>

a <id>

c

Every internal node of a
parse tree is labeled with
a non-terminal symbol.

Every leaf is labeled with a 
terminal symbol.

The generated string is read 
left to right



Ambiguity
A grammar that generates a sentence for which there are two or more 
distinct parse trees is said to be �ambiguous�

For instance, the following grammar is ambiguous because it generates 
distinct  parse trees for the expression a := b + c * a

<assgn> à <id> := <expr>
<id> à a | b | c
<expr>    à <expr> + <expr>

|   <expr> * <expr>
|   ( <expr> )
| <id>
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Ambiguous Parse
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This grammar generates two parse trees  for the same expression.

If a language structure has more than one parse tree, 
the meaning of the structure cannot be determined uniquely.

<assign>

<id> :=            <expr>

A               <expr>      +           <expr>

<id> <expr>     * <expr>

B <id> <id>

C A

<assign>

<id> :=             <expr>

A               <expr>        * <expr>

<expr>       +      <expr>             <id>

<id>                  <id> A

B C



Precedence
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Operator precedence:
If an operator is generated lower in the parse tree, it indicates that the 
operator has precedence over the operator generated higher up in the tree.

An unambiguous grammar for expressions:

<assign> à <id> := <expr>
<id> à a | b | c
<expr>    à <expr> + <term>

|  <term> 
<term>    à <term> * <factor>

|   <factor>
<factor>  à ( <expr> )

| <id>

This grammar indicates the usual 
precedence order of multiplication and 
addition operators.

This grammar generates unique parse
trees independently of doing a 
rightmost or leftmost derivation 



Left (right)most Derivations
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Rightmost derivation:
<assgn>  Þ <id> := <expr>

Þ <id> := <expr> + <term>
Þ <id> := <expr> + <term> *<factor> 
Þ <id> := <expr> + <term> *<id>
Þ <id> := <expr> + <term> *  a
Þ <id> := <expr> + <factor> *  a
Þ <id> := <expr> + <id> *  a
Þ <id> := <expr> + c  *  a
Þ <id> := <term> + c  *  a
Þ <id> := <factor> + c  *  a 
Þ <id> := <id> + c  *  a
Þ <id> :=  b + c  * a
Þ a := b +   c  *  a

Leftmost derivation:
<assgn> à <id> := <expr>

à a := <expr>
à a := <expr> + <term>
à a := <term> + <term>
à a := <factor> + <term>
à a := <id> + <term>
à a := b + <term>    
à a := b + <term> *<factor>       
à a := b + <factor> * <factor> 
à a := b + <id> * <factor>
à a := b +   c  * <factor>
à a := b +   c  * <id>
à a := b +   c  *   a



Ambiguity Test
• A Grammar is Ambiguous if there are two 

distinct parse trees for some string
• Or, two distinct leftmost derivations 
• Or, two distinct rightmost derivations
• Some languages are inherently ambiguous but 

many are not
• Unfortunately (to be shown later) there is no 

systematic test for ambiguity of context free 
grammars
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Unambiguous Grammar
When we encounter ambiguity, we try to rewrite the grammar to avoid 
ambiguity.

The ambiguous expression grammar:

<expr> à <expr> <op> <expr> | id | int | (<expr>)
<op>    à + | - | * | /

Can be rewritten as:

<expr> à <term> | <expr> + <term> | <expr> - <term>
<term> à <factor> | <term> * <factor> | <term> / <factor>.
<factor> à id | int | (<expr>)
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Parsing Problem
The parsing Problem: Take a string of symbols in a language (tokens) 
and a grammar for that language to construct the parse tree or report 
that the sentence is syntactically incorrect.

For correct strings:

Sentence + grammar à parse tree

For a compiler,  a sentence is a program:

Program + grammar à parse tree

Types of parsers:

Top-down aka predictive (recursive descent parsing)

Bottom-up aka shift-reduce
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Removing Left Recursion if 
doing Top Down

Given left recursive and non left recursive rules
A ® Aa1 | … | Aan | b1 | … | bm

Can view as 
A ® (b1 | … | bm) (a1 | … | an )*
Star notation is an extension to normal notation with 
obvious meaning
Now, it should be clear this can be done right recursive as
A ® b1B | … | bm B
B ® a1B| … | anB | λ
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Right Recursive Expressions
Grammar: Expr à Expr + Term | Term

Term à Term * Factor | Factor
Factor à (Expr) | Int

Fix:           Expr à Term ExprRest
ExprRest à + Term ExprRest | l
Term à Factor TermRest
TermRest à * Factor TermRest | l
Factor à (Expr) | Int
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Bottom Up vs Top Down
• Bottom-Up: Two stack operations

– Shift (move input symbol to stack)
– Reduce (replace top of stack a with A, when A®a)
– Challenge is when to do shift or reduce and what reduce to do.

• Can have both kinds of conflict

• Top-Down:  
– If top of stack is terminal

• If same as input, read and pop
• If not, we have an error

– If top of stack is a non-terminal A
• Replace A with some a, when A®a
• Challenge is what A-rule to use
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Chomsky Normal Form
• Each rule of a CFG is constrained to be of 

one of the three forms:
A → a, A ∈ V, a ∈ Σ
A → BC, A,B,C ∈ V

• If the language contains l then we allow
S → l
and constrain all non-terminating rules of 
form to be
A → BC, A ∈ V, B,C ∈ V-{S}
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Nullable Symbols
• Let G = (V, S, R, S) be an arbitrary CFG
• Compute the set Nullable(G) = {A | A ⇒* l }
• Nullable(G) is computed as follows

Nullable(G) ⊇ { A | A → l }
Repeat

Nullable(G) ⊇ { B | B → a and a ∈ Nullable* } 
until no new symbols are added
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Removal of l-Rules
• Let G = (V, S, R, S) be an arbitrary CFG
• Compute the set Nullable(G)
• Remove all l-rules
• For each rule of form B → aAb where A is nullable, add 

in the rule B → ab 
• The above has the potential to greatly increase the 

number of rules and add unit rules 
(those of form B → C, where B,C∈V)

• If S is nullable, add new start symbol S0, as new start 
state, plus rules S0, → l and S0 → a, where S → a
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Chains (Unit Rules)
• Let G = (V, S, R, S) be an arbitrary CFG that has 

had its l-rules removed
• For A∈V, Chain(A) = { B | A ⇒* B, B∈V }
• Chain(A) is computed as follows

Chain(A) ⊇ { A }
Repeat

Chain(A) ⊇ { C | B → C and B ∈ Chain(A) }
until no new symbols are added
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Removal of Unit-Rules
• Let G = (V, S, R, S) be an arbitrary CFG that has had its 
l-rules removed, except perhaps from start symbol

• Compute Chain(A) for all A∈V
• Create the new grammar G = (V, S, R, S) where R is 

defined by including for each A∈V, all rules of the form
A → a, where B → a ∈ R, a ∉ V and B ∈ Chain(A)
Note: A∈Chain(A) so all its non unit-rules are included
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Non-Productive Symbols
• Let G = (V, S, R, S) be an arbitrary CFG that has had its 
l-rules and unit-rules removed

• Non-productive non-terminal symbols never lead to a 
terminal string (not productive)

• Productive(G) is computed by
Productive(G) ⊇ { A |  A → a, a∈S* }
Repeat

Productive(G) ⊇ { B | B → a, a∈(S∪Productive)* }
until no new symbols are added

• Keep only those rules that involve productive symbols
• If no rules remain, grammar generates nothing
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Unreachable Symbols
• Let G = (V, S, R, S) be an arbitrary CFG that has had its l-

rules, unit-rules and non-productive symbols removed
• Unreachable symbols are ones that are inaccessible from 

start symbol

• We compute the complement (Useful)
• Useful(G) is computed by

Useful(G) ⊇ { S }
Repeat

Useful(G) ⊇ { C | B → aCb, C∈V∪Σ, B∈ Useful(G) }
until no new symbols are added

• Keep only those rules that involve useful symbols

• If no rules remain, grammar generates nothing 
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Reduced CFG
• A reduced CFG is one without l-rules 

(except possibly for start symbol), no unit-
rules, no non-productive symbols and no 
useless symbols
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CFG to CNF
• Let G = (V, S, R, S) be arbitrary reduced CFG 
• Define G’=(V∪{<a>|a∈Σ}, S, R, S)
• Add the rules <a> → a, for all a∈Σ
• For any rule, A → a, |a| > 1, change each terminal 

symbol, a, in a to the non-terminal <a> 
• Now, for each rule A → BCa, |a| > 0, introduce the new 

non-terminal B<Ca>, and replace the rule A → BCa with 
the rule A → B<Ca> and add the rule <Ca> → Ca

• Iteratively apply the above step until all rules are in CNF 

1/19/19 COT 4210 © UCF 112



Example of CNF Conversion



Starting Grammars
• L = { ai bj ck | i=j or j=k }
• G = ({S,A,<B=C>,C,<A=B>}, {a,b}, R, S)
• R: 

– S à A | C
– A à a A | <B=C>
– <B=C> à b <B=C> c | λ
– C à C c | <A=B>
– <A=B> à a <A=B> b | λ
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Remove Null Rules
• Nullable = {<B=C>, <A=B>, A, C, S}

– S’ à S | λ // S’ added to V
– S à A | C
– A à a A | a |<B=C>
– <B=C> à b <B=C> c | b c
– C à C c | c | <A=B>
– <A=B> à a <A=B> b | ab
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Remove Unit Rules
• Chains= 

{[S’:S’,S,A,C,<A=B>,<B=C>],[S:S,A,C,<A=B>,<
B=C>], 
[A:A,<B=C>],[C:C,<B=C>],[<B=C>:<B=C>], 
[<A=B>:<A=B>]}
– S’ à λ | aA | a | b<B=C>c | bc | Cc | c | a<A=B>b | ab
– S à aA | a | b<B=C>c | bc | Cc | c | a<A=B>b | ab
– A à aA | a | b<B=C>c | bc
– <B=C> à b<B=C>c | bc
– C à Cc | c | a<A=B>b | ab
– <A=B> à a<A=B>b | ab
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Remove Useless Symbols
• All non-terminal symbols are productive (lead 

to terminal string)

• S is useless as it is unreachable from S’ (new 
start). 

• All other symbols are reachable from S’
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Normalize rhs as CNF
• S’ à λ | <a>A | a | <b><<B=C><c>> | <b><c> | 

C<c> | c | <a><<A=B><b>> | <a><b>
• A à <a>A | a |<b><<B=C><c>> | <b><c> 
• <B=C> à <b><<B=C><c>> | <b><c>
• C à C<c> | c | <a><<A=B><b>> | <a><b>
• <A=B> à <a> <<A=B><b>> | <a><b>
• <<B=C><c>> à <B=C><c>
• <<A=B><b>> à <A=B><b>
• <a> à a
• <b> à b
• <c> à c
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CKY (Cocke, Kasami, Younger)
O(N3) PARSING
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Dynamic Programming
To solve a given problem, we solve small parts of the problem (subproblems), 
then combine the solutions of the subproblems to reach an overall solution.

The Parsing problem for arbitrary CFGs was elusive, in that its complexity was 
unknown until the late 1960s. In the meantime, theoreticians developed notion 
of simplified forms that were as powerful as arbitrary CFGs. The one most 
relevant here is the Chomsky Normal Form – CNF. It states that the only rule 
forms needed are:

A  ® BC where B and C are non-terminals

A ® a where a is a terminal

This is provided the string of length zero is not part of the language.
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CKY (Bottom-Up Technique)
Let the input string be a sequence of n letters a1 ... an. 
Let the grammar contain r terminal and nonterminal symbols R1 ... Rr, 
Let R1 be the start symbol. 
Let P[n,n,r] be an array of Booleans. Initialize all elements of P to false. 
For each i = 1 to n 

For each unit production Rj → ai, set P[i,1,j] = true. 
For each i = 2 to n

For each j = 1 to n-i+1 
For each k = 1 to i-1 

For each production RA -> RB RC

If P[j,k,B] and P[j+k,i-k,C] then set P[j,i,A] = true 
If P[1,n,1] is true then a1 ... an is member of language 
else a1 ... an is not member of language 
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CKY Parser
Present the CKY recognition matrix for the string  abba assuming the Chomsky 
Normal Form grammar, G = ({S,A,B,C,D,E}, {a,b}, R, S), specified by the rules R:

S  ® AB  |  BA
A  ® CD  |  a
B  ® CE  |  b 
C  ® a      |  b
D  ® AC
E  ® BC 
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a b b a
1 A,C B,C B,C A,C
2 S,D E S,E
3 B B
4 S,E



2nd CKY Example
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a - a + a - a
1 E M E P E M E

2 E, F E, F E, F

3 E E E

4 E, F E, F

5 E E

6 E, F

7 E

E  ® E F  | M E | P E | a 
F  ® M F | P F | M E | P E
P  ® + 
M  ® -



CFL Pumping Lemma 
Concept

• Let L be a context free language the there is CNF grammar 
G = (V, Σ, R, S) such that L(G) = L.

• As G is in CNF all its rules that allow the string to grow are of the form 
A � BC, and thus growth has a binary nature.

• Any sufficiently long string z in L will have a parse tree that must have deep 
branches to accommodate z’s growth.

• Because of the binary nature of growth, the width of a tree with maximum 
branch length k at its deepest nodes is at most 2k; moreover, if the frontier 
of the tree is all terminal, then the string so produced is of length at most 
2k-1; since the last rule applied for each leaf is of the form A � a.

• Any terminal branch in a derivation tree of height > |V| has more than |V| 
internal nodes labelled with non-terminals. The “pigeon hole principle” tells 
us that whenever we visit |V| +1 or more nodes, we must use at least one 
variable label more than once. This creates a self-embedding property that 
is key to the repetition patterns that occur in the derivation of sufficiently 
long strings.
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Pumping Lemma For CFL
• Let L be a CFL then there exists an N>0 such 

that, if z Î L and |z| ≥ N, then z can be written in 
the form uvwxy, where |vwy| ≤ N, |vx|>0, and for 
all i≥0, uviwxiy Î L.

• This means that interesting context free 
languages (infinite ones) have a self-embedding 
property that is symmetric around some central 
area, unlike regular where the repetition has no 
symmetry and occurs at the start.
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Pumping Lemma Proof
• If L is a CFL then it is generated by some CNF grammar, G = (V, Σ, 

R, S). Let |V| = k. For any string z, such that |z| ≥ N = 2k, the 
derivation tree for z based on G must have a branch with at least 
k+1 nodes labelled with variables from G. 

• By the Pigeon Hole Principle at least two of these labels must be the 
same. Let the first repeated variable be T and consider the last two 
instances of T on this path.

• Let z = uvwxy, where S ⇒* uTy ⇒* uvTxy ⇒* uvwxy
• Clearly, then, we know S ⇒* uTy; T ⇒* vTx; and T ⇒* w
• But then, we can start with S ⇒* uTy; repeat T ⇒* vTx zero or more 

times; and then apply T ⇒* w.
• But then, S ⇒* uviwxiy for all i≥0, and thus uviwxiy Î L, for all i ≥0.

1/19/19 COT 4210 © UCF 126



Visual Support of Proof
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Lemma’s Adversarial Process
• Assume L = {anbncn | n>0 } is a CFL

• P.L.: Provides N>0 We CANNOT choose N; that’s the P.L.’s job

• Our turn: Choose aNbNcN Î L We get to select a string in L

• P.L.: aNbNcN = uvwxy, where |vwx| ≤ N, |vx|>0, and for all i≥0, 
uviwxiy Î L We CANNOT choose split, but P.L. is constrained by N

• Our turn: Choose i=0. We have the power here

• P.L: Two cases: 
(1) vwx contains some a’s and maybe some b’s. Because |vwx| ≤ N, it cannot 
contain c’s if it has a’s. i=0 erases some a’s but we still have N c’s so uwy∉L
(2) vwx contains no a’s. Because |vx|>0, vx contains some b’s or c’s or some of each. 
i=0 erases some b’s and/or c’s but we still have N a’s so uwy∉L

• CONTRADICTION, so L is NOT a CFL
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Non-Closure
• Intersection ({ anbncn | n≥0 } is not a CFL)

{ anbncn | n≥0 } = 
{ anbncm | n,m≥0 } ∩ { ambncn | n,m≥0 }
Both of the above are CFLs

• Complement
If closed under complement then would be 
closed under Intersection as 
A ∩ B = ~(~A ∪ ~B)
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Max and Min of CFL
• Consider the two operations on languages max and min, where

– max(L) = { x | x ∈ L and, for no non-null y does xy ∈ L } and
– min(L) = { x | x ∈ L and, for no proper prefix of x, y, does y ∈ L }

• Describe the languages produced by max and min. for each of :
– L1 = { ai bj ck | k ≤ i or k ≤ j } CFL

• max(L1) =     { ai bj ck | k =max(i, j)  } Non-CFL  
• min(L1) =      { λ } (string of length 0)  Regular 

– L2 = { ai bj ck | k > i or k > j } CFL
• max(L2) =     {  } (empty) Regular       
• min(L2) =      { ai bj ck | k =min(i, j)+1 } Non-CFL

• max(L1) shows CFL not closed under max
• min(L2) shows CFL not closed under min
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Complement of ww
• Let L = { ww | w ∈ {a,b}+ }. L is not a CFL
• Consider L’s complement, it must be of form xayx’by’ or xbyx’ay’, 

where |x|=|x’| and |y|=|y’|
• The above reflects that this language has one “transcription error”
• This seems really hard to write a CFG but it’s all a matter of how you 

view it
• We don’t care about what precedes or follows the errors so long as 

the lengths are right
• Thus, we can view above as xax’yby’ or xbx’y’ay’, 

where |x|=|x’| and |y|=|y’|
• The grammar for this has rules 

S � AB  |  BA ; A � XAX  |  a ; B � XBX  |  b 
X � a  |  b
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Solvable CFL Problems
• Let L be an arbitrary CFL generated by CFG G 

with start symbol S then the following are all 
decidable
– Is w in L? Run CKY

If S in final cell then w∈L
– Is L empty (non-empty)? Reduce G

If no rules left then empty
– Is L finite (infinite)? Reduce G

Run DFS(S) 
If no loops then finite
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Formalization of PDA
• A = (Q, Σ, Γ, δ, q0, Z0, F)
• Q is finite set of states
• Σ is finite input alphabet
• Γ is finite set of stack symbols
• δ : Q�Σe�Γe → 2Q�Γ* is transition function

– Note: Can limit stack push to Γe but it’s equivalent!!
• Z0 ∈ Γ is an optional initial symbol on stack
• F ⊆ Q is final set of states and can be omitted 

for some notions of a PDA
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Notion of ID for PDA
• An instantaneous description for a PDA is

[q, w, γ] where 
– q is current state
– w is remaining input 
– γ is contents of stack (leftmost symbol is top) 

• Single step derivation is defined by
– [q,ax,Zα] |— [p,x,βα] if δ(q,a,Z) contains (p,β)

• Multistep derivation (|—*) is reflexive transitive 
closure of single step.
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Language Recognized by PDA
• Given A = (Q, Σ, Γ, δ, q0, Z0, F)

there are three senses of recognition
• By final state 

L(A) = {w|[q0,w,Z0] |—* [f,λ,β]}, where f∈F
• By empty stack

N(A) = {w|[q0,w,Z0] |—* [q,λ,λ]} 
• By empty stack and final state 

E(A) = {w|[q0,w,Z0] |—* [f,λ,λ]}, where f∈F
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Top Down Parsing by PDA
• Given G = (V, Σ, R, S), define 

A = ({q}, Σ, Σ∪V, δ, q, S, ϕ)
• δ(q,a,a) = {(q,λ)} for all a ∈ Σ
• δ(q,λ,A) = {(q,α) |  A → α ∈ R (guess) }
• N(A) = L(G)

• Give just one state, this is essentially 
stateless, except for stack
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Top Down Parsing by PDA
E à E + T | T
T à T * F | F 
F à (E) | Int
•δ(q,+,+) = {(q,λ)}, δ(q,*,*) = {(q,λ)},
•δ(q,Int,Int) = {(q,λ)},
•δ(q,(,() = {(q,λ)}, δ(q,),)) = {(q,λ)} 
•δ(q,λ,E) = {(q,E+T), (q,T)}
•δ(q,λ,T) = {(q,T*F), (q,F)}
•δ(q,λ,F) = {(q,(E)), (q,Int)}
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Bottom Up Parsing by PDA
• Given G = (V, Σ, R, S), define 

A = ({q,f}, Σ, Σ∪V∪{$}, δ, q, $, {f})
• δ(q,a,λ) = {(q,a)} for all a ∈ Σ , SHIFT
• δ(q,λ,αR) ⊇ {(q,A)} if A → α ∈ R, REDUCE

Cheat: looking at more than top of stack
• δ(q,λ,S) ⊇ {(f,λ)}
• δ(f,λ,$) = {(f,λ)} , ACCEPT
• E(A) = L(G)
• Could also do δ(q,λ,S$)⊇{(q,λ)}, N(A) = L(G)
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Bottom Up Parsing by PDA
E à E + T | T
T à T * F | F 
F à (E) | Int
•δ(q,+,λ)={(q,+)}, δ(q,*,λ)={(q,*)}, δ(q,Int,λ)={(q,Int)},
δ(q,(,λ)={(q,()}, δ(q,),λ)={(q,))}  
•δ(q,λ,T+E) = {(q,E)}, δ(q,λ,T) ⊇ {(q,E)}
•δ(q,λ,F*T) ⊇ {(q,T)}, δ(q,λ,F) ⊇ {(q,T)}
•δ(q,λ,)E() ⊇ {(q,F)}, δ(q,λ,Int) ⊇ {(q,F)}
•δ(q,λ,E) ⊇ {(f,λ)}
•δ(f,λ,$) = {(f,λ)}
•E(A) = L(G)
1/19/19 COT 4210 © UCF 139



Converting a PDA to CFG
• Book has one approach; here is another

• Let A = ( Q, S, G, d, q0, Z, F) accept L by empty stack and final state

• Define A’ = (QÈ{q0’,f}, S, GÈ{$}, d’, q0’, $, {f}) where
– d’(q0’, λ, $) = {(q0, PUSH(Z)) or in normal notation {(q0, Z$)}

– d’ does what d does but only uses PUSH and POP instructions, always reading top of stack 
Note1: we need to consider using the $ for cases of the original machine looking at empty 
stack, when using λ for stack check. This guarantees we have top of stack until very end.
Note2: If original adds stuff to stack, we do pop, followed by a bunch of pushes.

– We add (f, λ) = (f, POP) to d’(qf, λ, $) whenever qf is in F, so we jump to a fixed final state.

• Now, wlog, we can assume our PDA uses only POP and PUSH, has just 
one final state and accepts by empty stack and final state. We will assume 
the original machine is of this form and that its bottom of stack is $.

• Define G = (V, S, R, S) where

– V = {S} È { <q, X, p> | q,p Î Q, X Î G }

– R on next page
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Rules for PDA to CFG
• R contains rules as follows:

S ® <q0,$,f> where F = {f}
meaning: want to generate w whenever 
[q0,w,$] |¾*[f,λ,λ]

• Remaining rules are:
<q,X,p> ® a<s,Y,t><t,X,p>
whenever d(q,a,X) ⊇ {(s,PUSH(Y))}
<q,X,p> ® a
whenever d(q,a,X) ⊇ {(p,POP)}

• Want <q,X,p>Þ*w when [q,w,X] |¾*[p,λ,λ]
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Greibach Normal Form
• Each rule of a GNF is constrained to be of form:

A → aa, A ∈ V, a ∈ Σ, a ∈ V* 
• If the language contains l then we allow

S → l
and constrain S to not be on right hand side of any rule

• The beauty of this form is that, in a bottom up parse, 
every step consumes an input character and so parse is 
linear (if we guess right)

• We will not show details of conversion but it is 
dependent on starting in CNF and then removing left 
recursion, both of which we have already shown
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Closure Properties

Context Free Languages



Intersection with Regular
• CFLs are closed under intersection with Regular sets

– To show this we use the equivalence of CFGs generative power with the 
recognition power of PDAs.

– Let A0 = ( Q0, S, G, d0, q0, $, F0) be an arbitrary PDA
– Let A1 = ( Q1, S, d1, q1, F1) be an arbitrary DFA
– Define A2 = ( Q0 ´ Q1, S, G, d2, <q0,q1> $, F0 ´ F1) where

• d2(<q,s>, a, X) ⊇ {(<q�,s�>, a)}, aÎSÈ{l}, XÎG iff
d0(q, a, X) ⊇ {(q�, a)} and 
d1(s,a) = s� (if a=l then s� = s).

– Using the definition of derivations we see that
[<q0,q1>, w, $] |¾* [<t,s>, l, b] in A2 iff
[q0, w, $] |¾* [t, l, b] in A0 and
[q1, w] |¾* [s, l] in A1

But then wÎF(A2) iff tÎF0 and sÎF1 iff wÎF(A0) and wÎF(A1)
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Substitution
• CFLs are closed under CFL substitution

– Let G=(V,S,R,S) be a CFG.
– Let f be a substitution over S such that

• f(a) = La for a Î S
• Ga = (Va,Sa,Ra,Sa) is a CFG that produces La.
• No symbol appears in more than one of V or any Va

– Define Gf = (V ÈaÎSVa, ÈaÎSSa, R� ÈaÎSRa, S)
• R� = { A ® g(a) where A ® a is in R }
• g: (VÈS)* ® (V ÈaÎSSa )*
• g(l) = l; g(B) = B, B Î V; g(a) = Sa, a Î S
• g(aX) = g(a) g(X), |a| > 0, X Î VÈS

– Claim, f(L(G)) = L(Gf), and so CFLs closed under 
substitution and homomorphism.
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More on Substitution
• Consider G�f. If we limit derivations to the rules R� = { A ® g(a) 

where A ® a is in R } and consider only sentential forms over  the 
ÈaÎSSa , then S Þ* Sa1 Sa2 … San in G� iff S Þ* a1 a2 … an 
iff a1 a2 … an Î L(G). But, then w Î L(G) iff f(w) Î L(Gf) and, thus, 
f(L(G)) = L(Gf). 

• Given that CFLs are closed under intersection, substitution, 
homomorphism and intersection with regular sets, we can recast 
previous proofs to show that CFLs are closed under
– Prefix, Suffix, Substring, Quotient with Regular Sets

• Later we will show that CFLs are not closed under Quotient with 
CFLs.
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Context Sensitive



Context Sensitive Grammar
G = (V, S, R, S) is a PSG where
Each member of R is a rule whose right side is no shorter than its left 
side.
The essential idea is that rules are length preserving, although we do 
allow S ® λ so long as S never appears on the right hand side of any 
rule.
A context sensitive grammar is denoted as a CSG and the language 
generated is a Context Sensitive Language (CSL).
The recognizer for a CSL is a Linear Bounded Automaton (LBA), a form 
of Turing Machine (soon to be discussed), but with the constraint that it 
is limited to moving along a tape that contains just the input surrounded 
by a start and end symbol.
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Phrase Structured Grammar
We previously defined PSGs. The language generated by a 
PSG is a Phrase Structured Language (PSL) but is more 
commonly called a recursively enumerable (re) language. 
The reason for this will become evident a bit later in the 
course.

The recognizer for a PSL (re language) is a Turing 
Machine, a model of computation we will soon discuss.
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CSG Example#1
L = { anbncn | n>0 }
G = ({A,B,C}, {a,b,c}, R, A) where R is
A   → aBbc | abc
B   → aBbC | abC
Note: A ⇒ aBbc ⇒n an+1(bC)n bc // n>0
Cb → bC // Shuttle C over to a c
Cc → cc // Change C to a c
Note: an+1(bC)n bc ⇒* an+1bn+1cn+1

Thus, A ⇒* anbncn , n>0
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CSG Example#2
L = { ww | w ∈{0,1}+ }
G = ({S,A,X,Z,<0>,<1>}, {0,1}, R, S) where R is
S   → 00 | 11 | 0A<0> | 1A<1>
A   → 0AZ | 1AX | 0Z | 1X
Z0 → 0Z Z1 → 1Z // Shuttle Z (for owe zero)
X0 → 0X X1 → 1X // Shuttle X (for owe one)
Z<0> → 0<0> Z<1> → 1<0> // New 0 must be on rhs of old 0/1’s
X<0> → 0<1> X<1> → 1<1> // New 1 must be on rhs of old 0/1’s
<0> → 0 // Guess we are done
<1> → 1 // Guess we are done
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